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Today’s Papers
• A Fast File System for UNIX

Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler and Robert 
S. Fabry. Appears in ACM Transactions on Computer Systems 
(TOCS), Vol. 2, No. 3, August 1984, pp 181-197

• Analysis and Evolution of Journaling File Systems
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. 
Arpaci-Dusseau, Appears in Proceedings of the Annual Conference on 
USENIX Annual Technical Conference (ATEC '05), 2005

• System design paper and system analysis paper
• Thoughts?
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Review: Magnetic Disk Characteristic

• Cylinder: all the tracks under the 
head at a given point on all surface

• Read/write data is a three-stage 
process:

– Seek time: position the head/arm over the proper track (into proper cylinder)
– Rotational latency: wait for the desired sector

to rotate under the read/write head
– Transfer time: transfer a block of bits (sector)

under the read-write head
• Disk Latency = Queueing Time + Controller time +

Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth: 
– Transfer large group of blocks sequentially from one track
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Historical Perspective
• 1956 IBM Ramac — early 1970s Winchester

– Developed for mainframe computers, proprietary interfaces
– Steady shrink in form factor: 27 in. to 14 in.

• Form factor and capacity drives market more than performance
• 1970s developments

– 5.25 inch floppy disk formfactor (microcode into mainframe)
– Emergence of industry standard disk interfaces

• Early 1980s: PCs and first generation workstations
• Mid 1980s: Client/server computing 

– Centralized storage on file server
» accelerates disk downsizing: 8 inch to 5.25

– Mass market disk drives become a reality
» industry standards: SCSI, IPI, IDE
» 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

• 1900s: Laptops => 2.5 inch drives
• 2000s: Shift to perpendicular recording

– 2007: Seagate introduces 1TB drive
– 2009: Seagate/WD introduces 2TB drive

• 2014: Seagate announces 8TB drives
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Disk History

Data 
density
Mbit/sq. in.

Capacity of
Unit Shown
Megabytes

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even mroe data into even smaller spaces”
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Disk History

1989:
63 Mbit/sq. in
60,000 MBytes

1997:
1450 Mbit/sq. in
2300 MBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even mroe data into even smaller spaces”

1997:
3090 Mbit/sq. in
8100 MBytes
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Recent: Seagate Enterprise (2014) 
• 8TB!  > 1.33 Tb/in2 (announced Nov 2015)
• 6 (3.5”) platters, 2 heads each
• Perpendicular recording (not SMR!)
• 7200 RPM, 4.16ms latency
• 237MB/sec sustained transfer speed
• 256MB cache
• Error Characteristics:

– MBTF: 2 x 106 hours
– Bit error rate: 10-15

• Special considerations: 
– Normally need special “bios” (EFI): Bigger than easily handled by 

32-bit OSes.
– Seagate provides special “Disk Wizard” software that virtualizes 

drive into multiple chunks that makes it bootable on these OSes. 
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Contrarian View
• FFS doesn’t matter anymore!

• What about Journaling? Is it still relevant?
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Storage Performance & Price
Bandwidth 
(sequential R/W)

Cost/GB Size

HHD 50-100 MB/s $0.05-0.1/GB 2-8 TB

SSD1 200-500 MB/s 
(SATA)
6 GB/s (PCI)

$1.5-5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

10

BW: SSD up to x10 than HDD, DRAM > x10 than SSD

Price: HDD x30 less than SSD, SSD x4 less than DRAM   

BW: SSD up to x10 than HDD, DRAM > x10 than SSD

Price: HDD x30 less than SSD, SSD x4 less than DRAM   

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/
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Filesystems Background
• i-node: structure for per-file 

metadata (unique per file)
– contains: ownership, permissions, 

timestamps, about 10 data-block 
pointers

– i-nodes form an array, indexed by 
“i-number” – so each i-node has a 
unique i-number

– Array is explicit for FFS, implicit for 
LFS (its i-node map is cache of
i-nodes indexed by i-number)

• Indirect blocks:
– i-node only holds a small number of data block pointers (direct pointers)
– For larger files, i-node points to an indirect block containing 

1024 4-byte entries in a 4K block
– Each indirect block entry points to a data block
– Can have multiple levels of indirect blocks for even larger files
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A Fast File System for UNIX
• Original UNIX FS was simple and elegant, but slow
• Could only achieve about 20 KB/sec/arm; ~2% of 1982 disk 

bandwidth

• Problems:
– Blocks too small

» 512 bytes (matched sector size)
– Consecutive blocks of files not close together

» Yields random placement for mature file systems
– i-nodes far from data

» All i-nodes at the beginning of the disk, all data after that
– i-nodes of directory not close together
– no read-ahead

» Useful when sequentially reading large sections of a file
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FFS Changes
• Aspects of new file system: 

– 4096 or 8192 byte block size (why not larger?)
– large blocks and small fragments
– disk divided into cylinder groups
– each contains superblock, i-nodes, bitmap of free blocks, usage 

summary info
– Note that i-nodes are now spread across the disk: 

» Keep i-node near file, i-nodes of a directory together (shared fate)
– Cylinder groups ~ 16 cylinders, or 7.5 MB
– Cylinder headers spread around so not all on one platter

• Two techniques for locality: 
– Lie – don’t let disk fill up (in any one area)
– Paradox: to achieve locality, must spread unrelated things far apart
– Note: new file system got 175KB/sec because free list contained 

sequential blocks (it did generate locality), but an old system has 
randomly ordered blocks and only got 30 KB/sec (fragmentation)
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FFS Locality Techniques
• Goals

– Keep directory within a cylinder group, spread out different 
directories

– Allocate runs of blocks within a cylinder group, every once in a 
while switch to a new cylinder group (jump at 1MB)

• Layout policy: global and local
– Global policy allocates files & directories to cylinder groups – picks 

“optimal” next block for block allocation
– Local allocation routines handle specific block requests – select 

from a sequence of alternative if need to
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FFS Results
• 20-40% of disk bandwidth for large reads/writes

• 10-20x original UNIX speeds

• Size: 3800 lines of code vs. 2700 in old system

• 10% of total disk space unusable (except at 50% 
performance price)

• Could have done more; later versions do
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FFS System Interface Enhancements
• Really a second mini-paper!
• Long file names (14  255 characters)
• Advisory file locks (shared or exclusive)

– Process id of holder stored with lock => can reclaim the lock if process is 
no longer around

• Symbolic links (contrast to hard links)
• Atomic rename capability

– The only atomic read-modify-write operation, before this there was none
• Disk quotas
• Could probably have gotten copy-on-write to work to avoid copying 

data from user  kernel (would need to copies only for parts that 
are not page aligned)

• Over-allocation would save time; return unused allocation later 
Advantages: 

– 1) less overhead for allocation
– 2) more likely to get sequential blocks
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FFS Summary
• 3 key features:

– Parameterize FS implementation for the hardware it’s running on
– Measurement-driven design decisions
– Locality “wins”

• Major flaws: 
– Measurements derived from a single installation
– Ignored technology trends

• A lesson for the future: don’t ignore underlying 
hardware characteristics

• Contrasting research approaches: improve what 
you’ve got vs. design something new
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation / metrics?
• Did they convince you that this was a good system 

/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?

BREAK
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Quick Aside:
Log-Structured/Journaling File System
• Radically different file system design
• Technology motivations:

– CPUs outpacing disks: I/O becoming more-and-more of a 
bottleneck

– Large RAM: file caches work well, making most disk traffic writes

• Problems with (then) current file systems:
– Lots of little writes
– Synchronous: wait for disk in too many places – makes it hard to 

win much from RAIDs, too little concurrency
– 5 seeks to create a new file: (rough order) 

1. file i-node (create)
2. file data
3. directory entry
4. file i-node (finalize)
5. directory i-node (modification time)



1/27/2016 21cs262a-S16 Lecture-03

LFS Basic Idea
• Log all data and metadata with efficient, large, 

sequential writes
• Treat the log as the truth, but keep an index on its 

contents
• Rely on a large memory to provide fast access 

through caching
• Data layout on disk has “temporal locality” (good for 

writing), rather than “logical locality” (good for 
reading)

– Why is this a better? Because caching helps reads but not writes!

• Two potential problems:
– Log retrieval on cache misses
– Wrap-around: what happens when end of disk is reached?

» No longer any big, empty runs available
» How to prevent fragmentation?
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LFS Log Retrieval
• Keep same basic file structure as UNIX (inode, 

indirect blocks, data)
• Retrieval is just a question of finding a file’s inode
• UNIX inodes kept in one or a few big arrays, LFS 

inodes must float to avoid update-in- place
• Solution: an inode map that tells where each inode is 

(Also keeps other stuff: version number, last access 
time, free/allocated)

• inode map gets written to log like everything else
• Map of inode map gets written in special checkpoint 

location on disk; used in crash recovery
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LFS Disk Wrap-Around
• Compact live info to open up large runs of free space

– Problem: long-lived information gets copied over-and-over

• Thread log through free spaces
– Problem: disk fragments, causing I/O to become inefficient again

• Solution: segmented log
– Divide disk into large, fixed-size segments
– Do compaction within a segment; thread between segments
– When writing, use only clean segments (i.e. no live data)
– Occasionally clean segments: read in several, write out live data in 

compacted form, leaving some fragments free
– Try to collect long-lived info into segments that never need to be cleaned
– Note there is not free list or bit map (as in FFS), only a list of clean 

segments
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LFS Segment Cleaning
• Which segments to clean?

– Keep estimate of free space in each segment to help find 
segments with lowest utilization

– Always start by looking for segment with utilization=0, since those 
are trivial to clean…

– If utilization of segments being cleaned is U:
» write cost = (total bytes read & written)/(new data written) = 

2/(1-U) (unless U is 0)
» write cost increases as U increases: U = .9 => cost = 20!
» Need a cost of less than 4 to 10; => U of less than .75 to .45

• How to clean a segment?
– Segment summary block contains map of the segment
– Must list every i-node and file block
– For file blocks you need {i-number, block #}
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Analysis and Evolution of Journaling 
File Systems
• Write-ahead logging: commit data by writing it to log, 

synchronously and sequentially
• Unlike LFS, then later moved data to its normal 

(FFS-like) location – this write is called checkpointing
and like segment cleaning, it makes room in the 
(circular) journal

• Better for random writes, slightly worse for big 
sequential writes

• All reads go the the fixed location blocks, not the 
journal, which is only read for crash recovery and 
checkpointing

• Much better than FFS (fsck) for crash recovery 
(covered below) because it is much faster

• Ext3/ReiserFS/Ext4 filesystems are the main ones in 
Linux
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Three modes for a JFS
• Writeback mode: 

– Journal only metadata
– Write back data and metadata independently
– Metadata may thus have dangling references after a crash (if 

metadata written before the data with a crash in between)

• Ordered mode: 
– Journal only metadata, but always write data blocks before their 

referring metadata is journaled
– This mode generally makes the most sense and is used by 

Windows NTFS and IBM’s JFS

• Data journaling mode: 
– Write both data and metadata to the journal 
– Huge increase in journal traffic; plus have to write most blocks 

twice, once to the journal and once for checkpointing (why not all?)
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JFS Crash Recovery
• Load superblock to find the tail/head of the log

• Scan log to detect whole committed transactions 
(they have a commit record)

• Replay log entries to bring in-memory data structures 
up to date

– This is called “redo logging” and entries must be “idempotent”

• Playback is oldest to newest; tail of the log is the 
place where checkpointing stopped

• How to find the head of the log?
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Some Fine Points
• Can group transactions together: fewer syncs and fewer writes, 

since hot metadata may changes several times within one 
transaction

• Need to write a commit record, so that you can tell that all of the 
compound transaction made it to disk

• ext3 logs whole metadata blocks (physical logging); JFS and 
NTFS log logical records instead, which means less journal 
traffic
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Some Fine Points
• Head of line blocking: 

– Compound transactions can link together concurrent streams (e.g., 
from different apps) and hinder asynchronous apps performance 
(Figure 6)

– This is like having no left turn lane and waiting on the car in front of 
you to turn left, when you just want to go straight

• Distinguish 
– Between ordering of writes and durability/persistence – careful ordering 

means that after a crash the file system can be recovered to a consistent 
past state. 

– But that state could be far in the past in the case of JFS
– 30 seconds behind is more typical for ext3 – if you really want something to 

be durable you must flush the log synchronously
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Semantic Block-level Analysis (SBA)
• Nice idea: interpose special disk driver between the 

file system and the real disk driver
• Pros: simple, captures ALL disk traffic, can use with 

a black-box filesystem (no source code needed and 
can even use via VMWare for another OS), can be 
more insightful than just a performance benchmark

• Cons: must have some understanding of the disk 
layout, which differs for each filesystem, requires a 
great deal of inference; really only useful for writes

• To use well, drive filesystem with smart applications 
that test certain features of the filesystem (to make 
the inference easier)
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Semantic Trace Playback (STP)
• Uses two kinds of interposition:

– 1) SBA driver that produces a trace, and 
– 2) user-level library that fits between the app and the real filesystem

• User-level library traces dirty blocks and app calls to fsync
• Playback:

– Given the two traces, STP generates a timed set of commands to the raw disk 
device – this sequence can be timed to understand performance implications

• Claim: 
– Faster to modify the trace than to modify the filesystem and simpler and less 

error-prone than building a simulator

• Limited to simple FS changes
• Best example usage: 

– Showing that dynamically switching between ordered mode and data 
journaling mode actually gets the best overall performance (Use data 
journaling for random writes)
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Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good 

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time” 

challenge?
• How would you review this paper today?
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Extra Slides on LFS
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LFS i-node and Block Cleaning
• To clean an i-node: 

– Just check to see if it is the current version (from i-node map)
– If not, skip it; if so, write to head of log and update i-node map

• To clean a file block, must figure out it if is still live
– First check the UID, which only tells you if this file is current (UID only 

changes when is deleted or has length zero)
– Note that UID does not change every time the file is modified (since 

you would have to update the UIDs of all of its blocks)
– Next, walk through the i-node and any indirect blocks to get to the data 

block pointer for this block number
» If it points to this block, then move the block to the head of the log
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Simulation of LFS Cleaning
• Initial model: Uniform random distribution of references; 

greedy algorithm for segment- to-clean selection

• Why does the simulation do better than the formula?
– Because of variance in segment utilizations

• Added locality (i.e., 90% of references go to 10% of data) 
and things got worse! 
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LFS Cleaning Solution #1
• First solution: Write out cleaned data ordered by age to 

obtain hot and cold segments
– What prog. language feature does this remind you of? (Generational GC)
– Only helped a little

• Problem: 
– Even cold segments eventually have to reach the cleaning point, but they 

drift down slowly. tying up lots of free space
– Do you believe that’s true?
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LFS Cleaning Solution #2
• Second Solution: 

– It’s worth paying more to clean cold segments because you get to keep 
the free space longer

• Better way to think about this: 
– Don’t clean segments that have a high d-free/dt (first derivative of 

utilization)
– If you ignore them, they clean themselves! 
– LFS uses age as an approximation of d-free/dt, because the latter is hard 

to track directly

• New selection function: 
– MAX(T*(1-U)/(1+U))
– Resulted in the desired bi-modal utilization function
– LFS stays below write cost of 4 up to a disk utilization of 80%
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LFS Recovery Techniques

• Three techniques:
– Checkpoints
– Crash Recovery
– Directory Operation Log
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LFS Checkpoints
• LFS Checkpoints:

– Just an optimization to roll forward
– Reduces recovery time

• Checkpoint contains: pointers to i-node map and 
segment usage table, current segment, timestamp, 
checksum (?)

• Before writing a checkpoint make sure to flush i-node 
map and segment usage table

• Uses “version vector” approach:
– Write checkpoints to alternating locations with timestamps and 

checksums
– On recovery, use the latest (valid) one
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LFS Crash Recovery
• Unix must read entire disk to reconstruct meta data

• LFS reads checkpoint and rolls forward through log 
from checkpoint state

• Result: recovery time measured in seconds instead 
of minutes to hours

• Directory operation log == log intent to achieve 
atomicity, then redo during recovery, (undo for new 
files with no data, since you can’t redo it)
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LFS Directory Operation Log
• Example of “intent + action”: 

– Write the intent as a “directory operation log”
– Then write the actual operations (create, link, unlink, rename)

• This makes them atomic

• On recovery, if you see the operation log entry, then 
you can REDO the operation to complete it (For new 
file create with no data, you UNDO it instead)

• => “logical” REDO logging
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LFS Summary
• Key features of paper:

– CPUs outpacing disk speeds; implies that I/O is becoming more-
and-more of a bottleneck

– Write FS information to a log and treat the log as the truth; rely on 
in-memory caching to obtain speed

– Hard problem: finding/creating long runs of disk space to 
(sequentially) write log records to

» Solution: clean live data from segments, picking segments to 
clean based on a cost/benefit function

• Some flaws:
– Assumes that files get written in their entirety; else would get intra-

file fragmentation in LFS
– If small files “get bigger” then how would LFS compare to UNIX?
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LFS Observations
• An interesting point: 

– LFS’ efficiency isn’t derived from knowing the details of disk 
geometry; implies it can survive changing disk technologies (such 
variable number of sectors/track) better

• A Lesson: 
– Rethink your basic assumptions about what’s primary and what’s 

secondary in a design
– In this case, they made the log become the truth instead of just a 

recovery aid


