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Abstract
Applications composed of multiple parallel libraries perform
poorly when those libraries interfere with one another by oblivi-
ously using the same physical cores, leading to destructive resource
oversubscription. This paper presents the design and implementa-
tion of Lithe, a low-level substrate that provides the basic primitives
and a standard interface for composing parallel codes efficiently.
Lithe can be inserted underneath the runtimes of legacy parallel li-
braries to provide bolt-on composability without needing to change
existing application code. Lithe can also serve as the foundation for
building new parallel abstractions and libraries that automatically
interoperate with one another.
In this paper, we show versions of Threading Building Blocks

(TBB) and OpenMP perform competitively with their original im-
plementations when ported to Lithe. Furthermore, for two applica-
tions composed of multiple parallel libraries, we show that lever-
aging our substrate outperforms their original, even expertly tuned,
implementations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Run-time Environments; D.4.1 [Operating
Systems]: Process Management; D.2.12 [Software Engineering]:
Interoperability

General Terms Algorithms, Design, Languages, Performance

Keywords Composability, Cooperative Scheduling, Hierarchical
Scheduling, Oversubscription, Parallelism, Resource Management,
User-Level Scheduling

1. Introduction
With the widespread adoption of multicore microprocessors, many
software libraries are now becoming parallelized. These libraries
exploit decades of parallel programming innovation in novel ab-
stractions, performance optimizations, and correctness. For produc-
tivity, programmers would like to reuse these parallel libraries by
composing them together to build applications, as is standard prac-
tice with sequential libraries. Unfortunately, composing parallel li-
braries efficiently is hard. The parallel libraries may interfere with
one another, sometimes delivering performance that is much worse
than a sequential implementation.
The root of this problem is poor resource management across

parallel libraries. Each parallel library creates its own set of op-
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erating system threads to represent the processor cores in the ma-
chine. While threads provide a natural programming abstraction
for some types of computation (e.g. [40]), they are a poor re-
source abstraction for parallel programming, since they are mul-
tiplexed onto the same physical cores (Figure 1(a)). When too
many threads are active, each thread runs at infrequent and unpre-
dictable times, interfering with synchronization mechanisms [31]
and custom scheduling policies [23]. Unpredictable multiplexing
also leads to cache interference between threads, hindering opti-
mizations such as prefetching [18] and cache-blocking [43].
Current software libraries supply ad hoc solutions to this prob-

lem. A glaring example is Intel’s Math Kernel Library (MKL),
which instructs its clients to call the sequential version of the li-
brary whenever it might be running in parallel with another part of
the application [19]. Such solutions destroy any separation between
interface and implementation, and place a difficult burden on pro-
grammers who have to manually choose between different library
implementations depending on the calling environment. Worse still,
a programmer writing a new parallel library that encapsulates MKL
will just deflect the problem to its clients. A thriving parallel soft-
ware industry will only be possible if programmers can arbitrarily
compose parallel libraries without sacrificing performance.
One possible solution is to require all parallelism to be ex-

pressed using a universal high-level abstraction. While attractive
in principle, this goal has proven elusive in practice. First, there has
been no agreement on the best parallel practices, as evidenced by
the proliferation of new parallel languages and abstractions over the
years. Second, it is unlikely that a competitive universal abstraction
even exists, as they have been repeatedly outperformed by opti-
mizations that leverage domain or application-specific knowledge
(e.g. [6, 37]).
Our solution, Lithe, is a low-level substrate that provides the

basic primitives for parallel execution and a standard interface for
composing arbitrary parallel libraries efficiently. Lithe replaces the
virtualized thread abstraction with an unvirtualized hardware thread
primitive, or hart, to represent a processing resource (Figure 1(b)).
Whereas threads provide the false illusion of unlimited processing
resources, harts must be explicitly allocated and shared amongst
the different libraries. Libraries within an application are given
complete control over how to manage the harts they have been
allocated, including how to allocate harts to parallel libraries they
invoke.
The runtimes of existing languages and abstractions can be eas-

ily ported to Lithe. This allows, for example, an application written
in a high-level language like Haskell to efficiently interoperate with
low-level libraries that use OpenMP. In addition, Lithe serves as a
basis for building a wide range of new parallel abstractions.
We have ported Intel’s Threading Building Blocks (TBB) [34]

and GNU’s OpenMP [5] libraries to run with Lithe. We have also
implemented a new parallel library, libprocess [17], which exports
an Erlang-like actor-based programming model. As a baseline, we
show that the standalone execution of the ported libraries performs
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Figure 1. In conventional systems (a), each library is only aware of its own set of virtualized threads, which the operating systemmultiplexes
onto available physical processors. Lithe, (b), provides unvirtualized processing resources, or harts, which are shared cooperatively by the
application libraries, preventing resource oversubscription.

competitively with their original implementations. We also show
significant performance improvements when composing these li-
braries in two application case studies. Our first case study, an ap-
plication server modeled after Flickr.com, uses the popular Graph-
icsMagick [16] library to resize images uploaded by clients, and
achieves roughly 2× latency improvement for the same throughput
when leveraging Lithe. Our second case study, a third-party sparse
QR application [7], achieves up to a 1.5× speedup over the origi-
nal naive implementation when leveraging Lithe, and even outper-
forms the original implementation with expert manual tuning of
resource allocation. In addition, we show how parallel composition
can cause synchronization and scheduling to interact poorly, and
use a simple barrier case study to illustrate how Lithe can improve
the situation.

2. Cooperative Hierarchical Resource Manage-
ment

Applications are built by composing libraries hierarchically. For
example, an image processing application may use the popular
GraphicsMagick library [16], which in turn uses the network graph-
ics library libpng (amongst others), which in turn uses the com-
pression library zlib. Programmers tend to think of this hierarchy
in terms of control: a caller (libpng) invokes a callee (zlib).
In sequential computing, this explicit transfer of control is ac-

companied with an implicit allocation of processing resources (e.g.,
processor, cache) for the callee to use. In fact, the caller only con-
tinues after the callee has returned, i.e., yielded back its processing
resources to the caller. Callers want to cooperatively provide their
callees with these resources because their callees are doing some-
thing on their behalf. Likewise, callees cooperatively return their
processing resources when they are done performing their compu-
tation.
In parallel computing, a single processing resource is still im-

plicitly allocated when a caller invokes a callee, but callees must
obtain subsequent processing resources via other means, often
by creating additional operating system threads. Callers, however,
would often like to manage the allocation of resources to each of
their callees. This enables a caller with local knowledge (e.g., about
a critical path) to optimize their execution.

In this work, we enable the management of resources to be cou-
pled with the hierarchical transfer of control between libraries. Fur-
thermore, just as with control, processing resources are allocated
and yielded cooperatively: libraries allocate resources to libraries
they call, and libraries return resources allocated to themwhen they
are finished computing.
This is essentially the confluence of two lines of research: hi-

erarchical scheduling (e.g. [13, 41]) and cooperative multitasking
(e.g. [1, 30]). The hierarchical scheduling schemes use hierarchies
for modular resource management, but often between untrusted en-
tities (typically processes). The cooperative multitasking schemes
allow each task to execute without being interrupted, but tasks often
cannot control who runs next. Our cooperative hierarchical scheme
combines the two, enabling local control of resource allocation and
allowing a library to make effective use of the resources allocated
to it without worrying about possible interference.

3. Lithe Primitives
Lithe provides two basic primitives, harts and contexts, to enable
library runtimes to perform parallel execution. The hart primitive
prevents uncontrolled oversubscription of the machine, while the
context primitive prevents undersubscription of the machine.
A majority of programmers will be blissfully unaware of Lithe.

Only low-level runtime programmers, such as the implementors of
TBB and OpenMP, will use Lithe primitives directly. Many pro-
grammers, such as the implementors of GraphicsMagick and MKL,
will use high-level parallel constructs and abstractions whose run-
times will be implemented using the Lithe primtives. The remain-
der of programmers will simply invoke library routines directly,
such as those in GraphicsMagick, without knowing whether they
are even implemented or executed sequentially or in parallel.
In the remainder of this section, we describe each of our primi-

tives in more detail. In the following section, we describe how par-
allel runtimes use these primitives and the rest of our substrate to
share resources in a cooperative and hierarchical manner.

3.1 Harts
A hart, short for hardware thread, represents a processing re-
source. There is typically one hardware thread per physical core,
except for multithreaded machines like SMTs [39].
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The hart primitive prevents processing resource oversubscrip-
tion in two ways. First, within an application, there is a fixed one-
to-one mapping between harts and the physical hardware thread
contexts. Thus, two libraries running on two different harts will not
interfere with each other. Second, a hart must be allocated to a run-
time before that runtime can execute code. This is in contrast to
threads, which may be created by a runtime on-demand to execute
code.

3.2 Contexts
Each hart always has an associated context, which acts as the
execution vessel for the computation running on the hart. The
context primitive allows one to suspend the current computation by
blocking its context. A blocked context stores the continuation of
the computation, including the stack that the computation is using,
and any “context-local state.” Note that these are not first-class
continuations, but can only be used once.
Contexts allow runtimes to interoperate with libraries that may

need to block the current computation. For example, a library
that provides a mutual exclusion lock may want to block some
computation until a lock is released. Similarly, some computation
calling into a network I/O library may need to be blocked until a
packet arrives. A library can avoid undersubscribing the machine
by blocking the current context while having the underlying hart
continue “beating” and running other contexts.

4. Lithe Interface
Much like how an application binary interface (ABI) enables inter-
operability of codes by defining standard mechanisms for invoking
functions and passing arguments, Lithe enables the efficient com-
position of parallel codes by defining standard mechanisms for ex-
changing harts. As shown in Figure 2, the Lithe substrate defines
two standard interfaces:

1. A runtime interface that parallel runtimes use to share harts and
manipulate contexts.

2. A scheduler callback interface that each parallel runtime must
implement to manage its own harts and interoperate with others.

For the remainder of this paper, we refer to the portion of
each parallel runtime that implements the callback interface as a
scheduler. At any point in time, a hart is managed by exactly one
scheduler, and each scheduler knows exactly which harts are under
its control. We call the scheduler that is currently managing a hart
the current scheduler. The Lithe runtime keeps track of the current
scheduler for each hart, as well as the hierarchy of schedulers.

Table 1. The Lithe runtime functions and their corresponding
scheduler callbacks.

Lithe Runtime Interface Scheduler Callback Interface
sched register(sched) register(child)
sched unregister() unregister(child)
sched request(nharts) request(child, nharts)
sched enter(child) enter()
sched yield() yield(child)
sched reenter() enter()

ctx init(ctx, stack) N/A
ctx fini(ctx) N/A
ctx run(ctx, fn) N/A
ctx pause(fn) N/A
ctx resume(ctx) N/A
ctx block(ctx) block(ctx)
ctx unblock(ctx) unblock(ctx)

Table 1 lists all of the runtime functions and their corresponding
scheduler callbacks. We discuss each of them in detail below.

4.1 Sharing Harts
4.1.1 Runtime Functions and Callbacks
Register A new scheduler registers itself with the Lithe runtime
using the sched register function. This function performs
four actions: (1) it records the scheduler as the child of the cur-
rent scheduler, (2) invokes the current scheduler’s (i.e., parent’s)
register callback, (3) updates the current scheduler of the hart
to be the new scheduler, and (4) inserts the new scheduler into the
scheduler hierarchy.
Invoking the register callback informs the parent that the

new child scheduler is taking over a hart. With this callback, a
parent scheduler can update any necessary state before returning
the hart to the child.

Unregister Once a child scheduler completes its com-
putation and no longer needs to manage harts, it calls
sched unregister. This function performs three actions:
(1) it invokes the parent scheduler’s unregister callback, (2)
reverts the current scheduler of the hart to be the parent scheduler,
and (3) removes the unregistering scheduler from the hierarchy.
The sched unregister function does not return until all of
the child’s harts have returned back to the parent.
Invoking the unregister callback informs the parent that

this child scheduler will no longer want more harts. It also gives
the parent a chance to clean up any state it may have associated
with the child.

Request To request additional harts, a scheduler invokes
sched request, passing the number of harts desired. This func-
tion simply invokes the parent scheduler’s request callback,
passing both the child that has made the request and the num-
ber of harts requested. If the parent chooses to, it can itself in-
voke sched request, and propagate the resource request up the
scheduler hierarchy.

Enter/Reenter A parent scheduler can allocate a hart to a child
scheduler by invoking the sched enter function and passing the
child as an argument. This function performs two actions: (1) it
updates the current scheduler to be the child, and (2) invokes the
child scheduler’s enter callback. With this callback, the child
scheduler can use the hart to execute some computation, or grant
the hart to one of its children by invoking sched enter. Once a
hart completes a computation it can return to the current scheduler
to obtain the next task by invoking sched reenter, which will
invoke the current scheduler’s enter callback.

Yield Whenever a scheduler is done with a hart, it can invoke
sched yield. The sched yield function performs the fol-
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Figure 3. An example of how multiple harts might flow between a
parent and child scheduler.

lowing actions: (1) it updates the current scheduler from the child to
the parent, and (2) invokes the parent scheduler’s yield callback,
specifying the child that yielded this hart. With this callback, the
parent can use the hart to execute some other computation, grant
the hart to another child using sched enter, or return the hart
back to its parent using sched yield.

4.1.2 Example
Figure 3 shows an example of how a parent and child scheduler
use Lithe to cooperatively share harts. A parent library calls a child
library’s foo function to do some computation. The implementa-
tion of foo then instantiates a scheduler to manage the parallelism
within that function. The scheduler uses the initial hart to register
itself with its parent scheduler, who is managing the parallelism
for the caller library, then requests additional harts from that parent
scheduler. It then begins to execute the computation of foo using
that hart.
After the parent scheduler has received the request, it may de-

cide to grant additional harts to the new scheduler by invoking
sched enter on each of these harts. Each sched enter, in
turn, will invoke the new scheduler’s enter callback, which uses
its extra hart to help with executing the computation. When the
scheduler is done with the computation, it yields all of the ad-
ditionally granted harts explicitly by invoking sched yield. It
will also unregister itself with its parent scheduler, then return from
foo.

4.1.3 Transitioning Between Schedulers
The Lithe runtime provides a special transition context for ev-
ery hart, each including a small preallocated stack. When a
hart transitions between schedulers using the sched enter and
sched yield routines, it uses its transition context to execute the
enter and yield callbacks, respectively. The transition context
acts as a temporary context for a scheduler to run on before it starts
or resumes one of its own contexts. Using the transition context
frees a scheduler from having to coordinate with other schedulers
to share contexts and their associated stacks.

4.1.4 Base Scheduler
The Lithe runtime provides a base scheduler for the application.
The base scheduler obtains harts for the application to use from
the operating system environment and serves as the parent of
the first scheduler to register with Lithe, i.e., the root scheduler.

Upon receiving requests from the root scheduler, the base sched-
uler simply passes available harts directly to the root scheduler via
sched enter.

4.2 Contexts
A scheduler can allocate and manage its own contexts, giving it full
control over how to manage its stacks, enabling optimizations such
as linked stacks [40], stacklets [14], or simply frames [36]. The
scheduler can also allocate and manage any context-local state.
A scheduler sets up a context by calling the ctx init function

and passing a stack for the context to use. A scheduler starts the
context by invoking ctx run, and passing it a function that should
be invoked by the context. Note that after the computation using
the context has completed, it can be reused by subsequent calls to
ctx run. A scheduler cleans up a context by calling the runtime
function ctx fini.

Context Switching The current context can be paused using the
ctx pause function. The ctx pause function works similarly
to the call/cc control operator. When ctx pause is invoked,
it stores the current continuation in the current context, switches to
the transition context, and calls the function passed to ctx pause
with the current context as an argument. Switching to a different
context before invoking the function passed to ctx pause al-
lows a programmer to manipulate a context without worrying about
running on said context’s stack. Fisher and Reppy recognized this
dilemma when they realized they needed to enqueue a continua-
tion and atomically get off its stack before the continuation was
used by another processor [10]. Using ctx pause deals with this
problem, and others like it, in an elegant and easy to reason about
manner.
After pausing the context, a library can perform the steps nec-

essary to save or discard the context before switching to something
else. For example, an I/O or synchronization library can alert the
current scheduler of the blocked context by using the ctx block
function, which calls the context’s scheduler’s block callback.
After ctx block returns, the library can relinquish the hart back
to the current scheduler using sched reenter, which invokes
the current scheduler’s enter callback.
To signify that a blocked context is now runnable, an I/O or syn-

chronization library can invoke the ctx unblock function, pass-
ing the runnable context as an argument. This function invokes the
specified context’s scheduler’s unblock callback. The scheduler’s
unblock function should not resume the unblocked context using
the hart used to execute the callback, but should store the context
to be run later.

4.3 Putting it All Together: SPMD Scheduler Example
To help explain how to manage harts and contexts using the Lithe
runtime, we describe a simple parallel library that supports the
Single-Program Multiple-Data (SPMD) programming model.
The library provides two functions to its users: spmd spawn

and spmd tid. spmd spawn spawns N tasks, each invoking
the same given function with the same given argument. Each task
can then figure out what to do using its task id, obtained through
spmd tid. spmd spawn returns after all its spawned tasks have
completed.
The crux of the SPMD library is shown as pseudocode in Fig-

ure 4. First, spmd spawn instantiates a SPMD scheduler, and reg-
isters that scheduler (including its callbacks) with the Lithe run-
time using sched register (lines 2-3). The scheduler requests
additional harts using sched request (line 4). Using the ini-
tial hart, the scheduler executes its computation (line 5), essentially
running one SPMD task after another until they are all completed
(lines 10-13). It then unregisters itself with its parent (line 6). The



1 void spmd spawn(int N, void (*func)(void*), void *arg) {
2 SpmdSched *sched = new SpmdSched(N, func, arg);
3 sched register(sched);
4 sched request(N-1);
5 sched->compute();
6 sched unregister();
7 delete sched;
8 }
9

10 void SpmdSched::compute() {
11 while (/* unstarted tasks */)
12 func(arg);
13 }
14

15 void SpmdSched::enter() {
16 if (/* unblocked paused contexts */)
17 ctx resume(/* next unblocked context */);
18 else if (/* requests from children */)
19 sched enter(/* next child scheduler */);
20 else if (/* unstarted tasks */)
21 ctx = new SpmdCtx();
22 ctx run(ctx, start);
23 else sched yield();
24 }
25

26 void SpmdSched::start() {
27 compute();
28 ctx pause(cleanup);
29 }
30

31 void SpmdSched::cleanup(ctx) {
32 delete ctx;
33 if (/* not all tasks completed */)
34 sched reenter();
35 else
36 sched yield();
37 }

Figure 4. SMPD scheduler pseudocode example.

spmd spawn function cleans up the scheduler before returning
back to its caller (line 7).
Any additional harts granted by its parent will join the SPMD

scheduler through its enter callback (line 15). First, the scheduler
tries to resume any paused context that is now runnable (lines 16-
17). Otherwise, the scheduler tries to satisfy requests from its chil-
dren (lines 18-19). Finally, it will try to create a new context to start
a new SPMD task, by invoking the runtime function ctx start
with the new context and the start function (lines 20-22). start
will continually run the next SPMD task using that context until
they are all completed (line 27). It will then clean up that context
(line 28), and either send the hart back into the main scheduling
loop to do more work (lines 33-34), or yield the hart back to its
parent (lines 35-36).

5. Implementation
We have implemented a complete Lithe runtime, as well as a
user-level implementation of harts, for 64-bit Linux. Both require
only modest amounts of code. The implementation of Lithe is
approximately 2,300 lines of C, C++, and x86 assembly, while
the harts implementation is approximately 600 lines of C and x86
assembly.

5.1 Lithe
The Lithe runtime defines two opaque types: schedulers and con-
texts. A Lithe scheduler object contains the location of the function
pointer table of standard callbacks, and the location of the schedul-
ing state, both of which are supplied by the corresponding user-
level scheduler upon registering with the runtime. A Lithe sched-
uler object also contains a pointer to its parent, and a pointer to
a doubly linked list of its children. Internally, the runtime keeps

track of the scheduler hierarchy, as well as the current scheduler
object for each hart. Externally, the runtime gives the pointer to
each scheduler object to its parent scheduler as an opaque handle
for that child. The core runtime interface is in C, but we provide a
C++ scheduler abstract base class that delineates the required stan-
dard callbacks.
A Lithe context object contains the hart’s machine state, a

pointer to its corresponding Lithe scheduler object, and the location
of the context-local state as specified by its scheduler. The runtime
uses the POSIX ucontext to represent the hart’s machine state, and
uses the GNU ucontext library to save and resume contexts. We
have made minor changes to GNU’s ucontext library to eliminate
unnecessary system calls to change the signal mask, so that saving
and resuming contexts do not incur any kernel crossings.

5.2 Harts
Our user-level implementation represents each hart using a pthread,
since Linux maps each pthread to its own kernel thread, and uses
the affinity extension of pthreads supported by Linux to pin each
pthread to a unique core.
We create and initialize a global pool ofN harts at the beginning

of the application, with N being the number of cores in the ma-
chine. One hart is used to call the application’s main function. The
remaining harts sleep at a gate, waiting for work. When Lithe’s base
scheduler requests additional resources using hart request, the
harts are released from the gate to call into the application’s entry
function. As harts return from the entry function or via an explicit
hart yield, they go back to waiting at the gate.

5.3 Operating System Support
We choose to implement both Lithe and harts as completely user-
level libraries rather than modifying an existing operating system.
The main benefit of our approach is portability across existing
platforms that provide the necessary POSIX constructs. The main
downfall is that an operating system is still free to multiplex our
harts with other applications running in the system. As the results
in this paper show (Section 7), however, the benefits of reducing
the number of operating system threads and carefully managing
their use provides better behavior even if the operating system is
unaware of our user-level schedulers.
Using a two-level scheduling mechanism such as scheduler ac-

tivations could provide user-level Lithe schedulers with even more
information about their running computations, such as when con-
texts block due to page faults, or when a hart has been preempted. In
addition, the operating system could notify schedulers when their
computations block on I/O. In lieu of such support, we can use the
existing event-based interfaces in many operating system’s to avoid
blocking a hart on I/O (similar to previous work such as Capric-
cio [40]). In fact, in Section 6.3 we present the libprocess library
which provides a blocking I/O interface that pauses the underly-
ing context and uses event-based mechanisms from operating sys-
tems to perform I/O. This allows the hart to execute other compu-
tations/contexts while the previous computation/context is waiting
on I/O.

6. Interoperable Parallel Libraries
We have built a wide range of interoperable scheduling, I/O, and
synchronization libraries that use Lithe. We have ported some ex-
isting popular libraries, as well as implemented our own. In this
section, we describe the original baseline for each of these libraries,
then show how to modify them to use Lithe (and thus, work with
each other).



Table 2. Approximate lines of code required to port TBB and
OpenMP.

Added Removed Modified Relevant Total
TBB 180 5 70 1,500 8,000
OpenMP 220 35 150 1,000 6,000

6.1 Threading Building Blocks
Intel’s Threading Building Blocks (TBB) library [34] provides a
high-level task abstraction to help programmers achieve perfor-
mance and scalability without having to manually manage tasks’
parallel execution. Instead, a TBB scheduler uses a dynamic work-
stealing [4] approach to automatically map tasks onto cores.
The original open-source Linux implementation of the TBB

library uses pthreads as its resource abstraction. The TBB library
creates a fixed-size global pool of threads upon its initialization,
and associates a worker with each of these threads. Each TBB
scheduler usesN workers from the global pool to execute its tasks,
with N either being the number of cores in the machine or the
number specified by the user. Each of these workers repeatedly
completes its own share of work, then tries to steal more work from
other workers. The original TBB library tries to prevent resource
oversubscription by sharing the global fixed-size pool of threads
between all the TBB schedulers within an application. Of course,
this still does not preclude TBB schedulers from interfering with
other non-TBB parallel libraries.
In the ported implementation of TBB, each TBB scheduler

manages harts rather than threads. Since a TBB scheduler does
not know how many harts it can use upfront, it instead lazily
creates its workers for each hart that it obtains through its enter
callback. The core algorithm for each worker remains the same,
since each worker can just start stealing work from existingworkers
as soon as it is instantiated. The ported implementation also keeps
track of its child schedulers and the corresponding number of harts
they requested. In this initial implementation, harts are granted to
children in a round-robin fashion only after there are no tasks left
to steal and/or execute.
Porting TBB was a relatively straightforward task. It took one

of the authors no more than a week. The first row of Table 2 shows
the approximate number of lines of code that were added, removed,
and modified. The column labeled “Relevant” refers to the number
of lines of the TBB runtime that actually do scheduling (as opposed
to scalable memory allocation, for example) in contrast to the total
number of lines (last column).

6.2 OpenMP
OpenMP [5] is a portable parallel programming interface contain-
ing compiler directives for C, C++, and Fortran. Programmers use
the directives to specify parallel regions in their source code, which
are then compiled into calls into the OpenMP runtime library. Each
parallel region is executed by a team of workers, each with a unique
id. The number of workers in a team is specified by the user, but
defaults to the number of cores in the machine. Although there are
higher level directives that allow the compiler to automatically split
work within a parallel region across workers, the programmer can
also manually assign work to each of worker by writing SPMD-
style code.
We ported the GNU Compiler Collection’s (GCC) open-source

Linux implementation of the OpenMP runtime library (libgomp).
As with the original TBB library implementation, the original
OpenMP library also uses threads as its resource abstraction. An
implicit scheduler for every team maps each of its workers onto
a different thread. For efficiency, the library keeps a global pool
of the available threads to reuse across multiple teams. Note that
when multiple teams are active, a team scheduler will create addi-

tional threads rather than waiting for threads from other teams to
return to the global pool.
In the ported version of OpenMP, each team scheduler multi-

plexes its workers onto its available harts. An OpenMP scheduler
lets each worker run on a hart until it either completes or its con-
text blocks on a synchronization operation, before running the next
worker thread on that hart. In this initial implementation, a sched-
uler cannot take advantage of additional harts in the middle of exe-
cuting a parallel region, since it never redistributes its workers once
it assigns them to their respective harts. However, the implementa-
tion is optimized to keep a global pool of contexts to reuse across
multiple teams for efficiency.
Porting OpenMP was more difficult than TBB because it re-

quired carefully multiplexing the worker threads, since they are ex-
posed to the application programmer. It took one of the authors ap-
proximately one week to port OpenMP, and another week to profile
and optimize the implementation to preserve cache affinity for each
worker thread. The second row of Table 2 shows the approximate
number of lines of code that were added, removed, and modified in
the OpenMP library.

6.3 Libprocess
Libprocess [17] is a library written in C/C++ that provides an actor-
style message-passing programming model. Libprocess is very
similar to Erlang’s process model, including basic constructs for
sending and receiving messages. Libprocess scales to hundreds of
thousands of concurrent processes which are scheduled using plug-
gable scheduling policies. In fact, scheduling policies can be im-
plemented directly by a client of the library, to precisely control a
process’s ordering, priority, etc.
In addition to the actor model, libprocess provides a collection

of blocking I/O routines for using sockets (accept, connect,
recv, send). Similar to Capriccio, libprocess exploits non-
blocking operating system interfaces. This allows libprocess to run
a large number of processes that are all performing socket I/O si-
multaneously. By using Lithe, libprocess is able to simultaneously
run multiple processes across multiple harts. This is one of libpro-
cesses important improvements over Capriccio.
The libprocess implementation is roughly 2,000 lines of code.

6.4 Barriers
In order to experiment with how synchronization primitives inter-
act with parallel libraries, we implemented some simple user-level
barriers with and without the Lithe substrate. Both implementations
share the bulk of the code. A barrier is initialized with the number
of threads that are synchronizing with each other. Upon reaching
the barrier, each task increments a counter atomically, then checks
to see if it was the last to arrive. If so, it signals all other tasks to pro-
ceed. Without Lithe, all other tasks simply spin on their respective
signals until they can proceed. With Lithe, all other tasks spin for a
very short amount of time, then pause their contexts and yield con-
trol of their hart back to the current scheduler using ctx block;
the last task to reach the barrier will alert the scheduler to un-
block any blocked contexts using ctx unblock. The scheduler
can then decide when to resume each of these resumable contexts.

7. Evaluation
In this section, we present results from experiments on commodity
hardware that show the effectiveness of the Lithe substrate. First,
we present numbers for the individual libraries that show that we
can implement existing abstractions with no measurable overhead.
Then, we present two real-world case studies to illustrate how we
improve the current state-of-the-art in parallel library composition.
Lastly, we show how Lithe can improve the performance of barrier
synchronization in the face of parallel composition.



tree sum preorder fibonacci
Original TBB 1.44 1.61 1.65
Ported TBB 1.23 1.40 1.45

Table 3. TBB benchmark runs (in seconds).
cg ft is

Original OMP 0.22 0.19 0.54
Ported OMP 0.21 0.13 0.53

Table 4. OpenMP benchmark runs (in seconds).

The hardware platform used was a quad-socket 2.3 GHz AMD
Opteron with 4 cores per socket (16 cores total). The OS platform
used was the 2.6.18 64-bit Linux kernel (which includes the NPTL
fast pthread library). We also used Glibc 2.3.6, TBB version 2.1
update 2, and GNU OpenMP from the GCC 4.4 trunk.

7.1 Ported Libraries
To validate that porting libraries to Lithe incurs negligible or no
overhead, we ran a series of benchmarks for both OpenMP and
TBB to compare the performance between the original and ported
implementations.
The TBB distribution includes a series of examples designed

to highlight the performance and scalability of TBB. We randomly
chose three of these examples: a parallel tree summing algorithm,
a parallel preorder tree traversal, and a parallel implementation of
fibonacci. Table 3 shows the average runtime of ten runs of these
benchmarks for both the ported and original version.
Across all three examples, the ported TBB performs slightly

better than the original. We believe that because harts are created
eagerly during the application initialization (similar to a thread
pool), we are able to overlap thread creation with computation that
occurs before TBB is actually invoked.
To measure the overheads of the OpenMP port, we chose to run

three of the NAS parallel benchmarks [21]: conjugate gradient, fast
Fourier transform, and integer sort (from NPB version 3.3; problem
size W). Table 4 shows the average runtimes for ten runs of these
benchmarks for both the ported and original versions of OpenMP.
The ported OpenMP is also competitive with, if not better than, the
original implementation.

7.2 Case Study 1: Application Server
In our first case study, we investigated the efficacy of Lithe for
server-like applications that tightly integrate I/O with parallel com-
putation. Most servers use thread-per-connection parallelism be-
cause threads provide both (a) a natural abstraction of the control-
flow required to process a request and prepare a response (espe-
cially with respect to blocking while reading and writing to/from
the network) and (b) a natural form of parallelism for execution on
a multicore machine.
Newer “application servers” serve dynamic content and may

potentially exploit parallel computations within a single request
in addition to thread-per-connection parallelism. Examples include
video encoding [44], speech recognition [15], video production [3],
and online gaming (rendering, physics, and AI) [9].
We chose to study an image processing application server, mod-

eled after Flickr’s [11] user image upload server. The software ar-
chitecture of our application server is straightforward: for each im-
age the server receives, it performs five resize operations, creating
large, medium, small, thumbnail, and square versions of the image.
Like Flickr, we use the popular GraphicsMagick [16] library, which
is parallelized using OpenMP, to resize images.
To collect our performance numbers, we ran the application

server using the quad-socket Opteron, and ran the client on a sep-
arate machine connected by an Ethernet link. We measured the

Figure 5. Throughput versus latency for different configurations
of image resizing application server.

throughput versus service latency of each configuration as we in-
creased the rate at which the client made requests.
Because GraphicsMagick is parallelized using OpenMP, we

can explore a spectrum of possible configurations. We manually
tuned GraphicsMagick by configuring OpenMP to use N threads
for each invocation (labeled “OpenMP = N”), and show results in
Figure 5. The most straightforward approach to implementing our
application server is to create a thread-per-connection that performs
each of the resizes sequentially (“OpenMP = 1”). Although this
version performs well at high load (point (a)), it has high latency
when lightly loaded and many cores sit idle causing the server to be
underutilized. Manually increasing the number of threads (N > 1)
allocated to each request helps reduce lightly loaded latency, but
also reduces the saturation throughput (e.g. point (e) to point (b)).
In general, the more threads used to reduce lightly loaded latency,
the greater the loss of saturation throughput.
Next, we implemented the application server using the libpro-

cess library rather than threads. Only the code that sets up either
an actor or a thread per connection was different between the two
versions. Most source code was unchanged, including the code that
read and wrote from sockets and files, and the code that called into
GraphicsMagick. While we used the same GraphicsMagick library
in both versions, we linked in the Lithe-compliant OpenMP with
the libprocess version. We implemented a very basic fair-sharing
scheduling policy for use by libprocess, where all concurrent in-
vocations of GraphicsMagick receive roughly the same number of
harts. The line labeled “libprocess” in Figure 5 shows the perfor-
mance of this implementation. Clearly, the libprocess implemen-
tation dominates the convex hull of all the manually tuned variants
across the range of offered throughputs (points (f), (c), (d)), provid-
ing lower latency at each load point until the machine saturates and
each request receives only a single hart, at which point performance
is the same as the “OpenMP = 1” case.
The workload used in testing our application servers was very

homogeneous, favoring the manual static tuning used in the non-
libprocess variants. With a more heterogeneous mix of image sizes,
image operations (not just resize), and network speeds, a far greater
degree of dynamic “scheduling” across the two levels of parallelism
might be required and we would expect a greater advantage when
using Lithe.

7.3 Case Study 2: Sparse QR Factorization
As our second case study, we used an algorithm for sparse QR fac-
torization (SPQR) developed by Davis [7], which is commonly
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Figure 7. Average number of active SPQR threads across different
thread allocations to TBB and OpenMP for the deltaX input matrix.

used in the linear least-squares method for solving a variety of
problems arising from geodetic survey, photogrammetry, tomogra-
phy, structural analysis, surface fitting, and numerical optimization.
The algorithm can be viewed as a task tree, where each task

performs several parallel linear algebra matrix operations, and peer
tasks can be executed in parallel. Near the root of the tree, there
is generally very little task parallelism, but each task operates on a
large matrix that can be easily parallelized. Near the leaves of the
tree, however, there is a substantial task parallelism but each task
operates on a small matrix.

Original Out-of-the-Box Implementation. Davis imple-
mented his algorithm using TBB to create the parallel tasks, each of
which then calls parallel BLAS (basic linear algebra subprogram)
matrix routines [24] from MKL. MKL, in turn, uses OpenMP to
parallelize itself. Unfortunately, although the two types of paral-
lelism should be complementary, TBB and MKL compete counter-
productively with each other for resources. On anN -core machine,
TBB will try to run up to N tasks in parallel, and each of the tasks
will call MKL, which will try to operate on N blocks of a matrix
in parallel. This potentially creates N

2 linear algebra operations,
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Figure 9. Number of context switches of the original SPQR for the
deltaX input matrix, compared with the Lithe version.

each of which were carefully crafted by MKL to fit perfectly in the
cache, but are now being multiplexed by the operating system and
interfering with one another.

Original Manually Tuned Implementation. To curtail re-
source oversubscription, Davis manually limits the number of OS
threads that can be created by each library, effectively partitioning
machine resources between the libraries. The optimal configuration
depends on the size of the input matrix, the threading behavior of
both libraries, the BLAS version in MKL, and the available hard-
ware resources. To find the optimal configuration, Davis had to run
every combination of thread allocations for TBB and OpenMP with
each input matrix on each of his target machines.
We reproduced Davis’ manual tuning runs for all four original

input matrices on our own machine (see Table 5 for a descrip-
tion of the input matrices). Figure 6 shows the performance of a
representative input matrix across all the different thread configu-
rations. The out-of-the-box configuration (OMP=16, TBB=16) is
where each library creates the default number of threads, which is
equal to the number of cores on the machine. Although the out-of-
the-box configuration is better than the sequential version (OMP=1,



landmark deltaX ESOC Rucci1
Size 71,952 x 2,704 68,600 x 21,961 327,062 x 37,830 1,977,885 x 109,900
Nonzeros 1,146,868 247,424 6,019,939 7,791,168
Domain surveying computer graphics orbit estimates ill-conditioned least-square

Table 5. SPQR matrix workload characteristics.

landmark deltaX ESOC Rucci1
Seq OMP / Seq TBB OMP=1, TBB=1 7.8 55.1 230.4 1352.7
Par OMP / Seq TBB OMP=16, TBB=1 5.8 19.4 106.9 448.8
Seq OMP / Par TBB OMP=1, TBB=16 3.1 16.8 78.7 585.8
Out-of-the-Box OMP=16, TBB=16 3.2 15.4 73.4 271.7
Manually Tuned OMP=5, TBB=3 12.0

OMP=5, TBB=16 61.1
OMP=8, TBB=11 2.9
OMP=8, TBB=16 265.6

Lithe 2.7 10.4 60.4 248.3

Table 6. SPQR (TBB/OpenMP) performance with and without Lithe (runtime in seconds).

TBB=1), it is not close to optimal. Many of the configurations that
limit resource oversubscription achieve better performance than the
out-of-the-box configuration. We refer to the configuration with the
shortest run time as the manually tuned version (OMP=5, TBB=3
for this particular input).
The top portion of Table 6 shows the performance of noteworthy

configurations for all the input matrices. For all of the inputs, the
out-of-the-box configuration performs much worse than the manu-
ally tuned configuration. The table includes the special cases where
one of the libraries gets all of the resources (OMP=1, TBB=16 and
OMP=16, TBB=1). Giving OpenMP all the resources is subopti-
mal because the task-level parallelism is much more scalable than
matrix-level parallelism. However, giving TBB all the resources is
also suboptimal because there are parts of the computation with no
task-level parallelism but lots of matrix-level parallelism.
To obtain a better understanding of the original performance, we

measured active threads, cache miss, and context switching behav-
ior for all input matrices. The results for the deltaX input are shown
in Figures 7, 8, and 9. As expected, Figure 7 shows that the average
number of threads for the out-of-the-box configuration was more
than double the number of cores in the machine. Figure 8 shows
the L2 data cache misses, which increase as the number of threads
given to OpenMP/TBB increase. Figure 9 shows the number of
OS thread context switches that occur during the run. The num-
ber of context switches increases as the number of threads given
to OpenMP increases. However, for any fixed OpenMP configura-
tion, increasing the number of threads given to TBB decreases the
number of total context switches, since the duration of the run dra-
matically decreases. We hypothesize that the performance anomaly
for the OMP=2, TBB=14,15 configurations may be because the ef-
fects of the OS not co-scheduling worker threads from the same
OpenMP parallel region are more pronounced when each thread
depends on exactly one other thread, and there is a large, irregular
number of threads for the OS scheduler to cycle through.

Ported Implementation. We relinked the SPQR application
with the modified TBB and OpenMP libraries to run with Lithe.
We did not have to change a single line of Davis’ original code,
since the TBB and OpenMP interfaces remained the same. The
bottom portion of Table 6 shows the performance results of using
Lithe. This implementation even outperforms the manually tuned
configuration, because Lithe enables the harts to be more flexibly
shared between MKL and TBB, and adapt to the different amounts
of task and matrix-level parallelism throughout the computation.

landmark deltaX ESOC Rucci1
Out-of-the-Box 9.53×10

6 3.04×10
8 1.36×10

9 5.47×10
9

Lithe 8.23×10
6 2.28×10

8 1.11×10
9 5.19×10

9

Table 7. SPQR L2 Data Cache Misses.
landmark deltaX ESOC Rucci1

Out-of-the-Box 1.03×10
5 1.04×10

6 3.40×10
6 6.08×10

6

Lithe 1.47×10
4 2.21×10

4 7.79×10
4 2.50×10

5

Table 8. SPQR Context Switches.
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der different parallel composition configurations in terms of run-
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Table 7 shows that the Lithe implementation has fewer L2 cache
misses, and Table 8 shows that the Lithe implementation has orders
of magnitude fewer OS thread context switches than the out-of-the-
box configuration across all input matrices.

7.4 Barrier Synchronization
In this section, we study how synchronization and scheduling in-
teract in the face of parallel composition using a simple barrier ex-
ample. The basic unit of work for our microbenchmark consists of
16 SPMD tasks synchronizing with each other 1000 times at back-



to-back barrier rendezvous (with no work in between the barrier
rendezvous). We launched between 1 and 10 of the basic units of
work in parallel to crudely model, for instance, GraphicsMagick or
MKL routines running in parallel, each using barriers to synchro-
nize internally.
We compared three implementations of barriers: the Glibc im-

plementation of the pthread barrier, and the two user-level barriers
described in Section 6 (one that spins, and one that cooperatively
yields using Lithe). Because the implementation of the barrier de-
pends on the task model, the Lithe barrier runs with the Lithe im-
plementation of SPMD tasks (as described in Section 4.3), and both
the pthread and spin barriers run with a pthread implementation of
SPMD tasks (in which each SPMD task is simply a pthread). Fur-
thermore, there are two different versions of the pthread SPMD
implementation, one where each SPMD task is pinned to the core
corresponding to its task ID, and one where the tasks are unpinned.
The reported measurements reflect the performance of the SPMD
implementation as well as the barrier implementation.
First, we examine the scenario where only a single unit of

work is launched. The two versions of the pthread barrier perform
comparably, with the unpinned version doing slightly better due
to better load balancing. As expected, the unpinned spin version
performs better than the pthread versions. However, the pinned
spin version performs worse than the pthread versions due to load
imbalance. The Lithe version performs the best, because of the
lower SPMD task creation cost, and because most of the SPMD
tasks can simply spin for a little bit instead of having to incur
the state saving and rescheduling costs of going back into the
scheduler.
Next, we examine when two units of work are launched in

parallel. The pthread versions improved because they can achieve
better load balancing with more tasks than cores in the machine.
The spin versions slowed down by orders of magnitude because
of destructive interference; each of the SPMD tasks hog up the
machine resources spin-waiting rather than letting the other tasks
run. The Lithe version slowed down because it must go into the
scheduler after spin-waiting for a finite amount of time; however,
the Lithe version is still faster than the pthread versions since the
scheduling is done at user-level.
Lastly, we examine the scalability of the barrier performance as

more and more units of work are launched in parallel. The unpinned
pthread version achieves much better load balancing as the number
of SPMD tasks increases. Lithe also achieves slightly better load
balancing as the number of tasks increases, but only at the same
slow rate of improvement as the pinned pthread version (since
the harts are essentially pinned pthreads). Since Lithe is a user-
level implementation, it is still at the mercy of the OS scheduler to
schedule its harts.

8. Related Work
Previous systems have attempted to prevent resource oversubscrip-
tion when multiple applications interfere with one another. These
previous schemes fall into two main categories: OS spatial parti-
tions [8, 27, 29], and user-level adaptive heuristics [35, 38]. We be-
lieve our work will integrate well with the first category to form
a two-level scheduling ecosystem, where the OS uses minimal
coarse-grained scheduling to mediate between multiple applica-
tions and gives the hardware resources allocated in each spatial
partition to the user-level schedulers of each application to man-
age directly. We believe explicit sharing of resources is preferable
to the second category of heuristic approaches that require each en-
tity periodically query the overall system load to guess how many
resources to use, as the latter does not allow prioritization between
the different entities, and can easily lead to system instability.

Other systems have also attempted to prevent resource under-
utilization due to blocking of I/O (Scheduler Activations [2] and
CPU Inheritance [13]) or synchronization (Psyche [28] and Con-
verse [22]). In contrast, our context primitive provides a single uni-
form mechanism to address both I/O and synchronization blocking,
while not requiring changes to existing OS systems.
This work builds on the well-known technique of expressing

parallelism with continuations [42]. We improve on previous work
by providing a transition stack, thus obviating the need for com-
plex cross-context synchronization during context-switching (e.g.
[10, 12, 26]). In addition, we augment previous work to support
multiple parallel components, by transferring execution control to
the appropriate scheduler, and ensuring that the components do not
share stacks and trample on each other’s execution state.
Several other systems support multiple co-existing schedulers,

but with varying motivations. However, all of the previous work
differ from us in one or more of the following ways:

• Converse [22] and CPU Inheritance [13] require that child
schedulers register individual threads with a parent scheduler,
effectively breaking modularity and forcing the parent to man-
age individual threads on a child’s behalf. The child only re-
ceives harts implicitly when its parent decides to invoke these
threads. Our parent schedulers grant harts to a child to do with
as it pleases.

• Both GHC [26] and Manticore [12] are primarily motivated by
the desire to design language primitives that enable customiz-
able scheduling, rather than enabling interoperability of mul-
tiple custom schedulers. Although both claim to support hier-
archical nesting of schedulers, neither describe how multiple
schedulers would interact. Furthermore, a global entity inMan-
ticore [12] decides how many virtual processors to allocate to
each scheduler, preventing each scheduler from deciding how
best to allocate resources among its children.

• Manticore [12] requires all schedulers use the same scheduling
queue primitive, rather than enabling each scheduler to manage
its own parallelism in a more efficient code-specific manner.

• Converse [22] does not define a standard scheduler callback in-
terface, and thus does not support true plug-and-play interoper-
ability. A child scheduler must know its parent’s specific inter-
face in order to register its threads.

• Unlike GHC [26] and Manticore [12], Lithe is language-
agnostic. Unlike Psyche [28], CPU Inheritance [13], and
HLS [33], we do not impose the adoption of a new OS.

• The virtual processor abstraction of HLS [33] only interfaces
between a single pair of parent-child schedulers. Thus, granting
access to a physical processor down the hierarchy involves acti-
vating a different virtual processor at every generation. Further-
more, all scheduling activity are serialized, making HLS diffi-
cult to scale to many cores.

9. Future Work
We are looking into extending this work in four main areas:

Ports of Additional Language Features. In this paper, we ex-
plored how parallel abstractions from different languages and li-
braries can be composed efficiently. We ported and created run-
times that support different styles of parallel abstractions, rang-
ing from tasks to loops to actors. In the future, we would also
like to port managed and functional language runtimes onto Lithe,
to explore how other language features interact with scheduling
and composition. For example, we imagine implementing a par-
allel garbage collector as a child scheduler of its language runtime,
which when given its own harts to manage can decide how best to



parallelize and execute memory reallocation operations while not
interfering with the main computation.

Preemptive Programming Models. The current system is de-
signed to support the large set of applications that perform well
with cooperative scheduling, where preemption is often expen-
sive and unnecessary [32]. For example, preemptive round-robin
scheduling of threads within an application can introduce gratu-
itous interference when the threads are at the same priority level.
User-level schedulers should favor efficiency over an arbitrary no-
tion of fairness. An application may, however, want to reorder its
computation based on dynamic information from inputs, events, or
performance measurements. For this class of applications, we are
looking into extending Lithe to enable a parent scheduler to ask for
a hart back from its child.

Kernel-Level Implementation of Primitives. Our current sys-
tem implements the hart and context primitives purely in user
space. This enables parallel codes within an application to inter-
operate efficiently without the requirement of adopting a new op-
erating system. Nonetheless, supporting the hart and context ab-
stractions in the OS will provide additional benefits. While a user-
level hart implementation can provide performance isolation be-
tween parallel codes within a single application, a kernel-level hart
implementation can provide further performance isolation between
multiple applications. In addition, a kernel-level context implemen-
tation would enable blocking I/O calls to interoperate seamlessly
with user-level schedulers (e.g. [2]).

Management of Non-Processing Resources. Depending on
the characteristics of the code and the machine, a library may be
more memory and bandwidth-bound than compute-bound. By pro-
viding a better resource abstraction for cores, we have already re-
duced the number of threads of control that are obliviously mul-
tiplexed, thus implicitly reducing the pressure on the memory sys-
tem and network. However, to give libraries greater control over the
machine, we are looking into providing primitives beyond harts to
represent other resources, such as on-chip cache capacity and off-
chip memory bandwidth. This may require hardware support for
partitioning those resources (e.g. [20, 25]), beyond that generally
available in commercial machines today.

10. Conclusion
In this paper, we have shown the difficulties of composing parallel
libraries efficiently. We have also argued that the management of re-
sources should be coupled with the hierarchical transfer of control
between libraries. Our solution, Lithe, is a low-level substrate that
allows libraries to cooperatively share processing resources without
imposing any constraints on how the resources are used to imple-
ment parallel abstractions. Using Lithe, we are able to implement
multiple existing parallel abstractions with no measurable over-
head, while enabling parallel libraries to be composed efficiently.
We believe this capability is essential for parallel software to be-
come commonplace.
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