
EECS 262a
Advanced Topics in Computer Systems

Lecture 4

Filesystems (Con’t)
February 1st, 2016

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

2/1/2016 2Cs262a-S16 Lecture-04

Today’s Papers
• The HP AutoRAID Hierarchical Storage System (2-up version),

John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan.
Appears in ACM Transactions on Computer Systems, Vol. 14,
No, 1, February 1996, Pages 108-136.

• Finding a needle in Haystack: Facebook’s photo storage,Doug
Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel.
Appears in Proceedings of the USENIX conference in Operating
Systems Design and Implementation (OSDI), 2010

• System design paper and system analysis
paper

• Thoughts?

2/1/2016 3Cs262a-S16 Lecture-04

Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

50,000 Hours ÷ 70 disks = 700 hours

Disk system MTTF: Drops from 6 years to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be
achieved

2/1/2016 4Cs262a-S16 Lecture-04

RAID Basics (Two optional papers)
• Levels of RAID (those in RED are actually used):

– RAID 0 (JBOD): striping with no parity (just bandwidth)
– RAID 1: Mirroring (simple, fast, but requires 2x storage)

» 1/n space, reads faster (1 to Nx), writes slower (1x) – why?
– RAID 2: bit-level interleaving with Hamming error-correcting codes (ECC)
– RAID 3: byte-level striping with dedicated parity disk

» Dedicated parity disk is write bottleneck, since every write also writes
parity

– RAID 4: block-level striping with dedicated parity disk
» Same bottleneck problems as RAID 3

– RAID 5: block-level striping with rotating parity disk
» Most popular; spreads out parity load; space 1-1/N, read/write (N-1)x

– RAID 6: RAID 5 with two parity blocks (tolerates two drive failures)
• Use RAID 6 with today’s drive sizes! Why?

– Correlated drive failures (2x expected in 10hr recovery)
[Schroeder and Gibson, FAST07]

– Failures during multi-hour/day rebuild in high-stress environments

2/1/2016 5Cs262a-S16 Lecture-04

Redundant Arrays of Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow"
Very high availability can be achieved

• Bandwidth sacrifice on write:
Logical write = two physical writes

• Reads may be optimized

• Most expensive solution: 100% capacity overhead

Targeted for high I/O rate , high availability environments

recovery
group

2/1/2016 6Cs262a-S16 Lecture-04

Redundant Arrays of Disks RAID 5+: High
I/O Rate Parity

A logical write
becomes four
physical I/Os

Independent writes
possible because of
interleaved parity

Reed-Solomon
Codes ("Q") for
protection during
reconstruction

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk

Addresses

Stripe

Stripe
Unit

Targeted for mixed
applications

2/1/2016 7Cs262a-S16 Lecture-04

Problems of Disk Arrays: Small Writes

D0 D1 D2 D3 PD0'

D0' D1 D2 D3 P'

+

old
data

XOR

(1. Read)

+

old
parity

XOR

(2. Read)new
data

(3. Write) (4. Write)

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

2/1/2016 8Cs262a-S16 Lecture-04

System Availability: Orthogonal RAIDs

Array
Controller

String
Controller . . .

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

. . .

. . .

. . .

. . .

. . .

Redundant Support Components: fans, power supplies, controller, cables
Data Recovery Group: unit of data redundancy

End to End Data Integrity: internal parity protected data paths

2/1/2016 9Cs262a-S16 Lecture-04

System-Level Availability

I/O Controller

Array Controller

. . .

. . .

. . .

Array Controller
.

.

.

.

Recovery
Group

Goal: No Single
Points of
Failure

host
Fully dual redundantI/O Controller

host

with duplicated paths, higher performance can be
obtained when there are no failures

2/1/2016 10Cs262a-S16 Lecture-04

How to get to “RAID 6”?
• One option: Reed-Solomon codes (Non-systematic):

– Use of Galois Fields (finite element equivalent of real numbers)
– Data as coefficients, code space as values of polynomial:
– P(x)=a0+a1x1+… a4x4

– Coded: P(1),P(2)….,P(6),P(7)
– Advantage: can add as much redundancy as you like: 5 disks?

• Problems with Reed-Solomon codes: decoding gets
complex quickly – even to add a second disk

• Alternates: lot of them – I’ve posted one possibility
– Idea: Use prime number of columns, diagonal as well as straight XOR

2/1/2016 11Cs262a-S16 Lecture-04

HP AutoRAID – Motivation
• Goals: automate the efficient replication of data in a RAID

– RAIDs are hard to setup and optimize
– Mix fast mirroring (2 copies) with slower, more space-efficient parity disks
– Automate the migration between these two levels

• RAID small-write problem:
– to overwrite part of a block required 2 reads and 2 writes!
– read data, read parity, write data, write parity

• Each kind of replication has a narrow range of workloads for
which it is best...

– Mistake ⇒ 1) poor performance, 2) changing layout is expensive and error
prone

– Also difficult to add storage: new disk ⇒ change layout and rearrange data...

2/1/2016 12Cs262a-S16 Lecture-04

HP AutoRAID – Key Ideas
• Key idea: mirror active data (hot), RAID 5 for cold data

– Assumes only part of data in active
use at one time

– Working set changes slowly
(to allow migration)

• How to implement this idea?
– Sys-admin

» make a human move around the
files.... BAD. painful and error prone

– File system
» best choice, but hard to implement/

deploy; can’t work with existing systems
– Smart array controller: (magic disk)

block-level device interface
» Easy to deploy because there is a well-defined abstraction
» Enables easy use of NVRAM (why?)

2/1/2016 13Cs262a-S16 Lecture-04

HP AutoRaid – Features
• Block Map

– level of indirection so that blocks can be moved around among the disks
– implies you only need one “zero block” (all zeroes), a variation of copy on

write
– in fact could generalize this to have one real block for each unique block

• Mirroring of active blocks
– RAID 5 for inactive blocks or large sequential writes (why?)
– Start out fully mirrored, then move to 10% mirrored as disks fill

• Promote/demote in 64K chunks (8-16 blocks)
– Hot swap disks, etc. (A hot swap is just a controlled failure.)
– Add storage easily (goes into the mirror pool)
– useful to allow different size disks (why?)

• No need for an active hot spare (per se);
– just keep enough working space around

• Log-structured RAID 5 writes
– Nice big streams, no need to read old parity for partial writes

2/1/2016 14Cs262a-S16 Lecture-04

AutoRAID Details

• PEX (Physical Extent): 1MB chunk of disk space
• PEG (Physical Extent Group): Size depends on # Disks

– A group of PEXes assigned to one storage class
• Stripe: Size depends # Disks

– One row of parity and data segments in a RAID 5 storage class
• Segment: 128 KB

– Strip unit (RAID 5) or half of a mirroring unit
• Relocation Block (RB): 64KB

– Client visible space unit

2/1/2016 15Cs262a-S16 Lecture-04

Closer Look:

2/1/2016 16Cs262a-S16 Lecture-04

Questions
• When to demote? When there is too much mirrored storage (>10%)

– Demotion leaves a hole (64KB). What happens to it? Moved to free list and reused
– Demoted RBs are written to the RAID5 log, one write for data, a second for parity

• Why log RAID5 better than update in place?
– Update of data requires reading all the old data to recalculate parity.
– Log ignores old data (which becomes garbage) and writes only new data/parity

stripes
• When to promote? When a RAID5 block is written...

– Just write it to mirrored and the old version becomes garbage.
• How big should an RB be?

– Bigger ⇒ Less mapping information, fewer seeks
– Smaller ⇒ fine grained mapping information

• How do you find where an RB is?
– Convert addresses to (LUN, offset) and then lookup RB in a table from this pair
– Map size = Number of RBs and must be proportional to size of total storage

• How to handle thrashing (too much active write data)?
– Automatically revert to directly writing RBs to RAID 5!

2/1/2016 17Cs262a-S16 Lecture-04

Issues
• Disks writes go to two disks (since newly written data is “hot”).

– Must wait for both to complete -- why?
– Does the host have to wait for both? No, just for NVRAM

• Controller uses cache for reads
• Controller uses NVRAM for fast commit, then moves data to disks

– What if NVRAM is full? Block until NVRAM flushed to disk, then write to NVRAM
• What happens in the background?

– 1) compaction, 2) migration, 3) balancing
• Compaction: clean RAID5 and plug holes in the mirrored disks.

– Do mirrored disks get cleaned? Yes, when a PEG is needed for RAID5; i.e., pick a
disks with lots of holes and move its used RBs to other disks. Resulting empty PEG
is now usable by RAID5

– What if there aren’t enough holes? Write the excess RBs to RAID5, then reclaim the
PEG

• Migration: which RBs to demote? Least-recently-written (not LRU)
• Balancing: make sure data evenly spread across the disks. (Most

important when you add a new disk)

2/1/2016 18Cs262a-S16 Lecture-04

Is this a good paper?
• What were the authors’ goals?
• What about the performance metrics?
• Did they convince you that this was a good system?
• Were there any red-flags?
• What mistakes did they make?
• Does the system meet the “Test of Time” challenge?
• How would you review this paper today?

2/1/2016 19Cs262a-S16 Lecture-04

Finding a Needle in Haystack
• This is a systems level solution:

– Takes into account specific application (Photo Sharing)
» Large files!, Many files!
» 260 Billion images, 20 PetaBytes (1015 bytes!)
» One billion new photos a week (60 TeraBytes)
» Each photo scaled to 4 sizes and replicated (3x)

– Takes into account environment (Presence of Content Delivery Network, CDN)
» High cost for NAS and CDN

– Takes into account usage patterns:
» New photos accessed a lot (caching well)
» Old photos accessed little, but

likely to be requested at any
time  NEEDLES

• Cumulative graph of accesses
as function of age

2/1/2016 20Cs262a-S16 Lecture-04

Old Solution: NFS
• Issues with this design?
• Long Tail  Caching does not

work for most photos
– Every access to back end storage must be

fast without benefit of caching!

• Linear Directory scheme works
badly for many photos/directory

– Many disk operations to find even a
single photo (10 I/Os!)

– Directory’s block map too big to cache in memory
– “Fixed” by reducing directory size, however still not great (10  3 I/Os)

• FFS metadata requires ≥ 3 disk accesses per lookup (dir,
inode, pic)

– Caching all inodes in memory might help, but inodes are big

• Fundamentally, Photo Storage different from other storage:
– Normal file systems fine for developers, databases, etc.

2/1/2016 21Cs262a-S16 Lecture-04

Solution: Finding a needle (old photo) in
Haystack
• Differentiate between old

and new photos
– How? By looking at “Writeable”

vs “Read-only” volumes
– New Photos go to Writeable volumes

• Directory: Help locate photos
– Name (URL) of photo has

embedded volume and photo ID
• Let CDN or Haystack Cache

Serve new photos
– rather than forwarding them to

Writeable volumes
• Haystack Store: Multiple “Physical Volumes”

– Physical volume is large file (100 GB) which stores millions of photos
– Data Accessed by Volume ID with offset into file
– Since Physical Volumes are large files, use XFS which is optimized for large files
– DRAM usage per photo: 40 bytes vs 536 inode

• Cheaper/Faster: ~28% less expensive, ~4x reads/s than NAS
2/1/2016 22Cs262a-S16 Lecture-04

What about these results?

• Workloads:
– A: Random reads to 64KB images – 85% of raw throughput, 17% higher latency
– B: Same as A but 70% of reds are 8KB images
– C, D, E: Write throughput with 1, 4, 16 writes batched (30 and 78% throughput

gain)
– F, G: Mixed workloads (98% R/2% MW, 96% R/4% MW of 16 image MW)

• Are these good benchmarks? Why or why not?
• Are these good results? Why or why not?

2/1/2016 23Cs262a-S16 Lecture-04

Discussion of Haystack
• Did their design address their goals?

– Why or why not

• Were they successful?
– Is this a different question?

• What about the benchmarking?
– Good performance metrics?
– Did they convince you that this was a good system?

• Were there any red-flags?
• What mistakes did they make?
• Will this system meet the “Test of Time” challenge?

2/1/2016 24Cs262a-S16 Lecture-04

Is this a good paper?
• What were the authors’ goals?
• What about the performance metrics?
• Did they convince you that this was a good system?
• Were there any red-flags?
• What mistakes did they make?
• Does the system meet the “Test of Time” challenge?
• How would you review this paper today?

