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1. Introduction 

What happens when professional programmers 
change over from an old-fashioned systems program- 
ming language to a new, modular,  type-checked one 
like Mesa? Considering the large number of groups 
developing such languages, this is certainly a question 
of great interest. 

This paper  focuses on our experiences with strict 
type checking and modularization within the Mesa pro- 
gramming system. Most of the local structure of Mesa 
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was inspired by, and is similar to, that of Pascal [14] or 
Algol 68 [12], while the global structure is more like 
that of Simula 67 [1]. We have chosen features from 
these and related languages selectively, cast them in a 
different syntax, and added a few new ideas of our own. 
All this has been constrained by our need for a lan- 
guage to be used for the production of real system 
software right now. We believe that most of our obser- 
vations are relevant to the languages mentioned above,  
and others like them,, when used in a similar environ- 
ment.  We have therefore omitted a comprehensive 
description of Mesa and concentrated on annotated 
examples that should be intelligible to anyone familiar 
with a similar language. We hope that our experiences 
will help others who are creating or studying such 
languages. 

An interested reader  can find more information 
about the details of Mesa elsewhere. A previous paper 
[7] addresses issues concerning transfer of control.  An- 
other paper [3] discusses some more advanced data- 
structuring ideas. A paper on schemes [8] suggests 
another  possible direction of advance. In this paper we 
restrain our desires to redesign or extend Mesa and 
simply describe how we are using the language as cur- 
rently implemented.  

The version of Mesa presented in this paper is one 
component  of a continuing investigation into program- 
ming methodology and language design. Most major  
aspects of the language were frozen when implementa- 
tion was begun in the autumn of 1974. Although we 
were dissatisfied with our understanding of certain de- 
sign issues even then, we proceeded with implementa- 
tion for the following reasons. 

- W e  perceived a need for a "state of the art"  imple- 
mentat ion langauge within our laboratory.  It 
seemed possible to combine some of our ideas 
into a design that was fairly conservative, but that 
would still dominate the existing and proposed 
alternatives. 

- W e  wanted feedback from a community of users, 
both to evaluate those ideas that were ready for 
implementation and to focus subsequent research 
on problems actually encountered in building real 
systems. 

- W e  had accumulated a backlog of ideas about im- 
plementation techniques that we were anxious to 
try. 

It is important  to understand that we have con- 
sciously decided to at tempt a complete programming 
system for demanding and sophisticated users. Their  
own research projects were known to involve the con- 
struction of "state of the art"  programs, many of which 
tax the limits of available computing resources. These 
users are well aware of the capabilities of the underly- 
ing hardware,  and they have developed a wide range of 
programming styles that they have been loath to aban- 
don. Working in this environment has had the follow- 
ing consequences. 
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- -We could not afford to be too dogmatic. The lan- 
guage design is conservative and permissive; we 
have at tempted to accommodate old methods of 
programming as well as new, even at some cost in 
elegance. 

-Ef f i c i ency  is important.  Mesa reflects the general 
properties of existing machines and contains no 
features that cannot be implemented efficiently 
(perhaps with some microcode assistance); for ex- 
ample, there is no automatic garbage collection. 

A cross-compiler for Mesa became operational in 
the spring of 1975. We used it to build a small opera- 
ting system and a display-oriented symbolic debugger. 
By early 1976, it was possible to run a system built 
entirely in Mesa on our target machine, and rewriting 
the compiler in its own language was completed in the 
summer of 1976. The basic system, debugger, and 
compiler consist of approximately 50,000 lines of Mesa 
code, the bulk of which was written by four people. 
Since mid-1976, the community of users and scope of 
application of Mesa have been expanding rapidly, but 
its most experienced and demanding users are still its 
implementers.  It is in this context that we shall try to 
describe our experiences and to suggest some tentative 
conclusions. Naturally, we have discovered some bugs 
and omissions in the design, and the implemented ver- 
sion of the language is already several years from the 
frontiers of research. We have tried to restrain our 
desire to redesign, however, and we report  on Mesa as 
it is, not as we now wish it were. 

The paper begins with a brief overview of Mesa's 
module structure. The uses of types and strict type 
checking in Mesa are then examined in some detail. 
The facilities for defining data structures are summa- 
rized, and an abstract description of the Mesa type 
calculus is presented. We discuss the rationale an~  
methods for breaching the type system and illustrate 
them with a " type-strenuous" example that exploits 
several of the type system's interesting properties. A 
final section discusses the difficulties of handling var- 
iant records in a type-safe way. 

2. Modules 

Modules provide a capability for partitioning a large 
system into manageable units. They can be used to 
encapsulate abstractions and to provide a degree of 
protection. In the design of Mesa, we were particularly 
influenced by the work of Parnas [10], who proposes 
information hiding as the appropriate criterion for 
modular decomposition, and by the concerns of Morris 
[9] regarding protection in programming languages. 

Module Structure 
Viewed as a piece of source text, a module is similar 

to an Algol procedure declaration or a Simula class 
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definition. It typically declares a collection of variables 
that provide a localized database and a set of proce- 
dures performing operations upon that database. Mod- 
ules are designed to be compiled independently,  but 
the declarations in one module can be made visible 
during the compilation of another  by arranging to ref- 
erence the first within the second by a mechanism 
called inclusion. To decouple the internal details of an 
implementation from its abstract behavior, Mesa 
provides two kinds of modules: definitions and 
programs. 

A definitions module defines the interface to an 
abstraction. It typically declares some shared types and 
useful constants, and it defines the interface by naming 
a set of procedures and specifying their input/output 
types. Definitions modules claim no storage and have 
no existence at run time. Included modules are usually 
definitions modules, but they need not be. 

Certain program modules, called implementers, 
provide the concrete implementation of an abstraction; 
they declare variables and specify bodies of procedures. 
There can be a one-to-many relation between defini- 
tions modules and concrete implementations. At run 
time, one or more instances of a module can be cre- 
ated, and a separate frame (activation record) is allo- 
cated for each. In this respect, module instances resem- 
ble Simula class objects. Unlike procedure instances, 
the lifetimes of module instances are not constrained to 
follow any particular discipline. Communication paths 
among modules are established dynamically as de- 
scribed below and are not constrained by, e.g., com- 
pile-time or run-time nesting relationships. Thus life- 
times and access paths are completely decoupled. 

The following skeletal Mesa modules suggest the 
general form of a definitions module and one of its 
implementers: 

Abstract ion:  DEFINITIONS = 
BEGIN 

it: TYPE = . . . ; r t : T Y P E  = . . . ;  

p: P R O C E D U R E ;  
p l :  P R O C E D U R E  [ INTEGER];  

pi: P R O C E D U R E  [it] R E T U R N S  [rt]; 

END 

Implementer:  P R O G R A M  I M P L E M E N T I N G  Abstract ion = 
BEGIN 
OPEN Abstract ion ; 
x: I N T E G E R ;  

p: PUBLIC  P R O C E D U R E  = (code for p); 
p l :  PUBLIC  P R O C E D U R E  [i: INTEGER]  = (code for p l ) ;  

p i :  PUBLIC P R O C E D U R E  Ix: it] R E T U R N S  [y: rt] = 
(code for pi); 

END 

Communica t ions  Augus t  1977 
of Volume 20 
the A C M  Number  8 



Longer but more complete and realistic examples can 
be found in the discussion of ArrayStore below; 
ArrayStoreDefs and ArrayStore correspond to Abstrac- 
tion and Implementer, respectively. 

Mesa allows specification of attributes that can be 
used to control intermodular access to identifiers. In 
the definition of an abstraction, some types or record 
fields are of legitimate concern only to an implementer,  
but they involve or are components  of other types that 
are parts of the advertised interface to the abstraction. 
Any identifier with the attribute PRrVAXE is visible only 
in the module in which it is declared and in any module 
claiming to implement that module.  Subject to the 
ordinary rules of scope, an identifier with the attribute 
PtJaLIC is visible in any module that includes and opens 
the module in which it is declared. The PUBLIC attribute 
can be restricted by specifying the additional attribute 
READ-ONLY. By default, identifiers are PUBLIC in defini- 
tions modules and PRIVATE otherwise. 

In the example above, Abstraction contains defini- 
tions of shared types and enumerates the elements of a 
procedural interface. Implementer uses those type defi- 
nitions and provides the bodies of the procedures;  the 
compiler will check that an actual procedure with the 
same name and type is supplied for each public proce- 
dure declared in Abstraction. 

A module that uses an abstraction is called a client 
of that abstraction. Interface definitions are obtained 
by including the Abstraction module. Any instance of a 
client must be connected to an instance of an appropri- 
ate implementer  before the actual operations of the 
abstraction become available. This connection is called 
binding, and there are several ways to do it. 

Binding Mechanisms 
When a relatively static and purely procedural in- 

terface between modules is acceptable, the connection 
can be made in a conventional way. Consider the fol- 
lowing skeleton: 

Client1 : P R O G R A M  = 

B E G I N  
OPEN Abstraction ; 

px: E X T E R N A L  P R O C E D U R E ;  

p[ ];px[ ]; 

END.  

A client module can request a system facility called the 
binder to locate and assign appropriate values to all 
external procedure names, such as px. The binder fol- 
lows a well-defined binding path from module instance 
to module instance. When the binder encounters an 
actual procedure with the same name as, and a type 
compatible with, an external procedure,  it makes the 
linkage. The compiler automatically inserts an EXTER- 
NAL procedure declaration for any procedure identi- 
fier, such as p ,  that is mentioned by a client but defined 
only in an included definitions module.  The binder also 

checks that all identifiers from a single definitions 
module are bound consistently (that is, to a single 
implementer).  

The observant reader will have noticed that this 
binding mechanism and the undisciplined lifetimes of 
module instances leave Mesa programs vulnerable to 
dangling reference problems. We are not happy about 
this, but so far we have not observed any serious bugs 
attributable to such references. 

As an alternate binding mechanism, Mesa supports 
the Simula paradigm as suggested by the following 
skeleton (which assumes that x is a public variable): 

Client2 : P R O G R A M  = 

BEGIN 
OPEN Abstraction ; 
frame: P O I N T E R  TO FRAME[Implementer]  *-  

NEW Implementer; 

frame "f .x ~ 0; 

frame T .p[ ]; 

END.  

Here,  the client creates an instance of Implementer 
directly. Through a pointer to the frame of that in- 
stance, the client can access any public variable or 
invoke any public procedure.  Note that the relevant 
declarations are in Implementer; the Abstraction mod- 
ule is included only for type definitions. Some of the 
binding has been moved to compile time. In return for 
a wider, not necessarily procedural  interface (and po- 
tentially more efficient code),  the client has committed 
itself to using a particular implementation of the ab- 
straction. 

Because Mesa has procedure variables, it is possible 
for a user to create any binding regime he wishes simply 
by writing a program that distributes procedures.  Some 
users have created their own versions of Simula classes. 
They have not used the binding mechanism described 
above for a number  of reasons. First, the actual imple- 
mentation of an abstract object is sometimes unknown 
when a program is compiled or instantiated; there 
might be several coexisting implementations, or the 
actual implementation of a particular object might 
change dynamically. Their  binding scheme deals with 
such situations by representing objects as record struc- 
tures with procedure-valued fields. The basic idea was 
described in connection with the implementation of 
streams in OS6 [11]: some fields of each record contain 
the state information necessary to characterize the ob- 
ject, while others contain procedure values that imple- 
ment the set of operations. If the number  of objects is 
much larger than the number  of implementations,  it is 
space-efficient to replace the procedure fields in each 
object with a link to a separate record containing the 
set of values appropriate to a particular implementa- 
tion. When this binding mechanism is used, interface 
specifications consist primarily of type definitions, as 
suggested by the following skeleton: 
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Ob]ectAbstraction: DEFINITIONS = 
BEGIN 
Handle: T YP E  = P O I N T E R  T O Object; 
Object: TY P E  = R E C O R D  [ 

ops: P O I N T E R  T O Operations, 
state: P O I N T E R  T O ObjectRecord, 

• . .]; 
Operations: T Y P E  = R E C O R D  [ 

p l  : P R O C E D U R E  [Handle, I N T E G E R ] ,  
• . .]; 

END.  

A client invokes a typical operation by writing han- 
dle ~ .ops "~ .pl [handle, x ], where handle is an object 
of type Handle. 

Observations 
We believe that we could not have built the current 

Mesa system if we had been forced to work with large 
logically monolithic programs. Assembly language pro- 
grammers are well aware of the benefits of modularity,  
but many designers of high-level programming lan- 
guages pay little attention to the problems of independ- 
ent compilation and instantiation. Since these capabili- 
ties will be grafted on anyway, they should be antici- 
pated in the original design. We have more to say about 
interfa.ce control in our discussion of types, but it is 
hard to overestimate the value of articulating abstrac- 
tions, centralizing their definitions, and propagating 
them through the inclusion mechanism. 

3. The Mesa Type System 

Strict vs. Nonstrict Type Checking 
A widely held view is that the purpose of type 

declarations is to allow one to write more succinct 
programs. For example,  the Algol 60 declarations 

r e a l  x,y;  i n t e g e r  i,j; 

allow one to attach two different interpretations to the 
symbol " + "  in the expressions x + y and i + j.  
Similarly, the declaration 

x: R E C O R D [ a :  [0..7], b: [0..255]] 

permits one to write x.a andx.b  in place of descriptions 
of the shifting and masking that might occur. Descrip- 
tive declarations also allow utility programs such as 
debuggers to display values of variables in a helpful way 
when the type is not encoded as part of the value. 

This view predominated in an earlier version of 
Mesa. Type declarations were used primarily as devices 
to improve the expressive power and readability of the 
language. Types were ignored by the compiler except 
to discover the number  of bits involved in an operation.  
In contrast, the current version of Mesa checks type 
agreement as rigorously as languages such as Pascal or 
Algol 68, potentially rendering compile-time com- 
plaints in great volume. This means in effect that the 
language is more redundant  since there are fewer pro- 
grams acceptable to the compiler. 
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What benefit  do we hope to gain by stricter check- 
ing and the at tendant obligations on the programmer? 
We expect that imposing additional structure on the 
data space of the program and checking it mechanically 
will make the modification and maintenance of pro- 
grams easier. The type system allows us to write down 
certain design decisions. The type checker is a tool that 
is used to discover violations of the conventions implied 
by those decisions without a great expenditure of 
thought.  

Type Expressions 
Mesa provides a fairly conventional set of expres- 

sions for describing types; detailed discussions of the 
more important  constructors are available elsewhere 
[3]. We shall a t tempt just enough of an introduction to 
help in reading the subsequent examples and concen- 
trate upon the relations among types. 

There is a set of predefined basic types and a set of 
type operators which construct new types. The argu- 
ments of these operators may be other  types, integer 
constants, or identifiers with no a priori meanings. 
Most of the operators are familiar from languages such 
as Pascal or Algol 68, and the following summary 
emphasizes only the differences. 

Basic Types. The basic types are INTEGER, BOO- 
LEAN, CHARACTER, and UNSPECIFIED, the last of which 
is a one-word,  wild-card type. 

Enumerated Types. If at,  a2 . . . . .  an are distinct 
identifiers, the form {al, az, • • • , an} denotes an or- 
dered type of which the identifiers denote the allowed 
constant values. 

Unique Types. If n is a manifest (compile-time) 
constant of type INTEGER, the form UNIQUE[hi denotes 
a type distinct from any other type• The value of n 
determines the amount  of storage allocated for values 
of that type, which are otherwise uninterpreted.  Its use 
is illustrated by the ArrayStore example in Section 4. 

Record Types. If T1, T2 . . . . .  Tn are types and f2, 
• . . ,  fn are distinct identifiers, the the form RECORDLfl: 
Tl ,f2:  T~ . . . . .  fn: Tn] denotes a record type. The)'] are 
called field selectors. As usual, the field selectors are 
used to access individual components;  in addition, lin- 
guistic forms called constructors and extractors are 
available for synthesizing and decomposing entire rec- 
ords. The latter forms allow either keyword notation, 
using the field names, or positional notation. Inter- 
module access to individual fields can be controlled by 
specifying the attributes PUBLIC, PRIVATE, or READ- 
ONLY; if no such attributes appear,  they are inherited 
from the enclosing declaration. Some examples: 

Thing: TYPE = R E C O R D  In: I N T E G E R ,  p: B O O L E A N ] ;  
v: Thing; i: I N T E G E R ;  b: B O O L E A N ;  

IF v.p T H E N  v.n ,~-v.n + 1; - - f ie ld  selection 
v ~ [100, T R U E ] ;  - - a  positional constructor 
v ~-- [p:b,  n:i]; - - a  keyword constructor  
In ~, p :b ] ~ v; - - t h e  inverse extractor. 
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Pointer Types. If T is a type, the form POINTER TO T 
denotes a pointer type. If x is a variable of that type,  
then x "~ dereferences the pointer and designates the 
object pointed to, as in Pascal. If v is of type T, then 
@v is its address with type POINTER TO T. The form 
POINTER TO READ-ONLY T denotes a similar type; how- 
ever, values of this type cannot be used to change the 
indirectly referenced object.  Such pointer types were 
introduced so that objects could be passed by reference 
across module interfaces with assurance that their val -~ 
ues would not be modified. 

Array Types. If Ti and Te are types, the form ARRAY 
Ti OF T e denotes an array type. T~ must be a finite 
ordered type. An array a maps an index i from the 
index type T~ into a value a [i] of the component  type 
T e. If a is a variable, the mapping can be changed by 
assignment to a [i]. 

Array Descriptor Types. If T~ and Tc are types, the 
form DESCRIPTOR FOR ARRAY T i OF T c denotes an array 
descriptor type. T~ must be an ordered type. An array 
descriptor value provides indirect access to an array 
and contains enough auxiliary information to deter- 
mine the allowable indices as a subrange of Ti. 

Set Types. If T is a type, the form SET OF T denotes a 
type, values of which are the subsets of the set of values 
of T. T must evaluate to an enumerated type. 

Transfer Types. If T1 . . . . .  Ti, T~ . . . . .  Tn are types 
and fl, • • . ,  j~, fj . . . . .  fn are distinct identifiers, then the 
form PROCEDURE [fl: T, . . . . .  fi: Ti] RETURNS [j]j: T~, 
. . . .  fn: Tn] denotes a procedure type. Each nonlocal 
control transfer passes an argument record; the field 
lists enclosed by the paired brackets,  if not empty,  
implicitly declare the types of the records accepted and 
returned by the procedure [7]. If x has some transfer 
type, a control transfer is invoked by the evaluation of 
x [e~ . . . .  , ei], where the bracketed expressions are used 
to construct the input record,  and the value is the 
record constructed in preparation for the transfer that 
returns control.  

The symbol PROCEDURE can be replaced by several 
alternatives that specify different transfer disciplines 
with respect to name binding, storage allocation, etc., 
but the argument transmission mechanism is uniform. 
Transfer types are fulbfledged types; it is possible to 
declare procedure variables and otherwise to manipu- 
late procedure values, which are represented by proce- 
dure descriptors. Indeed,  some of the intermodule 
binding mechanisms described previously depend cru- 
cially upon the assignment of values to procedure 
variables. 

Subrange Types. If T is INTEGER or an enumerated 
type, and rn and n are manifest constants of that type, 
the form T [m..n] denotes a finite, ordered subrange 
type for which any legal value x satisfiesm _< x -< n.  If T 
is INTEGER, the abbreviated form [m..n] is accepted. 
These types are especially useful as the index types of 
arrays. Other  notational forms, e.g. [m..n), allow inter- 

vals to be open or closed at either endpoint.  
Finally, Mesa has adapted Pascal's variant record 

concept to provide values whose complete type can 
only be known after a run-time discrimination. Because 
they are of more than passing interest, variant records 
are discussed separately in Section 5. 

Dedarations and Definitions 
The form 

v: Thing ~ e 

declares a variable v of type Thing and initializes it to 
the value of e; the form 

v: Thing  = e 

is similar except that assignments cannot be made to v 
subsequently. When e itself is a manifest constant,  this 
form makes v such a constant also. 

This syntax is used for the introduction of new type 
names, using the special type TYPE. Thus 

Thing: T Y P E  = TypeExpres s ion  

defines the type Thing. This approach came from EeL 
[13], in which a type is a value that can be computed by 
a running program and then used to declare variables. 
In Mesa, however,  TypeExpression must be constant. 

Recursive type declarations are essential for de- 
scribing most list structures and are allowed more gen- 
erally whenever  they make sense. To accommodate  a 
mutually recursive list structure, forward references to 
type identifiers are allowed and do not yield "uninitial- 
ized" values. (This is to be contrasted with forward 
references to ordinary variables.) In effect, all type 
expressions within a scope are evaluated simultane- 
ously. Meaningful recursion in a type declaration usu- 
ally involves the type constructor POINTER; in corre- 
sponding values, the recursion involves a level of indi- 
rection and can be terminated by the empty pointer  
value NIL. Recursion that is patently meaningless is 
rejected by the compiler; for example,  

r:  T Y P E  = R E C O R D  [left, right: r] - - n o t  p e r m i t t e d  
a:  T Y P E  = A R R A Y  [0..10) O F  s;  

s:  T Y P E  = R E C O R D  [i: I N T E G E R ,  m:  a] - - n o t  p e r m i t t e d .  

Similar pathological types have been noted and pro- 
hibited in Algol 68 [6]. 

Equivalence of Type Expressions 
One might expect that two identical type expres- 

sions appearing in different places in the program text 
would always stand for the same type. In Algol 68 they 
do. In Mesa (and certain implementations of Pascal) 
they do not.  Specifically, the type operators RECORD, 
UNIQUE, and { . . . }  generate new types whenever  they 
appear in the text. 

The original reasons for this choice are not very 
important,  but  we have not regretted the following 
consequences for records: 

(a) All modules wishing to communicate using a 
shared record type must obtain the definition of that 
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type from the same source. In practice, this means that 
all definitions of an abstraction tend to come from a 
single module; there is less temptation to declare scat- 
tered, partial interface definitions. 

(b) Tests for record type equivalence are cheap. In 
our experience, most record types contain references to 
other  record types, and this linking continues to a 
considerable depth. A recursive definition of equiva- 
lence would, in the worst case, require examining many 
modules unknown and perhaps unavailable to the cas- 
ual user of a record type or, alternatively, copying all 
type definitions supporting a particular type into the 
symbol table of any module mentioning that type. 

(c) The rule for record equivalence provides a 
mechanism for sealing values that are distributed to 
clients as passkeys for later transactions with an imple- 
menter .  Suppose that the following declaration occurs 
in a definitions module: 

Handle:PUBLIC TYPE = RECORD [value: PRIVATE Thing]. 

The PRIVATE attribute of value is overridden in any 
implementer of Handle. A client of that implementer 
can declare variables of type Handle and can store or 
duplicate values of that type, but there is no way for the 
client to construct a counterfeit  Handle without violat- 
ing the type system. Such sealed types appear to pro- 
vide a basis for a compile-time capability scheme [2]. 

(d) Finally, this choice has not caused discomfort 
because programmers are naturally inclined to intro- 
duce names for record types anyway, 

The case for distinctness of enumerated types is 
much weaker; we solved the problem of the exact 
relationships among such types of {a, b, c}, {c, b, a}, 
{a, c}, {aa, b, cc}, etc. by specifying that all these types 
are distinct. In this case, we are less happy that identi- 
cal sequences of symbols construct different enumer- 
ated types. 

Why did we not choose a similar policy for other  
types? It would mean that a new type identifier would 
have to be introduced for virtually every type expres- 
sion, and we found it to be too tedious. In the case of 
procedures we went even further in liberalizing the 
notion of equivalence. Even though the formal argu- 
ment and result lists are considered to be record decla- 
rations, we not only permit recursive matching but also 
ignore the field selectors in doing the match. We were 
unwilling to abandon the idea that procedures are map- 
pings in which the identifiers of bound variables are 
irrelevant. We also had a pragmatic motivation. In 
contrast to records, where the type definitions cross 
interface boundaries,  procedural communication 
among modules is based upon procedure values, not 
procedure types. Declaring named types for all inter- 
face procedures seemed tiresome. Fortunately all argu- 
ment records are constructed in a standard way, so this 
view causes no implementation problems. 

To summarize, we state an informal algorithm for 
testing for type equivalence. Given one or more pro- 
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gram texts and two particular type expressions in them: 

1. Tag each occurrence of RECORD, UNIQUE, and { . . . }  
with a distinct number.  

2. Erase all the variable names in the formal parame- 
ter and the result lists of procedures.  

3. Compare the two expressions, replacing type iden- 
tifiers with their defining expressions whenever 
they are encountered.  If a difference (possibly in a 
tag attached in step 1) is ever encountered,  the two 
type expressions are not equivalent. Otherwise 
they are equivalent. 

The final step appears to be a semidecision procedure 
since the existence of recursive types makes it impossi- 
ble to eliminate all the identifiers. In fact, it is always 
possible to tell when one has explored enough (cf. [5], 
Section 2.3.5,  Exercise 11). 

Coercions 
To increase the flexibility of the type system Mesa 

permits a variety of implicit type conversions beyond 
those implied by type equivalence. They fall into two 
categories: free coercions and computed coercions. 

Free Coercions. Free coercions involve no computa- 
tion whatsoever. For two types T and S, we write T C_ S 
if any value of type T can be stored into a variable of 
type S without checking, change of representation, or 
other computation. (By "s tore"  we mean to encompass 
assignment, parameter  passing, result passing, and all 
other value transmission.) The following recursive rules 
show how to compute the relation C_, assuming that 
equivalence has already been accounted for: 

1. T _ C T .  

In the following assume that T _C S. 

2. T[i..j] _C S if i is the minimum value of type S. 

The restriction is necessary because we chose to repre- 
sent values of a subrange type relative to its minimum 
value. Coercions in other  cases require computation.  
Similarly, 

3. T[i..j] _C S[i..k] i f f j  _< k. 
4. var T C_ S if var is a variant of T (cf. Section 5). 
5. RECORD[f: T] _C S for any field name f u n l e s s f h a s  

the PRIVATE attribute. 
6. POINTER TO T C_ POINTER TO READ-ONLY S. 

In other words, one can always treat a pointer as a 
read-only pointer, but not vice versa. 

7. POINTER TO READ-ONLY T C POINTER TO READ- 

ONLY S. 

The relation POINTER TO T C_ POINTER TO S is not true 
because it would allow 

p s :  POINTER TO S; 

pt: POINTER TO T = @t; 
ps <--- pt; 
p s~  *--s; 
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which is a sneaky way of accomplishing "t ~ s ,"  which 
is not allowed unless S C T. 

8. ARRAY I OF T C_ ARRAY I oF S. 

Note that the index sets must be the same. 

9. PROCEDURE [S']  RETURNS [T] C_ PROCEDURE [T ' ]  

RETURNS [S] if T'  C S' as well. 

Here the relation between the input types is the reverse 
of what one might expect. 

Subrange Coercions. Coercions between subranges 
require further comment.  As others have noted [4], 
associating range restrictions with types instead of spe- 
cific variables leads to certain conceptual problems; 
however,  we wanted to be able to fold range restric- 
tions into more complex constructed types. We were 
somewhat surprised by the subtlety of this problem, 
and our initial solutions allowed several unintended 
breaches of the type system. 

Values of an ordered type and all its subranges are 
interassignable even if they do not satisfy cases (2) or 
(3) above. This is an example of a computed coercion. 
Code is generated to check that the value is in the 
proper  subrange and to convert its representation if 
necessary. It is important to realize that computed 
coercions cannot be extended recursively as was done 
above. Consider the declarations 

x: [0..100] ,-- 15; 
y: [10,.20]; 
px: POINTER TO READ-ONLY [0..100] ,,-- @x; 
py: POINTER TO READ-ONLY [10..20]; 

The assignment y <--x is permitted because x is 15; 5 is 
stored in y since its value is represented relative to 10. 
However ,  the assignment py ~ px, which rule 7 might 
suggest, is not permitted because the value of x can 
change and there is no reasonable way to generate 
checking code. Even if the value ofx  cannot change, we 
could not perform any change in representation be- 
cause the value 15 is shared. Similar problems arise 
when one considers rules 6, 8, and 9. 

Other Computed Coercions. Research in program- 
ming language design has continued in parallel with our 
implementation work, and some proposals for dealing 
with uniform references [3] and generalizations of 
classes [8] suggested adding the following computed 
coercions to the language: 

Dereferencing: POINTER TO T---~ T 
Deproceduring: PROCEDURE RETURNS T-"> T 
Referencing: T ~ POINTER TO T. 

Initially we had intended to support contextually im- 
plied application of these coercions much as does Algol 
68. Reactions of Mesa's early users to this proposal 
ranged from lukewarm to strongly negative. In addi- 
tion, the data structures and accounting algorithms 
necessary to deduce the required coercions and detect 
pathological types substantially complicated the corn- 

piler. We therefore decided to reconsider our decision 
even after the design and some of the implementation 
had been done. The current language allows subrange 
coercion as described above. There is no uniform sup- 
port for other computed coercions, but automatic dere- 
ferencing is invoked by the operators for field extrac- 
tion and array indexing. Thus such forms as p 1' . f  and 
a 1" 1" [i], which are common when indirection is used 
extensively, may be written as p . f  and a [i]. 

There are hints of a significant problem for lan- 
guage designers here. Competent  and experienced pro- 
grammers seem to believe that coercion rules make 
their programs less understandable and thus less relia- 
ble and efficient. On the other hand, techniques being 
developed with the goal of decreasing the cost of creat- 
ing and changing programs seem to build heavily upon 
coercion. Our experience suggests that such work 
should proceed with caution. 

Why is coercion distrusted? Our discussions with 
programmers suggest that the reasons include the fol- 
lowing: 

- Mesa programmers are familiar with the underlying 
hardware and want to be aware of the exact conse- 
quences of what they write. 

- M a n y  of them have been burned by forgotten indi- 
rect bits and the like in previous programming and 
are suspicious of any unexpected potential for side 
effects. 

- T o  some extent,  coercion negates the advantages of 
type checking. One view of coercion is that it cor- 
rects common type errors,  and some of the detec- 
tion capability is sacrificed to obtain the correction. 

We conjecture that the first two objections will dimin- 
ish as programmers learn to think in terms of higher- 
level abstractions and to use the type checking to 
advantage. 

The third objection appears to have some merit. 
We know of no system of coercions in which strict type 
checking can be trusted to flag all coercion errors,  and 
such errors are likely to be especially subtle and persist- 
ent. The difficulties seem to arise from the interactions 
of coercion with generic operators.  In Algol 68, there 
are rules about "loosely related" types that are in- 
tended to avoid this problem, but the identity operators 
still suffer. With the coercion rules that had been pro- 
posed for Mesa, the following trap occurs. Given the 
declaration p, q: POINTER TO INTEGER, the Mesa 
expressions p I' = q 1' and 2*p = 2*q would compare 
integers and give identical results; on the other  hand, 
the expression p = q would compare pointers and could 
give a quite different answer. In the presence of such 
traps, we believe that most programmers would resolve 
to supply the " '~ " always. If this is their philosophy, 
coercions can only hide errors. Even if such potentially 
ambiguous expressions as p = q were disallowed, this 
example suggests that using coercion to achieve repre- 
sentational independence can easily destroy referential 
transparency instead. 
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4. Experiences with Strict Type Checking 

It is hard to give objective evidence that increasing 
compile-time checking has materially helped the pro- 
gramming process. We believe that it will take more 
effort to get one's program to compile and that some of 
the effort eliminates errors that would have shown up 
during testing or later, but the magnitude of these 
effects is hard to measure.  All we can present at the 
moment  are testimonials and anecdotes. 

A Testimonial 
Programmers whose previous experience was with 

unchecked languages report  that the usual fear and 
trepidation that accompanied making modifications to 
programs has substantially diminished. Under  previous 
regimes they would never change the number or types 
of arguments that a procedure took for fear that they 
would forget to fix all of the calls on that procedure.  
Now they know that all references will be checked 
before they try to run the program. 

An Anecdote 
The following kind of record is used extensively in 

the compiler: 

RelativePtr: TYPE = [0..377778]; 
TaggedPtr: TYPE = RECORD[tag:  {to,tl,t2,ta} , 

ptr: RelativePtr]. 

This record consists of a 2-bit tag and a 14-bit pointer. 
As an accident of the compiler 's choice of representa- 
tion, the expressions x and TaggedPtr[to, X] generated 
the same internal value. The nonstrict type checker 
considered these types equivalent, and unwittingly we 
used TaggedPtrs in many places actually requiring 
RelativePtrs. As it happened,  the tag in these contexts 
was always to. 

The compiler was working well, but one day we 
made the unfortunate decision to redefine TaggedPtr as 

R E C O R D  [ptr: RelativePtr, tag: {to,tl,t~,t3}]. 

This caused a complete breakdown,  and we hastily 
unmade that decision because we were unsure about 
what parts of the code were unintentionally depending 
upon the old representation.  Later ,  when we submitted 
a transliteration of the compiler to the strict type 
checker,  we found all the places where this error  had 
been committed.  At  present,  making such a change is 
routine.  In general,  we believe that the benefits of 
static checking are significant and cost-effective once 
the programmer learns how to use the type system 
effectively. 

A Shortcoming 
• The type system is very good at detecting the differ- 

ence in usage between T and POINTER TO T, however,  
programmers often use array indices as pointers, espe- 
cially when they want to perform arithmetic on them. 
The difference between an integer used as a pointer 

547 

and an integer used otherwise is invisible to the type 
checker. For example,  the declaration 

map: A R R A Y  [i..j] OF INTEGER[m. .n] ;  

defines a variable map with the property that compile- 
time type checking cannot distinguish between legiti- 
mate uses of k and map [k]. Fur thermore ,  i fm _ i and j  
-< n ,  even a run-time bounds check could never detect a 
use of k when map [k] was intended. We have observed 
several troublesome bugs of this nature and would like 
to change the language so that indices of different 
arrays can be made into distinct types. 

Violating the Type System 
One of the questions often asked about languages 

with compile-time type checking is whether it is possi- 
ble to write real programs without violating the type 
system. It goes without saying that one can bring vir- 
tually any program within the confines of a type system 
by methods analogous to the silly methods for eliminat- 
ing gotos, e.g. simulate things with integers. However ,  
our experience has been that it is not always desirable 
to remain within the system, given the realities of 
programming and the restrictiveness of the current lan- 
guage. There  are three reasons for which we found it 
desirable to evade the current type system. 

Sometimes the violation is logically necessary. Fairly 
often one chooses to implement part of a language's 
run-time system in the language itself. There  are cer- 
tain things of this nature that cannot be done in a type- 
safe way in Mesa, or any other  strictly type-checked 
language we know. For example, the part of the system 
that takes the compiler's output and creates values of 
type PROCEDURE must exercise a rather profound 
loophole in turning data into program. Another  exam- 
ple, discussed in detail below, is a storage allocator. 
Most languages with compile-time checking submerge 
these activities into the •implementation and thereby 
avoid the need for type breaches. 

Sometimes efficiency is more important than type 
safety. In many cases the way to avoid a type breach is 
to redesign a data structure in a way that takes more 
space, usually by introducing extra levels of pointers. 
The section on variant records gives an example. 

Sometimes a breach is advisable to increase type 
checking elsewhere. Occasionally a breach could be 
avoided by declaring two distinct types to be the same, 
but merging them would reduce a great deal of check- 
ing elsewhere. The ArrayStore example below illus- 
trates this point. 

Given these considerations, we chose to allow occa- 
sional breaches of the type system, making them as 
explicit as  possible. The advantages of doing this are 
twofold. First, making breaches explicit makes them 
less dangerous since they are clearer to the reader.  
Second, their occurrences provide valuable hints to a 
language designer about  where the type system needs 
improvement.  

One of the simplest ways to breach the Mesa type 
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system is to declare something to be UNSPECIFIED. The 
type checking algorithm regards this as a one-word 
don't-care type that matches any other one-word type. 
This is similar to PL/I  UNSPEC. We have come to the 
conclusion that using UNSPECIFIED is tOO drastic in most 
cases. One usually wants to turn off type checking in 
only a few places involving a particular variable, not 
everywhere.  In practice there is a tendency to use 
UNSPECIFIED in the worst possible way: at the inter- 
faces of modules. The effect is to turn off type checking 
in other  people's modules without their knowing itt 

As an alternative, Mesa provides a general type 
transfer function, RECAST, that (without performing 
any computation) converts between any two types of 
equal size. It can often be used instead of UNSPECIFIED. 
In cases where we had declared a particular variable 
UNSPECIFIED, we now prefer to give it some specific 
type and to use RECAST whenever it is being treated in a 
way that violates the assumptions about that type. 

The existence of RECAST makes many decisions 
much less painful. Consider the type CHARACTER. On 
the one hand we would like it to be disjoint from 
INTE6ER SO that simple mistakes would be caught by 
the type checker.  On the other hand, one occasionally 
needs to do arithmetic on characters. We chose to 
make CHARACTER a distinct type and use RECAST in 
those places where character arithmetic is needed.  Why 
reduce the quality of type checking everywhere just to 
accommodate a rare case? 

Pointer arithmetic is a popular pastime for system 
programmers.  Rather  than outlawing it, or even requir- 
ing a RECAST, Mesa permits it in a restricted form. One 
can add or subtract an integer from a pointer to pro- 
duce a pointer of the same type. One can subtract two 
pointers of the same type to produce an integer. The 
need for more exotic arithmetic has not been observed. 

Here  is a typical example: It is common to use a 
large contiguous area of memory to hold a data struc- 
ture consisting of many records, e.g. a parse tree.  To 
conserve space one would like to make all pointers 
relative to the start of the area, thus reducing the size of 
pointers that are internal to the structure. Further- 
more,  one might like to move the entire area, possibly 
via secondary storage. These needs would be met by an 
unimplemented feature called the tied pointer. The idea 
is that a certain type of pointer would be made relative 
to a designated base value and this value would be 
added just before dereferencing the pointer. In other  
words, ifptr were declared to be tied to base then ptr 1" 
actually would mean (base+ptr)1". Since tied pointers 
have not yet been implemented, this notation is in fact 
used extensively within the Mesa compiler. Subsequent 
versions of Mesa will include tied pointers, and this 
temporary loophole will be reconsidered. 

The Skeleton Type System 
Once we provided the opportunity for evading the 

official type system, we had to ask ourselves just why 

we thought certain breaches were safe while others 
were not.  Ultimately, we came to the conclusion that 
the only really dangerous breaches of the type systems 
were those that require detailed knowledge of the run- 
time environment.  First and foremost,  fabricating a 
procedure value requires a detailed understanding of 
how various structures in memory are arranged. Sec- 
ond, pointer types also depend on various memory 
structures' being set up properly and should not be 
passed through loopholes without some care. In con- 
trast, the distinction between the two types RECORD 
[a,b: INTEGER] and RECORD[c,d: INTEGER] is not vital to 
the run-time system's integrity. To be sure, the user 
might wish to keep them distinct, but  using a loophole 
to store one into the other  would go entirely unnoticed 
by the system. 

The present scheme that is used to judge the appro- 
priateness of RECAST transformations merely checks to 
ensure that the source and destination types occupy the 
same number  of bits. Since most of the code invoking 
RECAST has been written by Mesa implementers,  this 
simplified check has proved to be sufficient. However ,  
as the community of users has grown, we have observed 
a justifiable anxiety over the use of RECAST. Users fear 
that unchecked use of this escape will cause a violation 
of some system convention unknown to them. 

We are in the process of investigating a more com- 
plete and formal skeletal type system that will reduce 
the hazards of the present RECAST mechanism. Its aim 
is to ensure that although a RECAST may do great 
violence to user-defined type conventions, the system's 
type integrity will not be violated. 

Example-A Compacting Storage Allocator 
A module that provides many arrays of various sizes 

by parceling out pieces of one large array is an interest- 
ing benchmark for a systems programming language for 
a number of reasons: 

(a) It taxes the type system severely. We must deal 
with an array containing variable length heterogeneous 
objects, something one cannot declare in Mesa. 

(b) The clients of the allocator wish to use it for 
arrays of differing types. This is a familiar polymor- 
phism problem. 

(c) As a programming exercise, the module can 
involve tricky pointer manipulations, We would like 
help to prevent  programming errors such as the ubiqui- 
tous address/contents confusion. 

(d) A nasty kind of bug associated with the use of 
such packages is the so-called dangling reference prob- 
lem: variables or data structures might be used after 
their space has been relinquished. 

(e) Another  usage bug, peculiar to compacting allo- 
cators, is that a client might retain a pointer to storage 
that the compacter  might move. 

The first two problems make it impossible to stay 
entirely within the type system. One'.s first impulse is to 
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Fig. 1. Definitions module. 

ArrayStoreDefs: DEFINITIONS = 
BEGIN 
ArrayPtr: TYPE = POINTER TO PR; 
PR: TYPE = POINTER TO R; 
R: TYPE = 

R E C O R D  [ p : Prefix, 
a: A R R A Y  [0..0] OF Thing ]; 

Prefix: TYPE = R E C O R D  [ backp: PRIVATE ArrayPtr, 
length: READ-ONLY INTEGER ]; 

Thing: TYPE = UNIQUE[16] ;  
AUocArray: P R O C E D U R E  [length: INTEGER]  

RETURNS ]new: ArrayPtr]; 
FreeArray: P R O C E D U R E  [dying: ArrayPtr]; 
END 

Fig. 2. Implementation of a compacting storage allocator. 

DIRECTORY ArrayStoreDefs: FROM "ArrayStoreDefs"; 
DEFINITIONS FROM ArrayStoreDefs. 

ArrayStore: P R O G R A M  IMPLEMENTING ArrayStoreDe~ = 
BEGIN 
Storage: A R R A Y  [0..StorageSize) OF UNSPECIFIED;  
StorageSize: I N T E G E R  = 2000; 
Table: A R R A Y  TableIndex OF PR; 
Table Index: TYPE = [O..TableSize); 
TableSize: I N T E G E R  = 500; 
beginStorage: PR = @Storage [0]; 

- - the  address of Storage [0] 
endStorage: PR = @Storage [StorageSize ]; 
nextR: PR <-- beginStorage; - -next  space to put an R 
begin Table : A rray Ptr = @Table [0]; 
endTable: ArrayPtr = @Table [TableSize]; 
ovh: I N T E G E R  = SIZE[Prefix]; - -overhead 

AllocArray: PUBLIC P R O C E D U R E  [n: INTEGER]  
RETURNS [new: ArrayPtr] = 

BEGIN i:Tablelndex; 
I F n  < 0 OR n > 77777B - ovh THEN ERROR;  
IF n + ovh > endStorage - nextR THEN 

BEGIN 
Compact [ ]; 
IF n + ovh > endStorage - nextR THEN ERROR;  
END; 

- -Find a table entry 
FOR i IN Tablelndex DO 

IF Table [i] = NIL THEN GOTO found 
REPEAT 

found ~ new ~- @Table[i]; 
FINISHED ~ E R R O R  

ENDLOOP;  
new 1" ~-- nextR; 
--initiafize the array storage 
n e w t  T .p.backp ~-- new; 
new T ~ .p.length ~- n; 
nextR ~-nex tR  + (n + ovh); 
END; 

Compact: P R O C E D U R E  = (omitted) 

FreeArray: PUBLIC P R O C E D U R E  [dead: ArrayPtr] = 
BEGIN IF dead'~ = NIL THEN E R R O R ;  - -ar ray  already free 
dead 1" 1 ~ .p.backp <-- NIL; 
dead 1" ~ NIL; 
END; 

--Initialization 
i: Tablelndex; 
FOR i IN Tablelndex DO Table[i] <--NIL ENDLOOP;  
END.  

declare everything unspecified and proceed to program 
as in days of yore.  The remaining problems are real 
ones, however,  and we are reluctant to turn off the 
entire type system just when we need it most. The 
following is a compromise solution. 

To deal with problem (a), we have two different 
ways of designating the array to be parceled out,  which 
we call Storage. From a client's point of view, the 
storage is accessible through the definitions shown in 
the module ArrayStoreDefs (cf. Figure 1). 

These definitions suggest that the client can get 
ArrayPtrs (i.e. pointers to pointers to array records) by 
calling AUocArray and can relinquish them by calling 
FreeArray. The PRIVATE attribute on backp means that 
the client cannot access that field at all. The READ-ONLY 
attribute on length means that the client cannot change 
it. Of  course these restrictions do not apply to the 
implementing module.  The type Thing occupies 16 bits 
of storage (one word) and matches no other type. 
Intuitively it is our way of simulating a type variable. 
The implementing module ArrayStore is shown in Fig- 
ure 2. It declares the array Storage to create the raw 
material for allocation. We chose to declare its element 
type UNSPECIFIED. This means that every transaction 
involving Storage is an implicit invocation of a loop- 
hole. Specifically the initializations of beginStorage and 
endStorage store pointers to UNSPECIFIED into variables 
declared as pointers to R.  

The general representation scheme is as follows: 
The storage area [beginStorage..nextR) consists of zero 
or more Rs, each with the form (backp, length, eo . . . . .  
e~tength-1)), where length varies from sequence to se- 
quence.  The array represented by the record is (e0, • • . ,  
e,~oth_l)). If backp is not NIL then backp is an address 
in Table and backp 1" is the address of backp itself. If 
Table[i] is not NIL, it is the address of one of these 
records (cf. Figure 3). 

After  the initialization, Storage is not mentioned 
again. All the subsequent type breaches in ArrayStore 
are of the pointer arithmetic variety. The expression 
endStorage - nextR in AllocArray subtracts two PR's 
to produce an integer. The type checker is not entirely 
asleep here: If we slipped up and wrote 

IF n + ovh > endStorage - n 

there would be a complaint because the left-hand side 
of the comparison is an integer and the right is a PR. 
The assignment 

nextR ¢--nextR + (n + ovh) 

at the end of AllocArray also uses the pointer arithme- 
tic breach. The rule PR + ~TEGER = PR makes sense 
here because n + ovh is just the right amount  to add to 
nextR to produce the next place where an R can go. 

Despite all these breaches, we are still getting a 
good deal of checking. The checker would point out (or 
correct) any address/contents confusions we had, mani- 
fested by the omission of 1' 's or their unnecessary 
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appearance. We can be sure that integers and PRs are 
not being mixed up. In the (unlikely) event that we 
wrote something like 

new T .p.length ~-- new ~ .a [k] 

we would be warned because the value on the left is an 
integer and the value on the right is a Thing. Notice 
that none of this checking would occur if Thing were 
replaced by UNSPECIFIED. Thus,  even though the type 
system is not airtight, we are bet ter  off than we would 
be in a completely unchecked language (unless, per- 
haps, we get a false sense of security). 

Now let us consider how this module is to be used 
by a client who wants to manipulate two different kinds 
of arrays: arrays of integers and arrays of strings. At  
first it looks as if the code is going to have a very high 
density of RECAST'S. For  example,  to create an array 
and store an integer in it the client will have to say 

1A : Array Ptr = AllocArray [100]; 
IA T ~ .at2] <-- RECAST[6]  

because the type of IA ~ ~ .a[2] is Thing, which does 
not match anything. Writing a loophole every time is 
intolerable, so we are tempted to replace Thing by 
UNSPECIFIED, thereby losing a certain amount  of type 
checking elsewhere. 

There  are much nicer ways out of this problem. 
Rather  than passing every array element through a 
loophole,  one can pass the procedures AUocArray and 
FreeArray through loopholes (once, during initializa- 
tion). The module ArrayClient (cf. Figure 4) shows 
how this is done.  Not only does this save our having to 
make Thing UNSPECIFIED, it allows us to use the type 
checker to ensure that integer arrays contain only inte- 
gers and that string arrays contain only strings. More 
precisely, the type checker guarantees that every store 
into IA stores an integer. We must depend upon the 
correctness of the code in ArrayStore, particularly the 
compactor,  to make sure that data structures stay well 
formed.  

This scheme does not have any provisions for cop- 
ing with problem (d), dangling reference errors. How- 
ever,  somewhat surprisingly, problem ( e ) - s a v i n g  a 
raw p o i n t e r - c a n n o t  happen as long as the client does 
not commit any further breaches of the type system. 
The trick is in the way we declared IntArray- all in one 
mouthful.  That  makes it impossible to declare a varia- 
ble to hold a raw pointer.  This is because (as mentioned 
before)  every occurrence of the type constructor RE- 
CORO generates a new type, distinct from all other  
types. Therefore ,  even if we should declare 

rawPointer: P O I N T E R  TO R E C O R D  [ 
p: Prefix, 
a: A R R A Y [ 0 . . 0 ]  OF I N T E G E R  ]; 

we could not perform the assignment rawpointer 
IA "~ because IA ~ has a different type, even though it 
looks the same. If one cannot declare the type of IA ~, 
it is rather  difficult to hang onto it for very long. In fact, 
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the compiler has been carefully designed to ensure that 
no type-checked program can hold such a pointer 
across a procedure call. 

Passing procedure values through loopholes is a 
rather frightening thing to do. What  if, by some mis- 
chance, AllocArray doesn' t  have the number  of param- 
eters ascribed to it by the client? Since we have waved 
off the type checker to do the assignment of AllocArray 
to AlloclntArray and AllocStrArray, no compile-time 
type violation would be detected and some hard-to- 
diagnose disaster would occur at run time. To compen- 
sate for this, we introduce the curious procedure Ge- 
danken, whose only purpose is to fail to compile if the 
number  or size of AllocArray's parameters  change. The 
skeleton type system, discussed earlier in this section, 
would obviate the need for this foolishness. 

We would like to emphasize that,  although our 
examples focus on controlled breaches of the type sys- 
tem, many real Mesa programs do not violate the type 
system at all. We also expect the density of breaches to 
decrease as the descriptive powers of the type system 
increase. 

5. Variant Records 

Mesa, like Pascal, has variant records. The descrip- 
tive aspects of the two languages' notion of variant 
records are very similar. Mesa, however,  also requires 
strict type checking for accessing the components  of 
variant records. To illustrate the Mesa variant record 
facility consider the following example of the declara- 
tion for an I /O stream: 

StreamHandle: TYPE = P O I N T E R  TO Stream; 
Stream Type : TYPE = {disk, display, keyboard}; 
Stream: TYPE = R E C O R D  [ 

Get: PROCEDURE[StreamHandle]RETURNS[Item], 
Put: P R O C E D U R E  [Stream Handle, Item ], 
body: SELECT type; StreamType F R O M  

disk ~ [ 
file: l~le Pointer, 
position : Position, 
Set Position : P R O C E D U R E  [ 

P O I N T E R  TO disk Stream, 
Position], 

buffer: SELECT size:* F R O M  
short ~ [b: ShortArray], 
long ~ [b: LongArray], 
E N D C A S E  ], 

display ~ [ 
first: DisplayControlBlock, 
last: DisplayControlBlock, 
position : Screen Position, 
nLines : [0 . . i00]] ,  

keyboard ~ NULL,  
ENDCASE] ;  

The record type has three main variants; disk, dis- 
play, and keyboard. Furthermore ,  the disk variant has 
two variants of its own: short and long. Note that the 
field names used in variant subparts need not be 
unique. The asterisk used in declaring the subvariant of 
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Fig. 3. ArrayStore's data structure. 

Storage 

Table 

l 
nil 

disk is a shorthand mechanism for generating an enu- 
merated  type for tagging variant subparts.  

The declaration of a variant record species a type, 
as usual; it is the type of the whole record. The declara- 
tion itself defines some other  types: one for each var- 
iant in the record. In the above example,  the total 
number  of type variations is six, and they are used in 
the following declarations: 

r: Stream; 
rDisk: disk Stream ; 
rDisplay : display Stream; 
rKeyb: keyboard Stream; 
rShort: short disk Stream ; 
rLong: long disk Stream; 

The last five types are called bound variant types. The 
rightmost name must be the type identifier for a variant 
record. The other names are adjectives modifying the 
type identified to their right. Thus disk modifies the 
type Stream and identifies a new type. Further,  short 
modifies the type disk Stream and identifies still an- 
other type. Names  must occur in order and may not be 
skipped. (For instance, short Stream would be incorrect 
since short does not identify a Stream variant.) 

When a record is a bound variant,  the components  
of its variant part  may be accessed without a prelimi- 
nary test. For  example,  the following assignments are 
legal: 

rDisplay .last *- rDisplay .first; 
rDisk .position ,,-- rShort .position i 

If a record is not a bound variant (e.g. r in the previous 
section), the program needs a way to decide which 
variant it is before accessing variant components .  More 
importantly,  the testing of the variant must be done in a 
formal way so that the type checker can verify that the 
p rogrammer  is not making unwarranted assumptions 
about  which variant is in hand. For  this purpose,  Mesa 
uses a discrimination statement which resembles the 
declaration of the variant part .  However ,  the arms in a 
discriminating SELECr contain statements;  and, within a 
given arm,  the discriminated record value is viewed as a 

bound variant.  Therefore ,  within that arm,  its variant 
components  may be accessed using normal  qualifica- 
tion. The following example discriminates on r: 

WITH streamRec: r SELECT FROM 
display 

BEGIN streamRec .first ~ streamRec .last; 
streamRec .position ~ 73; streamRec .nLines ~-- 4; 
END;  

disk 
WITH diskRec: stream Rec SELECT FROM 

short ~ diskRec.b[O] *-- 10; 
long ~ diskRec.b[O] *-- 100; 
ENDCASE;  

ENDCASE ::), streamrec.put ~-- streamrec.newput; 

The expression in the WITH clause must represent  
either a variant record (e.g. r) or a pointer  to a variant 
record. The identifier preceding the colon in the wrrx-i 
clause is a synonym for the record. Within each selec- 
tion, the type of the identifier is the selected bound 
variant type,  and fields specific to the particular variant 
can be ment ioned.  

In addition to the descriptive advantages of bound 
variant types, the Mesa compiler  also exploits the more  
precise declaration of a particular variant to allocate 
the minimal amount  of storage for variables declared to 
be of  a bound variant type. For example,  the storage 
for r above must be sufficient to contain any one of the 
five possible variants. The storage for rKeyb, on the 
other hand,  need only be sufficient for storing a key- 
board Stream. 

The Mutable Variant Record Problem 
The names streamRec and diskRec in the example 

above are really synonyms in the sense that they name 
the same storage as r; no copying is done by the dis- 
crimination operat ion.  This decision opens a loophole 
in the type system. Given the declaration 

Splodge: TYPE = R E C O R D  [ 
refcount: INTEGER;  
vp: SELECT t: * FROM 

blue 
Ix: ARRAY[0. .1000)  OF CHARACTER] .  

red 
[item: INTEGER,  left, right: POINTER TO Splodge], 

green 
[item: INTEGER,  next: POINTER TO green Splodge], 

ENDCASE];  

one can write the code 

t: Splodge ; 
P: P R O C E D U R E  = BEGIN t ~-- Splodge[O, green[lO, NIL]] END; 

WITH s: t SELECT FROM 
red ~ BEGIN . . . P[ ] . . . .  s.left +--s.right END; 

The procedure P overwrites t, and therefore s ,  with a 
green Splodge. The subsequent references to s.left and 
s.right are invalid and will cause great mischief. 

Closing this breach is simple enough: we could have 
simply followed Algol 68 and combined the discrimi- 
nation with a copying operat ion that places the entire 
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Fig. 4. Client of  a compacting allocator. 

D I R E C T O R Y  ArrayStoreDefs: F R O M  "ArrayStoreDefis" ; 
DEFINITIONS F R O M  ArrayStoreDefs; 

ArrayClient: P R O G R A M  = 
BEGIN 
--Integer array primitives 
lntArray: TYPE = P O I N T E R  T O P O I N T E R  T O 

R E C O R D  [p: Prefix, a: A R R A Y  [0..0] OF I N T E G E R ] ;  
AlloclntArray: P R O C E D U R E  [INTEGER] RETURNS [lntArray] 

= RECAST[AllocArray]; 
FreelntArray : P R O C E D U R E  [lntArray ] 

= RECAST[FreeArray]; 
--String array primitives 
StrArray: T Y P E  = P O I N T E R  T O  P O I N T E R  T O 

R E C O R D [ p :  Prefix, a: A R R A Y  [0..0] OF STRING];  
AllocStrArray: P R O C E D U R E  [INTEGER] R E T UR NS  [StrArray] 

= RECAST[AllocArray]; 
FreeStrArray : P R O C E D U R E  [StrArray ] 

= R E C A S T  [FreeArray]; 

C, edanken: P R O C E D U R E  = 
- - T h i s  procedure ' s  only role in life is to fail to 
compile if ArrayStore does not  have the right sort of  
procedures .  
BEGIN 
uAllocArray: 

P R O C E D U R E  [ INTEGER]~RETURNS [UNSPECIFIED]  
= AllocArray; 

uFreeArray: P R O C E D U R E  [UNSPECIFIED]  = FreeArray; 
EN D;  

1A : lntArray = AlloclntArray [100]; 
SA : StrArray = AllocStrArray [ 10]; 
i: I N T E G E R ;  

F O R  i IN [0..1A '~ "f .p.length ) D O  IA '~ '~ .a [i] ~-- il3 E N D L O O P ;  

SA "F "F .a[0] ~-- "zero" ;  SA "~ "( .a[1] ~ "one" ;  
SA ~ "~ .a[2] , - - " t w o " ;  SA ~ "~ .a[3] <-- "surpr ise" ;  
SA '~ '~ .a[4] ~- -" four" ;  

FreelntArray [1A ]; 
FreeStrA rray [SA ]; 
END.  

Splodge in a new location (s) which is fixed to be red. 
We chose not to do so for three reasons: 
(1) Making copies can be expensive. 
(2) Making a copy destroys useful sharing relations. 
(3) This loophole has yet to cause a problem. 

Consider the following procedure,  which is repre- 
sentative of those found throughout  the Mesa com- 
piler's symbol table processor: 

AddS: P R O C E D U R E [  x: P O I N T E R  T O  Splodge] = 
B E G I N  y : P O I N T E R  T O  green Splodge; 
I F x  = NIL T H E N  R E T U R N ;  
W I T H  s:  x ~' SELEC T  F R O M  

blue ~ R E T U R N ;  
red 

B E G I N  s .item ,,-- s .item + 5; 
Add5[s.lefi]; Add5[s.right] E ND;  

green 
B E G I N  y ~-  @s; - -  m e a n s y  , , - x  
U N T I L y  = NIL D O  

Y "r .item ~ y ~ .item + 5; y ,,-- y ~ .next; 
E N D L O O P ;  

E N D  
E N D C A S E  

E N D  

As it stands, this procedure runs through a Splodge, 
adding 5 to all the integers in it. Suppose we  chose to 
copy while discriminating: i .e.  suppose x "~ were copied 
into some new storage named s .  In the blue arm a lot of  
space and t ime would  be wasted copying a 1000-char- 
acter array into s ,  even though it was never used.  In the 
red arm the assignment to s's item field is useless since it 
doesn't  affect the original structure. 

The green arm illustrates the usefulness of  declaring 
bound variant types like green Splodge explicitly. If we  
had to declare y and the next field of  a green Splodge to 
be simply Splodges, even though we knew they were 
always green, the loop in that arm would have to be 
rewritten to contain a useless discrimination. 

To  achieve the effect we desire under a copy-while-  
discriminating regime,  we  would  have to redesign our 
data structure to include another level of  pointers: 

Splodge: T Y P E  = R E C O R D  [ 
refcount: I N T E G E R ;  
vp: S E L E C T  t: * F R O M  

blue ~ [ P O I N T E R  TO BlueSplodge], 
red ~ [ P O I N T E R  TO RedSplodge], 
green ~ [ P O I N T E R  TO GreenSplodge], 
E N D C A S E ] ;  

BlueSplodge: T Y P E  = R E C O R D [  
x: A R R A Y [ 0 . . 1 0 0 0 )  OF  C H A R A C T E R ] ;  

RedSpolodge: T Y P E  = R E C O R D [  
item: I N T E G E R ,  left, right: P O I N T E R  T O  Splodge]; 

Green@lodge: T Y P E  = R E C O R D [  
item: I N T E G E R ,  next: P O I N T E R  T O  GreenSplodge]; 

Now we do not mind copying because it doesn' t  con- 
sume much time or space, and it doesn' t  destroy the 
sharing relations. Unfortunately,  we must pay for the 
storage occupied by the extra pointers,  and this might 
be intolerable if we have a large collection of Splodges. 

How have we lived with this loophole so far without 
getting burnt? It seems that we hardly ever change the 
variant of a record once it has been initialized. There-  
fore the possible confusions never occur because the 
variant never changes after being discriminated. In 
light of this observation, our suggestion for getting rid 
of the breach is simply to invent an attribute IMMUT- 
ABLE whose at tachment to a variant record declaration 
guarantees that changing the variant is impossible after 
initialization. This means that special syntax must be 
invented for the initialization step, but that is all to the 
good since it provides an opportunity for a storage 
allocator to allocate precisely the right amount  of 
space. 

6.  Conclusions  

In this paper,  we have discussed our experiences 
with program modularization and strict type checking.  
It is hard to resist drawing parallels between  the disci- 
plines introduced by these features on the one  hand and 
those introduced by programming without gotos on  the 
other.  In view of the great goto debates of  recent 
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memory, we would like to summarize our experiences 
with the following observations and cautions. 

(1) The benefits from these linguistic mechanisms, 
large though they might be, do not come automatically. 
A programmer must learn to use them effectively. We 
are just beginning to learn how to do so. 

(2) Just as the absence of gotos does not always 
make a program better, the absence of type errors does 
not make it better if their absence is purchased by 
sacrificing clarity, efficiency, or type articulation. 

(3) Most good programmers use many of the tech- 
niques implied by these disciplines, often subcon- 
sciously, and can do so in any reasonable language. 
Language design can help by making the discipline 
more convenient and systematic, and by catching blun- 
ders or other unintended violations of conventions. 
Acquiring a particular programming style seems to de- 
pend on having a language that supports or requires it; 
once assimilated, however, that style can be applied in 
many other languages. 
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The Alphard "form" provides the programmer with 
a great deal of control over the implementation of 
abstract data types. In this paper the abstraction 
techniques are extended from simple data 
representation and function definition to the iteration 
statement, the most important point of interaction 
between data and the control structure of the language 
itseff. A means of specializing Alphard's loops to 
operate on abstract entities without explicit 
dependence on the representation of those entities is 
introduced. Specification and verification techniques 
that allow the properties of the generators for such 
iterations to be expressed in the form of proof rules are 
developed. Results are obtained that for common 
special cases of these loops are essentially identical to 
the corresponding constructs in other languages. A 
means of showing that a generator will terminate is also 
provided. 
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