
Language Design for
Reliable Software

S.L. Graham
Editor

Early Experience with
Mesa
Charles M. Geschke, James H. Morris Jr.,
and Edwin H. Satterthwaite
Xerox Palo Alto Research Center

The experiences of Mesa's first users - primarily its
implementers-are discussed, and some implications
for Mesa and similar programming languages are sug-
gested. The specific topics addressed are: module struc-
ture and its use in defining abstractions, data-structur-
ing facilities in Mesa, an equivalence algorithm for
types and type coercions, the benefits of the type sys-
tem and why it is breached occasionally, and the diffi-
culty of making the treatment of variant records safe.

Key Words and Phrases: programming languages,
types, modules, data structures, systems programming

CR Categories: 4.22

1. Introduction

What happens when professional programmers
change over from an old-fashioned systems program-
ming language to a new, modular, type-checked one
like Mesa? Considering the large number of groups
developing such languages, this is certainly a question
of great interest.

This paper focuses on our experiences with strict
type checking and modularization within the Mesa pro-
gramming system. Most of the local structure of Mesa

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

A version of this paper was presented at the SIGPLAN/SIG-
OPS/SICSOFT Conference on Language Design for Reliable Soft-
ware, Raleigh, N.C., March 28-30, 1977.

Authors' address: Computer Science Laboratory, Palo Alto Re-
search Center, Xerox Corporation, 3333 Coyote Hill Road, Palo
Alto CA 94304

was inspired by, and is similar to, that of Pascal [14] or
Algol 68 [12], while the global structure is more like
that of Simula 67 [1]. We have chosen features from
these and related languages selectively, cast them in a
different syntax, and added a few new ideas of our own.
All this has been constrained by our need for a lan-
guage to be used for the production of real system
software right now. We believe that most of our obser-
vations are relevant to the languages mentioned above,
and others like them,, when used in a similar environ-
ment. We have therefore omitted a comprehensive
description of Mesa and concentrated on annotated
examples that should be intelligible to anyone familiar
with a similar language. We hope that our experiences
will help others who are creating or studying such
languages.

An interested reader can find more information
about the details of Mesa elsewhere. A previous paper
[7] addresses issues concerning transfer of control. An-
other paper [3] discusses some more advanced data-
structuring ideas. A paper on schemes [8] suggests
another possible direction of advance. In this paper we
restrain our desires to redesign or extend Mesa and
simply describe how we are using the language as cur-
rently implemented.

The version of Mesa presented in this paper is one
component of a continuing investigation into program-
ming methodology and language design. Most major
aspects of the language were frozen when implementa-
tion was begun in the autumn of 1974. Although we
were dissatisfied with our understanding of certain de-
sign issues even then, we proceeded with implementa-
tion for the following reasons.

- W e perceived a need for a "state of the art" imple-
mentat ion langauge within our laboratory. It
seemed possible to combine some of our ideas
into a design that was fairly conservative, but that
would still dominate the existing and proposed
alternatives.

- W e wanted feedback from a community of users,
both to evaluate those ideas that were ready for
implementation and to focus subsequent research
on problems actually encountered in building real
systems.

- W e had accumulated a backlog of ideas about im-
plementation techniques that we were anxious to
try.

It is important to understand that we have con-
sciously decided to at tempt a complete programming
system for demanding and sophisticated users. Their
own research projects were known to involve the con-
struction of "state of the art" programs, many of which
tax the limits of available computing resources. These
users are well aware of the capabilities of the underly-
ing hardware, and they have developed a wide range of
programming styles that they have been loath to aban-
don. Working in this environment has had the follow-
ing consequences.

540 Communications August 1977
of Volume 20
the ACM Number 8

- -We could not afford to be too dogmatic. The lan-
guage design is conservative and permissive; we
have at tempted to accommodate old methods of
programming as well as new, even at some cost in
elegance.

-Ef f i c i ency is important. Mesa reflects the general
properties of existing machines and contains no
features that cannot be implemented efficiently
(perhaps with some microcode assistance); for ex-
ample, there is no automatic garbage collection.

A cross-compiler for Mesa became operational in
the spring of 1975. We used it to build a small opera-
ting system and a display-oriented symbolic debugger.
By early 1976, it was possible to run a system built
entirely in Mesa on our target machine, and rewriting
the compiler in its own language was completed in the
summer of 1976. The basic system, debugger, and
compiler consist of approximately 50,000 lines of Mesa
code, the bulk of which was written by four people.
Since mid-1976, the community of users and scope of
application of Mesa have been expanding rapidly, but
its most experienced and demanding users are still its
implementers. It is in this context that we shall try to
describe our experiences and to suggest some tentative
conclusions. Naturally, we have discovered some bugs
and omissions in the design, and the implemented ver-
sion of the language is already several years from the
frontiers of research. We have tried to restrain our
desire to redesign, however, and we report on Mesa as
it is, not as we now wish it were.

The paper begins with a brief overview of Mesa's
module structure. The uses of types and strict type
checking in Mesa are then examined in some detail.
The facilities for defining data structures are summa-
rized, and an abstract description of the Mesa type
calculus is presented. We discuss the rationale an~
methods for breaching the type system and illustrate
them with a " type-strenuous" example that exploits
several of the type system's interesting properties. A
final section discusses the difficulties of handling var-
iant records in a type-safe way.

2. Modules

Modules provide a capability for partitioning a large
system into manageable units. They can be used to
encapsulate abstractions and to provide a degree of
protection. In the design of Mesa, we were particularly
influenced by the work of Parnas [10], who proposes
information hiding as the appropriate criterion for
modular decomposition, and by the concerns of Morris
[9] regarding protection in programming languages.

Module Structure
Viewed as a piece of source text, a module is similar

to an Algol procedure declaration or a Simula class

541

definition. It typically declares a collection of variables
that provide a localized database and a set of proce-
dures performing operations upon that database. Mod-
ules are designed to be compiled independently, but
the declarations in one module can be made visible
during the compilation of another by arranging to ref-
erence the first within the second by a mechanism
called inclusion. To decouple the internal details of an
implementation from its abstract behavior, Mesa
provides two kinds of modules: definitions and
programs.

A definitions module defines the interface to an
abstraction. It typically declares some shared types and
useful constants, and it defines the interface by naming
a set of procedures and specifying their input/output
types. Definitions modules claim no storage and have
no existence at run time. Included modules are usually
definitions modules, but they need not be.

Certain program modules, called implementers,
provide the concrete implementation of an abstraction;
they declare variables and specify bodies of procedures.
There can be a one-to-many relation between defini-
tions modules and concrete implementations. At run
time, one or more instances of a module can be cre-
ated, and a separate frame (activation record) is allo-
cated for each. In this respect, module instances resem-
ble Simula class objects. Unlike procedure instances,
the lifetimes of module instances are not constrained to
follow any particular discipline. Communication paths
among modules are established dynamically as de-
scribed below and are not constrained by, e.g., com-
pile-time or run-time nesting relationships. Thus life-
times and access paths are completely decoupled.

The following skeletal Mesa modules suggest the
general form of a definitions module and one of its
implementers:

Abstract ion: DEFINITIONS =
BEGIN

it: TYPE = . . . ; r t : T Y P E = . . . ;

p: P R O C E D U R E ;
p l : P R O C E D U R E [INTEGER];

pi: P R O C E D U R E [it] R E T U R N S [rt];

END

Implementer: P R O G R A M I M P L E M E N T I N G Abstract ion =
BEGIN
OPEN Abstract ion ;
x: I N T E G E R ;

p: PUBLIC P R O C E D U R E = (code for p);
p l : PUBLIC P R O C E D U R E [i: INTEGER] = (code for p l) ;

p i : PUBLIC P R O C E D U R E Ix: it] R E T U R N S [y: rt] =
(code for pi);

END

Communica t ions Augus t 1977
of Volume 20
the A C M Number 8

Longer but more complete and realistic examples can
be found in the discussion of ArrayStore below;
ArrayStoreDefs and ArrayStore correspond to Abstrac-
tion and Implementer, respectively.

Mesa allows specification of attributes that can be
used to control intermodular access to identifiers. In
the definition of an abstraction, some types or record
fields are of legitimate concern only to an implementer,
but they involve or are components of other types that
are parts of the advertised interface to the abstraction.
Any identifier with the attribute PRrVAXE is visible only
in the module in which it is declared and in any module
claiming to implement that module. Subject to the
ordinary rules of scope, an identifier with the attribute
PtJaLIC is visible in any module that includes and opens
the module in which it is declared. The PUBLIC attribute
can be restricted by specifying the additional attribute
READ-ONLY. By default, identifiers are PUBLIC in defini-
tions modules and PRIVATE otherwise.

In the example above, Abstraction contains defini-
tions of shared types and enumerates the elements of a
procedural interface. Implementer uses those type defi-
nitions and provides the bodies of the procedures; the
compiler will check that an actual procedure with the
same name and type is supplied for each public proce-
dure declared in Abstraction.

A module that uses an abstraction is called a client
of that abstraction. Interface definitions are obtained
by including the Abstraction module. Any instance of a
client must be connected to an instance of an appropri-
ate implementer before the actual operations of the
abstraction become available. This connection is called
binding, and there are several ways to do it.

Binding Mechanisms
When a relatively static and purely procedural in-

terface between modules is acceptable, the connection
can be made in a conventional way. Consider the fol-
lowing skeleton:

Client1 : P R O G R A M =

B E G I N
OPEN Abstraction ;

px: E X T E R N A L P R O C E D U R E ;

p[];px[];

END.

A client module can request a system facility called the
binder to locate and assign appropriate values to all
external procedure names, such as px. The binder fol-
lows a well-defined binding path from module instance
to module instance. When the binder encounters an
actual procedure with the same name as, and a type
compatible with, an external procedure, it makes the
linkage. The compiler automatically inserts an EXTER-
NAL procedure declaration for any procedure identi-
fier, such as p , that is mentioned by a client but defined
only in an included definitions module. The binder also

checks that all identifiers from a single definitions
module are bound consistently (that is, to a single
implementer).

The observant reader will have noticed that this
binding mechanism and the undisciplined lifetimes of
module instances leave Mesa programs vulnerable to
dangling reference problems. We are not happy about
this, but so far we have not observed any serious bugs
attributable to such references.

As an alternate binding mechanism, Mesa supports
the Simula paradigm as suggested by the following
skeleton (which assumes that x is a public variable):

Client2 : P R O G R A M =

BEGIN
OPEN Abstraction ;
frame: P O I N T E R TO FRAME[Implementer] *-

NEW Implementer;

frame "f .x ~ 0;

frame T .p[];

END.

Here, the client creates an instance of Implementer
directly. Through a pointer to the frame of that in-
stance, the client can access any public variable or
invoke any public procedure. Note that the relevant
declarations are in Implementer; the Abstraction mod-
ule is included only for type definitions. Some of the
binding has been moved to compile time. In return for
a wider, not necessarily procedural interface (and po-
tentially more efficient code), the client has committed
itself to using a particular implementation of the ab-
straction.

Because Mesa has procedure variables, it is possible
for a user to create any binding regime he wishes simply
by writing a program that distributes procedures. Some
users have created their own versions of Simula classes.
They have not used the binding mechanism described
above for a number of reasons. First, the actual imple-
mentation of an abstract object is sometimes unknown
when a program is compiled or instantiated; there
might be several coexisting implementations, or the
actual implementation of a particular object might
change dynamically. Their binding scheme deals with
such situations by representing objects as record struc-
tures with procedure-valued fields. The basic idea was
described in connection with the implementation of
streams in OS6 [11]: some fields of each record contain
the state information necessary to characterize the ob-
ject, while others contain procedure values that imple-
ment the set of operations. If the number of objects is
much larger than the number of implementations, it is
space-efficient to replace the procedure fields in each
object with a link to a separate record containing the
set of values appropriate to a particular implementa-
tion. When this binding mechanism is used, interface
specifications consist primarily of type definitions, as
suggested by the following skeleton:

542 Communicat ions August 1977
of Volume 20
the ACM Number 8

Ob]ectAbstraction: DEFINITIONS =
BEGIN
Handle: T YP E = P O I N T E R T O Object;
Object: TY P E = R E C O R D [

ops: P O I N T E R T O Operations,
state: P O I N T E R T O ObjectRecord,

• . .];
Operations: T Y P E = R E C O R D [

p l : P R O C E D U R E [Handle, I N T E G E R] ,
• . .];

END.

A client invokes a typical operation by writing han-
dle ~ .ops "~ .pl [handle, x], where handle is an object
of type Handle.

Observations
We believe that we could not have built the current

Mesa system if we had been forced to work with large
logically monolithic programs. Assembly language pro-
grammers are well aware of the benefits of modularity,
but many designers of high-level programming lan-
guages pay little attention to the problems of independ-
ent compilation and instantiation. Since these capabili-
ties will be grafted on anyway, they should be antici-
pated in the original design. We have more to say about
interfa.ce control in our discussion of types, but it is
hard to overestimate the value of articulating abstrac-
tions, centralizing their definitions, and propagating
them through the inclusion mechanism.

3. The Mesa Type System

Strict vs. Nonstrict Type Checking
A widely held view is that the purpose of type

declarations is to allow one to write more succinct
programs. For example, the Algol 60 declarations

r e a l x,y; i n t e g e r i,j;

allow one to attach two different interpretations to the
symbol " + " in the expressions x + y and i + j.
Similarly, the declaration

x: R E C O R D [a : [0..7], b: [0..255]]

permits one to write x.a andx.b in place of descriptions
of the shifting and masking that might occur. Descrip-
tive declarations also allow utility programs such as
debuggers to display values of variables in a helpful way
when the type is not encoded as part of the value.

This view predominated in an earlier version of
Mesa. Type declarations were used primarily as devices
to improve the expressive power and readability of the
language. Types were ignored by the compiler except
to discover the number of bits involved in an operation.
In contrast, the current version of Mesa checks type
agreement as rigorously as languages such as Pascal or
Algol 68, potentially rendering compile-time com-
plaints in great volume. This means in effect that the
language is more redundant since there are fewer pro-
grams acceptable to the compiler.

543

What benefit do we hope to gain by stricter check-
ing and the at tendant obligations on the programmer?
We expect that imposing additional structure on the
data space of the program and checking it mechanically
will make the modification and maintenance of pro-
grams easier. The type system allows us to write down
certain design decisions. The type checker is a tool that
is used to discover violations of the conventions implied
by those decisions without a great expenditure of
thought.

Type Expressions
Mesa provides a fairly conventional set of expres-

sions for describing types; detailed discussions of the
more important constructors are available elsewhere
[3]. We shall a t tempt just enough of an introduction to
help in reading the subsequent examples and concen-
trate upon the relations among types.

There is a set of predefined basic types and a set of
type operators which construct new types. The argu-
ments of these operators may be other types, integer
constants, or identifiers with no a priori meanings.
Most of the operators are familiar from languages such
as Pascal or Algol 68, and the following summary
emphasizes only the differences.

Basic Types. The basic types are INTEGER, BOO-
LEAN, CHARACTER, and UNSPECIFIED, the last of which
is a one-word, wild-card type.

Enumerated Types. If at, a2 an are distinct
identifiers, the form {al, az, • • • , an} denotes an or-
dered type of which the identifiers denote the allowed
constant values.

Unique Types. If n is a manifest (compile-time)
constant of type INTEGER, the form UNIQUE[hi denotes
a type distinct from any other type• The value of n
determines the amount of storage allocated for values
of that type, which are otherwise uninterpreted. Its use
is illustrated by the ArrayStore example in Section 4.

Record Types. If T1, T2 Tn are types and f2,
• . . , fn are distinct identifiers, the the form RECORDLfl:
Tl ,f2: T~ fn: Tn] denotes a record type. The)'] are
called field selectors. As usual, the field selectors are
used to access individual components; in addition, lin-
guistic forms called constructors and extractors are
available for synthesizing and decomposing entire rec-
ords. The latter forms allow either keyword notation,
using the field names, or positional notation. Inter-
module access to individual fields can be controlled by
specifying the attributes PUBLIC, PRIVATE, or READ-
ONLY; if no such attributes appear, they are inherited
from the enclosing declaration. Some examples:

Thing: TYPE = R E C O R D In: I N T E G E R , p: B O O L E A N] ;
v: Thing; i: I N T E G E R ; b: B O O L E A N ;

IF v.p T H E N v.n ,~-v.n + 1; - - f ie ld selection
v ~ [100, T R U E] ; - - a positional constructor
v ~-- [p:b, n:i]; - - a keyword constructor
In ~, p :b] ~ v; - - t h e inverse extractor.

Communica t ions Augus t 1977
of Volume 20
t h e A C M Number 8

Pointer Types. If T is a type, the form POINTER TO T
denotes a pointer type. If x is a variable of that type,
then x "~ dereferences the pointer and designates the
object pointed to, as in Pascal. If v is of type T, then
@v is its address with type POINTER TO T. The form
POINTER TO READ-ONLY T denotes a similar type; how-
ever, values of this type cannot be used to change the
indirectly referenced object. Such pointer types were
introduced so that objects could be passed by reference
across module interfaces with assurance that their val -~
ues would not be modified.

Array Types. If Ti and Te are types, the form ARRAY
Ti OF T e denotes an array type. T~ must be a finite
ordered type. An array a maps an index i from the
index type T~ into a value a [i] of the component type
T e. If a is a variable, the mapping can be changed by
assignment to a [i].

Array Descriptor Types. If T~ and Tc are types, the
form DESCRIPTOR FOR ARRAY T i OF T c denotes an array
descriptor type. T~ must be an ordered type. An array
descriptor value provides indirect access to an array
and contains enough auxiliary information to deter-
mine the allowable indices as a subrange of Ti.

Set Types. If T is a type, the form SET OF T denotes a
type, values of which are the subsets of the set of values
of T. T must evaluate to an enumerated type.

Transfer Types. If T1 Ti, T~ Tn are types
and fl, • • . , j~, fj fn are distinct identifiers, then the
form PROCEDURE [fl: T, fi: Ti] RETURNS [j]j: T~,
. . . . fn: Tn] denotes a procedure type. Each nonlocal
control transfer passes an argument record; the field
lists enclosed by the paired brackets, if not empty,
implicitly declare the types of the records accepted and
returned by the procedure [7]. If x has some transfer
type, a control transfer is invoked by the evaluation of
x [e~ , ei], where the bracketed expressions are used
to construct the input record, and the value is the
record constructed in preparation for the transfer that
returns control.

The symbol PROCEDURE can be replaced by several
alternatives that specify different transfer disciplines
with respect to name binding, storage allocation, etc.,
but the argument transmission mechanism is uniform.
Transfer types are fulbfledged types; it is possible to
declare procedure variables and otherwise to manipu-
late procedure values, which are represented by proce-
dure descriptors. Indeed, some of the intermodule
binding mechanisms described previously depend cru-
cially upon the assignment of values to procedure
variables.

Subrange Types. If T is INTEGER or an enumerated
type, and rn and n are manifest constants of that type,
the form T [m..n] denotes a finite, ordered subrange
type for which any legal value x satisfiesm _< x -< n. If T
is INTEGER, the abbreviated form [m..n] is accepted.
These types are especially useful as the index types of
arrays. Other notational forms, e.g. [m..n), allow inter-

vals to be open or closed at either endpoint.
Finally, Mesa has adapted Pascal's variant record

concept to provide values whose complete type can
only be known after a run-time discrimination. Because
they are of more than passing interest, variant records
are discussed separately in Section 5.

Dedarations and Definitions
The form

v: Thing ~ e

declares a variable v of type Thing and initializes it to
the value of e; the form

v: Thing = e

is similar except that assignments cannot be made to v
subsequently. When e itself is a manifest constant, this
form makes v such a constant also.

This syntax is used for the introduction of new type
names, using the special type TYPE. Thus

Thing: T Y P E = TypeExpres s ion

defines the type Thing. This approach came from EeL
[13], in which a type is a value that can be computed by
a running program and then used to declare variables.
In Mesa, however, TypeExpression must be constant.

Recursive type declarations are essential for de-
scribing most list structures and are allowed more gen-
erally whenever they make sense. To accommodate a
mutually recursive list structure, forward references to
type identifiers are allowed and do not yield "uninitial-
ized" values. (This is to be contrasted with forward
references to ordinary variables.) In effect, all type
expressions within a scope are evaluated simultane-
ously. Meaningful recursion in a type declaration usu-
ally involves the type constructor POINTER; in corre-
sponding values, the recursion involves a level of indi-
rection and can be terminated by the empty pointer
value NIL. Recursion that is patently meaningless is
rejected by the compiler; for example,

r: T Y P E = R E C O R D [left, right: r] - - n o t p e r m i t t e d
a: T Y P E = A R R A Y [0..10) O F s;

s: T Y P E = R E C O R D [i: I N T E G E R , m: a] - - n o t p e r m i t t e d .

Similar pathological types have been noted and pro-
hibited in Algol 68 [6].

Equivalence of Type Expressions
One might expect that two identical type expres-

sions appearing in different places in the program text
would always stand for the same type. In Algol 68 they
do. In Mesa (and certain implementations of Pascal)
they do not. Specifically, the type operators RECORD,
UNIQUE, and { . . . } generate new types whenever they
appear in the text.

The original reasons for this choice are not very
important, but we have not regretted the following
consequences for records:

(a) All modules wishing to communicate using a
shared record type must obtain the definition of that

5 4 4 C o m m u n i c a t i o n s A u g u s t 1977
of V o l u m e 20
the A C M N u m b e r 8

type from the same source. In practice, this means that
all definitions of an abstraction tend to come from a
single module; there is less temptation to declare scat-
tered, partial interface definitions.

(b) Tests for record type equivalence are cheap. In
our experience, most record types contain references to
other record types, and this linking continues to a
considerable depth. A recursive definition of equiva-
lence would, in the worst case, require examining many
modules unknown and perhaps unavailable to the cas-
ual user of a record type or, alternatively, copying all
type definitions supporting a particular type into the
symbol table of any module mentioning that type.

(c) The rule for record equivalence provides a
mechanism for sealing values that are distributed to
clients as passkeys for later transactions with an imple-
menter . Suppose that the following declaration occurs
in a definitions module:

Handle:PUBLIC TYPE = RECORD [value: PRIVATE Thing].

The PRIVATE attribute of value is overridden in any
implementer of Handle. A client of that implementer
can declare variables of type Handle and can store or
duplicate values of that type, but there is no way for the
client to construct a counterfeit Handle without violat-
ing the type system. Such sealed types appear to pro-
vide a basis for a compile-time capability scheme [2].

(d) Finally, this choice has not caused discomfort
because programmers are naturally inclined to intro-
duce names for record types anyway,

The case for distinctness of enumerated types is
much weaker; we solved the problem of the exact
relationships among such types of {a, b, c}, {c, b, a},
{a, c}, {aa, b, cc}, etc. by specifying that all these types
are distinct. In this case, we are less happy that identi-
cal sequences of symbols construct different enumer-
ated types.

Why did we not choose a similar policy for other
types? It would mean that a new type identifier would
have to be introduced for virtually every type expres-
sion, and we found it to be too tedious. In the case of
procedures we went even further in liberalizing the
notion of equivalence. Even though the formal argu-
ment and result lists are considered to be record decla-
rations, we not only permit recursive matching but also
ignore the field selectors in doing the match. We were
unwilling to abandon the idea that procedures are map-
pings in which the identifiers of bound variables are
irrelevant. We also had a pragmatic motivation. In
contrast to records, where the type definitions cross
interface boundaries, procedural communication
among modules is based upon procedure values, not
procedure types. Declaring named types for all inter-
face procedures seemed tiresome. Fortunately all argu-
ment records are constructed in a standard way, so this
view causes no implementation problems.

To summarize, we state an informal algorithm for
testing for type equivalence. Given one or more pro-

545

gram texts and two particular type expressions in them:

1. Tag each occurrence of RECORD, UNIQUE, and { . . . }
with a distinct number.

2. Erase all the variable names in the formal parame-
ter and the result lists of procedures.

3. Compare the two expressions, replacing type iden-
tifiers with their defining expressions whenever
they are encountered. If a difference (possibly in a
tag attached in step 1) is ever encountered, the two
type expressions are not equivalent. Otherwise
they are equivalent.

The final step appears to be a semidecision procedure
since the existence of recursive types makes it impossi-
ble to eliminate all the identifiers. In fact, it is always
possible to tell when one has explored enough (cf. [5],
Section 2.3.5, Exercise 11).

Coercions
To increase the flexibility of the type system Mesa

permits a variety of implicit type conversions beyond
those implied by type equivalence. They fall into two
categories: free coercions and computed coercions.

Free Coercions. Free coercions involve no computa-
tion whatsoever. For two types T and S, we write T C_ S
if any value of type T can be stored into a variable of
type S without checking, change of representation, or
other computation. (By "s tore" we mean to encompass
assignment, parameter passing, result passing, and all
other value transmission.) The following recursive rules
show how to compute the relation C_, assuming that
equivalence has already been accounted for:

1. T _ C T .

In the following assume that T _C S.

2. T[i..j] _C S if i is the minimum value of type S.

The restriction is necessary because we chose to repre-
sent values of a subrange type relative to its minimum
value. Coercions in other cases require computation.
Similarly,

3. T[i..j] _C S[i..k] i f f j _< k.
4. var T C_ S if var is a variant of T (cf. Section 5).
5. RECORD[f: T] _C S for any field name f u n l e s s f h a s

the PRIVATE attribute.
6. POINTER TO T C_ POINTER TO READ-ONLY S.

In other words, one can always treat a pointer as a
read-only pointer, but not vice versa.

7. POINTER TO READ-ONLY T C POINTER TO READ-

ONLY S.

The relation POINTER TO T C_ POINTER TO S is not true
because it would allow

p s : POINTER TO S;

pt: POINTER TO T = @t;
ps <--- pt;
p s~ *--s;

Communications August 1977
of Volume 20
the ACM Number 8

which is a sneaky way of accomplishing "t ~ s ," which
is not allowed unless S C T.

8. ARRAY I OF T C_ ARRAY I oF S.

Note that the index sets must be the same.

9. PROCEDURE [S'] RETURNS [T] C_ PROCEDURE [T ']

RETURNS [S] if T' C S' as well.

Here the relation between the input types is the reverse
of what one might expect.

Subrange Coercions. Coercions between subranges
require further comment. As others have noted [4],
associating range restrictions with types instead of spe-
cific variables leads to certain conceptual problems;
however, we wanted to be able to fold range restric-
tions into more complex constructed types. We were
somewhat surprised by the subtlety of this problem,
and our initial solutions allowed several unintended
breaches of the type system.

Values of an ordered type and all its subranges are
interassignable even if they do not satisfy cases (2) or
(3) above. This is an example of a computed coercion.
Code is generated to check that the value is in the
proper subrange and to convert its representation if
necessary. It is important to realize that computed
coercions cannot be extended recursively as was done
above. Consider the declarations

x: [0..100] ,-- 15;
y: [10,.20];
px: POINTER TO READ-ONLY [0..100] ,,-- @x;
py: POINTER TO READ-ONLY [10..20];

The assignment y <--x is permitted because x is 15; 5 is
stored in y since its value is represented relative to 10.
However , the assignment py ~ px, which rule 7 might
suggest, is not permitted because the value of x can
change and there is no reasonable way to generate
checking code. Even if the value ofx cannot change, we
could not perform any change in representation be-
cause the value 15 is shared. Similar problems arise
when one considers rules 6, 8, and 9.

Other Computed Coercions. Research in program-
ming language design has continued in parallel with our
implementation work, and some proposals for dealing
with uniform references [3] and generalizations of
classes [8] suggested adding the following computed
coercions to the language:

Dereferencing: POINTER TO T---~ T
Deproceduring: PROCEDURE RETURNS T-"> T
Referencing: T ~ POINTER TO T.

Initially we had intended to support contextually im-
plied application of these coercions much as does Algol
68. Reactions of Mesa's early users to this proposal
ranged from lukewarm to strongly negative. In addi-
tion, the data structures and accounting algorithms
necessary to deduce the required coercions and detect
pathological types substantially complicated the corn-

piler. We therefore decided to reconsider our decision
even after the design and some of the implementation
had been done. The current language allows subrange
coercion as described above. There is no uniform sup-
port for other computed coercions, but automatic dere-
ferencing is invoked by the operators for field extrac-
tion and array indexing. Thus such forms as p 1' . f and
a 1" 1" [i], which are common when indirection is used
extensively, may be written as p . f and a [i].

There are hints of a significant problem for lan-
guage designers here. Competent and experienced pro-
grammers seem to believe that coercion rules make
their programs less understandable and thus less relia-
ble and efficient. On the other hand, techniques being
developed with the goal of decreasing the cost of creat-
ing and changing programs seem to build heavily upon
coercion. Our experience suggests that such work
should proceed with caution.

Why is coercion distrusted? Our discussions with
programmers suggest that the reasons include the fol-
lowing:

- Mesa programmers are familiar with the underlying
hardware and want to be aware of the exact conse-
quences of what they write.

- M a n y of them have been burned by forgotten indi-
rect bits and the like in previous programming and
are suspicious of any unexpected potential for side
effects.

- T o some extent, coercion negates the advantages of
type checking. One view of coercion is that it cor-
rects common type errors, and some of the detec-
tion capability is sacrificed to obtain the correction.

We conjecture that the first two objections will dimin-
ish as programmers learn to think in terms of higher-
level abstractions and to use the type checking to
advantage.

The third objection appears to have some merit.
We know of no system of coercions in which strict type
checking can be trusted to flag all coercion errors, and
such errors are likely to be especially subtle and persist-
ent. The difficulties seem to arise from the interactions
of coercion with generic operators. In Algol 68, there
are rules about "loosely related" types that are in-
tended to avoid this problem, but the identity operators
still suffer. With the coercion rules that had been pro-
posed for Mesa, the following trap occurs. Given the
declaration p, q: POINTER TO INTEGER, the Mesa
expressions p I' = q 1' and 2*p = 2*q would compare
integers and give identical results; on the other hand,
the expression p = q would compare pointers and could
give a quite different answer. In the presence of such
traps, we believe that most programmers would resolve
to supply the " '~ " always. If this is their philosophy,
coercions can only hide errors. Even if such potentially
ambiguous expressions as p = q were disallowed, this
example suggests that using coercion to achieve repre-
sentational independence can easily destroy referential
transparency instead.

5 4 6 Communications August 1977
of Volume 20
the ACM Number 8

4. Experiences with Strict Type Checking

It is hard to give objective evidence that increasing
compile-time checking has materially helped the pro-
gramming process. We believe that it will take more
effort to get one's program to compile and that some of
the effort eliminates errors that would have shown up
during testing or later, but the magnitude of these
effects is hard to measure. All we can present at the
moment are testimonials and anecdotes.

A Testimonial
Programmers whose previous experience was with

unchecked languages report that the usual fear and
trepidation that accompanied making modifications to
programs has substantially diminished. Under previous
regimes they would never change the number or types
of arguments that a procedure took for fear that they
would forget to fix all of the calls on that procedure.
Now they know that all references will be checked
before they try to run the program.

An Anecdote
The following kind of record is used extensively in

the compiler:

RelativePtr: TYPE = [0..377778];
TaggedPtr: TYPE = RECORD[tag: {to,tl,t2,ta} ,

ptr: RelativePtr].

This record consists of a 2-bit tag and a 14-bit pointer.
As an accident of the compiler 's choice of representa-
tion, the expressions x and TaggedPtr[to, X] generated
the same internal value. The nonstrict type checker
considered these types equivalent, and unwittingly we
used TaggedPtrs in many places actually requiring
RelativePtrs. As it happened, the tag in these contexts
was always to.

The compiler was working well, but one day we
made the unfortunate decision to redefine TaggedPtr as

R E C O R D [ptr: RelativePtr, tag: {to,tl,t~,t3}].

This caused a complete breakdown, and we hastily
unmade that decision because we were unsure about
what parts of the code were unintentionally depending
upon the old representation. Later , when we submitted
a transliteration of the compiler to the strict type
checker, we found all the places where this error had
been committed. At present, making such a change is
routine. In general, we believe that the benefits of
static checking are significant and cost-effective once
the programmer learns how to use the type system
effectively.

A Shortcoming
• The type system is very good at detecting the differ-

ence in usage between T and POINTER TO T, however,
programmers often use array indices as pointers, espe-
cially when they want to perform arithmetic on them.
The difference between an integer used as a pointer

547

and an integer used otherwise is invisible to the type
checker. For example, the declaration

map: A R R A Y [i..j] OF INTEGER[m. .n] ;

defines a variable map with the property that compile-
time type checking cannot distinguish between legiti-
mate uses of k and map [k]. Fur thermore , i fm _ i and j
-< n , even a run-time bounds check could never detect a
use of k when map [k] was intended. We have observed
several troublesome bugs of this nature and would like
to change the language so that indices of different
arrays can be made into distinct types.

Violating the Type System
One of the questions often asked about languages

with compile-time type checking is whether it is possi-
ble to write real programs without violating the type
system. It goes without saying that one can bring vir-
tually any program within the confines of a type system
by methods analogous to the silly methods for eliminat-
ing gotos, e.g. simulate things with integers. However ,
our experience has been that it is not always desirable
to remain within the system, given the realities of
programming and the restrictiveness of the current lan-
guage. There are three reasons for which we found it
desirable to evade the current type system.

Sometimes the violation is logically necessary. Fairly
often one chooses to implement part of a language's
run-time system in the language itself. There are cer-
tain things of this nature that cannot be done in a type-
safe way in Mesa, or any other strictly type-checked
language we know. For example, the part of the system
that takes the compiler's output and creates values of
type PROCEDURE must exercise a rather profound
loophole in turning data into program. Another exam-
ple, discussed in detail below, is a storage allocator.
Most languages with compile-time checking submerge
these activities into the •implementation and thereby
avoid the need for type breaches.

Sometimes efficiency is more important than type
safety. In many cases the way to avoid a type breach is
to redesign a data structure in a way that takes more
space, usually by introducing extra levels of pointers.
The section on variant records gives an example.

Sometimes a breach is advisable to increase type
checking elsewhere. Occasionally a breach could be
avoided by declaring two distinct types to be the same,
but merging them would reduce a great deal of check-
ing elsewhere. The ArrayStore example below illus-
trates this point.

Given these considerations, we chose to allow occa-
sional breaches of the type system, making them as
explicit as possible. The advantages of doing this are
twofold. First, making breaches explicit makes them
less dangerous since they are clearer to the reader.
Second, their occurrences provide valuable hints to a
language designer about where the type system needs
improvement.

One of the simplest ways to breach the Mesa type

Communications August 1977
of Volume 20
the ACM Number 8

system is to declare something to be UNSPECIFIED. The
type checking algorithm regards this as a one-word
don't-care type that matches any other one-word type.
This is similar to PL/I UNSPEC. We have come to the
conclusion that using UNSPECIFIED is tOO drastic in most
cases. One usually wants to turn off type checking in
only a few places involving a particular variable, not
everywhere. In practice there is a tendency to use
UNSPECIFIED in the worst possible way: at the inter-
faces of modules. The effect is to turn off type checking
in other people's modules without their knowing itt

As an alternative, Mesa provides a general type
transfer function, RECAST, that (without performing
any computation) converts between any two types of
equal size. It can often be used instead of UNSPECIFIED.
In cases where we had declared a particular variable
UNSPECIFIED, we now prefer to give it some specific
type and to use RECAST whenever it is being treated in a
way that violates the assumptions about that type.

The existence of RECAST makes many decisions
much less painful. Consider the type CHARACTER. On
the one hand we would like it to be disjoint from
INTE6ER SO that simple mistakes would be caught by
the type checker. On the other hand, one occasionally
needs to do arithmetic on characters. We chose to
make CHARACTER a distinct type and use RECAST in
those places where character arithmetic is needed. Why
reduce the quality of type checking everywhere just to
accommodate a rare case?

Pointer arithmetic is a popular pastime for system
programmers. Rather than outlawing it, or even requir-
ing a RECAST, Mesa permits it in a restricted form. One
can add or subtract an integer from a pointer to pro-
duce a pointer of the same type. One can subtract two
pointers of the same type to produce an integer. The
need for more exotic arithmetic has not been observed.

Here is a typical example: It is common to use a
large contiguous area of memory to hold a data struc-
ture consisting of many records, e.g. a parse tree. To
conserve space one would like to make all pointers
relative to the start of the area, thus reducing the size of
pointers that are internal to the structure. Further-
more, one might like to move the entire area, possibly
via secondary storage. These needs would be met by an
unimplemented feature called the tied pointer. The idea
is that a certain type of pointer would be made relative
to a designated base value and this value would be
added just before dereferencing the pointer. In other
words, ifptr were declared to be tied to base then ptr 1"
actually would mean (base+ptr)1". Since tied pointers
have not yet been implemented, this notation is in fact
used extensively within the Mesa compiler. Subsequent
versions of Mesa will include tied pointers, and this
temporary loophole will be reconsidered.

The Skeleton Type System
Once we provided the opportunity for evading the

official type system, we had to ask ourselves just why

we thought certain breaches were safe while others
were not. Ultimately, we came to the conclusion that
the only really dangerous breaches of the type systems
were those that require detailed knowledge of the run-
time environment. First and foremost, fabricating a
procedure value requires a detailed understanding of
how various structures in memory are arranged. Sec-
ond, pointer types also depend on various memory
structures' being set up properly and should not be
passed through loopholes without some care. In con-
trast, the distinction between the two types RECORD
[a,b: INTEGER] and RECORD[c,d: INTEGER] is not vital to
the run-time system's integrity. To be sure, the user
might wish to keep them distinct, but using a loophole
to store one into the other would go entirely unnoticed
by the system.

The present scheme that is used to judge the appro-
priateness of RECAST transformations merely checks to
ensure that the source and destination types occupy the
same number of bits. Since most of the code invoking
RECAST has been written by Mesa implementers, this
simplified check has proved to be sufficient. However ,
as the community of users has grown, we have observed
a justifiable anxiety over the use of RECAST. Users fear
that unchecked use of this escape will cause a violation
of some system convention unknown to them.

We are in the process of investigating a more com-
plete and formal skeletal type system that will reduce
the hazards of the present RECAST mechanism. Its aim
is to ensure that although a RECAST may do great
violence to user-defined type conventions, the system's
type integrity will not be violated.

Example-A Compacting Storage Allocator
A module that provides many arrays of various sizes

by parceling out pieces of one large array is an interest-
ing benchmark for a systems programming language for
a number of reasons:

(a) It taxes the type system severely. We must deal
with an array containing variable length heterogeneous
objects, something one cannot declare in Mesa.

(b) The clients of the allocator wish to use it for
arrays of differing types. This is a familiar polymor-
phism problem.

(c) As a programming exercise, the module can
involve tricky pointer manipulations, We would like
help to prevent programming errors such as the ubiqui-
tous address/contents confusion.

(d) A nasty kind of bug associated with the use of
such packages is the so-called dangling reference prob-
lem: variables or data structures might be used after
their space has been relinquished.

(e) Another usage bug, peculiar to compacting allo-
cators, is that a client might retain a pointer to storage
that the compacter might move.

The first two problems make it impossible to stay
entirely within the type system. One'.s first impulse is to

548 Communications August 1977
of Volume 20
the ACM Number 8

Fig. 1. Definitions module.

ArrayStoreDefs: DEFINITIONS =
BEGIN
ArrayPtr: TYPE = POINTER TO PR;
PR: TYPE = POINTER TO R;
R: TYPE =

R E C O R D [p : Prefix,
a: A R R A Y [0..0] OF Thing];

Prefix: TYPE = R E C O R D [backp: PRIVATE ArrayPtr,
length: READ-ONLY INTEGER];

Thing: TYPE = UNIQUE[16] ;
AUocArray: P R O C E D U R E [length: INTEGER]

RETURNS]new: ArrayPtr];
FreeArray: P R O C E D U R E [dying: ArrayPtr];
END

Fig. 2. Implementation of a compacting storage allocator.

DIRECTORY ArrayStoreDefs: FROM "ArrayStoreDefs";
DEFINITIONS FROM ArrayStoreDefs.

ArrayStore: P R O G R A M IMPLEMENTING ArrayStoreDe~ =
BEGIN
Storage: A R R A Y [0..StorageSize) OF UNSPECIFIED;
StorageSize: I N T E G E R = 2000;
Table: A R R A Y TableIndex OF PR;
Table Index: TYPE = [O..TableSize);
TableSize: I N T E G E R = 500;
beginStorage: PR = @Storage [0];

- - the address of Storage [0]
endStorage: PR = @Storage [StorageSize];
nextR: PR <-- beginStorage; - -next space to put an R
begin Table : A rray Ptr = @Table [0];
endTable: ArrayPtr = @Table [TableSize];
ovh: I N T E G E R = SIZE[Prefix]; - -overhead

AllocArray: PUBLIC P R O C E D U R E [n: INTEGER]
RETURNS [new: ArrayPtr] =

BEGIN i:Tablelndex;
I F n < 0 OR n > 77777B - ovh THEN ERROR;
IF n + ovh > endStorage - nextR THEN

BEGIN
Compact [];
IF n + ovh > endStorage - nextR THEN ERROR;
END;

- -Find a table entry
FOR i IN Tablelndex DO

IF Table [i] = NIL THEN GOTO found
REPEAT

found ~ new ~- @Table[i];
FINISHED ~ E R R O R

ENDLOOP;
new 1" ~-- nextR;
--initiafize the array storage
n e w t T .p.backp ~-- new;
new T ~ .p.length ~- n;
nextR ~-nex tR + (n + ovh);
END;

Compact: P R O C E D U R E = (omitted)

FreeArray: PUBLIC P R O C E D U R E [dead: ArrayPtr] =
BEGIN IF dead'~ = NIL THEN E R R O R ; - -ar ray already free
dead 1" 1 ~ .p.backp <-- NIL;
dead 1" ~ NIL;
END;

--Initialization
i: Tablelndex;
FOR i IN Tablelndex DO Table[i] <--NIL ENDLOOP;
END.

declare everything unspecified and proceed to program
as in days of yore. The remaining problems are real
ones, however, and we are reluctant to turn off the
entire type system just when we need it most. The
following is a compromise solution.

To deal with problem (a), we have two different
ways of designating the array to be parceled out, which
we call Storage. From a client's point of view, the
storage is accessible through the definitions shown in
the module ArrayStoreDefs (cf. Figure 1).

These definitions suggest that the client can get
ArrayPtrs (i.e. pointers to pointers to array records) by
calling AUocArray and can relinquish them by calling
FreeArray. The PRIVATE attribute on backp means that
the client cannot access that field at all. The READ-ONLY
attribute on length means that the client cannot change
it. Of course these restrictions do not apply to the
implementing module. The type Thing occupies 16 bits
of storage (one word) and matches no other type.
Intuitively it is our way of simulating a type variable.
The implementing module ArrayStore is shown in Fig-
ure 2. It declares the array Storage to create the raw
material for allocation. We chose to declare its element
type UNSPECIFIED. This means that every transaction
involving Storage is an implicit invocation of a loop-
hole. Specifically the initializations of beginStorage and
endStorage store pointers to UNSPECIFIED into variables
declared as pointers to R.

The general representation scheme is as follows:
The storage area [beginStorage..nextR) consists of zero
or more Rs, each with the form (backp, length, eo
e~tength-1)), where length varies from sequence to se-
quence. The array represented by the record is (e0, • • . ,
e,~oth_l)). If backp is not NIL then backp is an address
in Table and backp 1" is the address of backp itself. If
Table[i] is not NIL, it is the address of one of these
records (cf. Figure 3).

After the initialization, Storage is not mentioned
again. All the subsequent type breaches in ArrayStore
are of the pointer arithmetic variety. The expression
endStorage - nextR in AllocArray subtracts two PR's
to produce an integer. The type checker is not entirely
asleep here: If we slipped up and wrote

IF n + ovh > endStorage - n

there would be a complaint because the left-hand side
of the comparison is an integer and the right is a PR.
The assignment

nextR ¢--nextR + (n + ovh)

at the end of AllocArray also uses the pointer arithme-
tic breach. The rule PR + ~TEGER = PR makes sense
here because n + ovh is just the right amount to add to
nextR to produce the next place where an R can go.

Despite all these breaches, we are still getting a
good deal of checking. The checker would point out (or
correct) any address/contents confusions we had, mani-
fested by the omission of 1' 's or their unnecessary

549 Communications August 1977
of Volume 20
the ACM Number 8

appearance. We can be sure that integers and PRs are
not being mixed up. In the (unlikely) event that we
wrote something like

new T .p.length ~-- new ~ .a [k]

we would be warned because the value on the left is an
integer and the value on the right is a Thing. Notice
that none of this checking would occur if Thing were
replaced by UNSPECIFIED. Thus, even though the type
system is not airtight, we are bet ter off than we would
be in a completely unchecked language (unless, per-
haps, we get a false sense of security).

Now let us consider how this module is to be used
by a client who wants to manipulate two different kinds
of arrays: arrays of integers and arrays of strings. At
first it looks as if the code is going to have a very high
density of RECAST'S. For example, to create an array
and store an integer in it the client will have to say

1A : Array Ptr = AllocArray [100];
IA T ~ .at2] <-- RECAST[6]

because the type of IA ~ ~ .a[2] is Thing, which does
not match anything. Writing a loophole every time is
intolerable, so we are tempted to replace Thing by
UNSPECIFIED, thereby losing a certain amount of type
checking elsewhere.

There are much nicer ways out of this problem.
Rather than passing every array element through a
loophole, one can pass the procedures AUocArray and
FreeArray through loopholes (once, during initializa-
tion). The module ArrayClient (cf. Figure 4) shows
how this is done. Not only does this save our having to
make Thing UNSPECIFIED, it allows us to use the type
checker to ensure that integer arrays contain only inte-
gers and that string arrays contain only strings. More
precisely, the type checker guarantees that every store
into IA stores an integer. We must depend upon the
correctness of the code in ArrayStore, particularly the
compactor, to make sure that data structures stay well
formed.

This scheme does not have any provisions for cop-
ing with problem (d), dangling reference errors. How-
ever, somewhat surprisingly, problem (e) - s a v i n g a
raw p o i n t e r - c a n n o t happen as long as the client does
not commit any further breaches of the type system.
The trick is in the way we declared IntArray- all in one
mouthful. That makes it impossible to declare a varia-
ble to hold a raw pointer. This is because (as mentioned
before) every occurrence of the type constructor RE-
CORO generates a new type, distinct from all other
types. Therefore , even if we should declare

rawPointer: P O I N T E R TO R E C O R D [
p: Prefix,
a: A R R A Y [0 . . 0] OF I N T E G E R];

we could not perform the assignment rawpointer
IA "~ because IA ~ has a different type, even though it
looks the same. If one cannot declare the type of IA ~,
it is rather difficult to hang onto it for very long. In fact,

550

the compiler has been carefully designed to ensure that
no type-checked program can hold such a pointer
across a procedure call.

Passing procedure values through loopholes is a
rather frightening thing to do. What if, by some mis-
chance, AllocArray doesn' t have the number of param-
eters ascribed to it by the client? Since we have waved
off the type checker to do the assignment of AllocArray
to AlloclntArray and AllocStrArray, no compile-time
type violation would be detected and some hard-to-
diagnose disaster would occur at run time. To compen-
sate for this, we introduce the curious procedure Ge-
danken, whose only purpose is to fail to compile if the
number or size of AllocArray's parameters change. The
skeleton type system, discussed earlier in this section,
would obviate the need for this foolishness.

We would like to emphasize that, although our
examples focus on controlled breaches of the type sys-
tem, many real Mesa programs do not violate the type
system at all. We also expect the density of breaches to
decrease as the descriptive powers of the type system
increase.

5. Variant Records

Mesa, like Pascal, has variant records. The descrip-
tive aspects of the two languages' notion of variant
records are very similar. Mesa, however, also requires
strict type checking for accessing the components of
variant records. To illustrate the Mesa variant record
facility consider the following example of the declara-
tion for an I /O stream:

StreamHandle: TYPE = P O I N T E R TO Stream;
Stream Type : TYPE = {disk, display, keyboard};
Stream: TYPE = R E C O R D [

Get: PROCEDURE[StreamHandle]RETURNS[Item],
Put: P R O C E D U R E [Stream Handle, Item],
body: SELECT type; StreamType F R O M

disk ~ [
file: l~le Pointer,
position : Position,
Set Position : P R O C E D U R E [

P O I N T E R TO disk Stream,
Position],

buffer: SELECT size:* F R O M
short ~ [b: ShortArray],
long ~ [b: LongArray],
E N D C A S E],

display ~ [
first: DisplayControlBlock,
last: DisplayControlBlock,
position : Screen Position,
nLines : [0 . . i00]] ,

keyboard ~ NULL,
ENDCASE] ;

The record type has three main variants; disk, dis-
play, and keyboard. Furthermore , the disk variant has
two variants of its own: short and long. Note that the
field names used in variant subparts need not be
unique. The asterisk used in declaring the subvariant of

Communicat ions August 1977
of Volume 20
the ACM Number 8

Fig. 3. ArrayStore's data structure.

Storage

Table

l
nil

disk is a shorthand mechanism for generating an enu-
merated type for tagging variant subparts.

The declaration of a variant record species a type,
as usual; it is the type of the whole record. The declara-
tion itself defines some other types: one for each var-
iant in the record. In the above example, the total
number of type variations is six, and they are used in
the following declarations:

r: Stream;
rDisk: disk Stream ;
rDisplay : display Stream;
rKeyb: keyboard Stream;
rShort: short disk Stream ;
rLong: long disk Stream;

The last five types are called bound variant types. The
rightmost name must be the type identifier for a variant
record. The other names are adjectives modifying the
type identified to their right. Thus disk modifies the
type Stream and identifies a new type. Further, short
modifies the type disk Stream and identifies still an-
other type. Names must occur in order and may not be
skipped. (For instance, short Stream would be incorrect
since short does not identify a Stream variant.)

When a record is a bound variant, the components
of its variant part may be accessed without a prelimi-
nary test. For example, the following assignments are
legal:

rDisplay .last *- rDisplay .first;
rDisk .position ,,-- rShort .position i

If a record is not a bound variant (e.g. r in the previous
section), the program needs a way to decide which
variant it is before accessing variant components . More
importantly, the testing of the variant must be done in a
formal way so that the type checker can verify that the
p rogrammer is not making unwarranted assumptions
about which variant is in hand. For this purpose, Mesa
uses a discrimination statement which resembles the
declaration of the variant part . However , the arms in a
discriminating SELECr contain statements; and, within a
given arm, the discriminated record value is viewed as a

bound variant. Therefore , within that arm, its variant
components may be accessed using normal qualifica-
tion. The following example discriminates on r:

WITH streamRec: r SELECT FROM
display

BEGIN streamRec .first ~ streamRec .last;
streamRec .position ~ 73; streamRec .nLines ~-- 4;
END;

disk
WITH diskRec: stream Rec SELECT FROM

short ~ diskRec.b[O] *-- 10;
long ~ diskRec.b[O] *-- 100;
ENDCASE;

ENDCASE ::), streamrec.put ~-- streamrec.newput;

The expression in the WITH clause must represent
either a variant record (e.g. r) or a pointer to a variant
record. The identifier preceding the colon in the wrrx-i
clause is a synonym for the record. Within each selec-
tion, the type of the identifier is the selected bound
variant type, and fields specific to the particular variant
can be ment ioned.

In addition to the descriptive advantages of bound
variant types, the Mesa compiler also exploits the more
precise declaration of a particular variant to allocate
the minimal amount of storage for variables declared to
be of a bound variant type. For example, the storage
for r above must be sufficient to contain any one of the
five possible variants. The storage for rKeyb, on the
other hand, need only be sufficient for storing a key-
board Stream.

The Mutable Variant Record Problem
The names streamRec and diskRec in the example

above are really synonyms in the sense that they name
the same storage as r; no copying is done by the dis-
crimination operat ion. This decision opens a loophole
in the type system. Given the declaration

Splodge: TYPE = R E C O R D [
refcount: INTEGER;
vp: SELECT t: * FROM

blue
Ix: ARRAY[0. .1000) OF CHARACTER] .

red
[item: INTEGER, left, right: POINTER TO Splodge],

green
[item: INTEGER, next: POINTER TO green Splodge],

ENDCASE];

one can write the code

t: Splodge ;
P: P R O C E D U R E = BEGIN t ~-- Splodge[O, green[lO, NIL]] END;

WITH s: t SELECT FROM
red ~ BEGIN . . . P[] s.left +--s.right END;

The procedure P overwrites t, and therefore s , with a
green Splodge. The subsequent references to s.left and
s.right are invalid and will cause great mischief.

Closing this breach is simple enough: we could have
simply followed Algol 68 and combined the discrimi-
nation with a copying operat ion that places the entire

551 Communications August 1977
of Volume 20
the ACM Number 8

Fig. 4. Client of a compacting allocator.

D I R E C T O R Y ArrayStoreDefs: F R O M "ArrayStoreDefis" ;
DEFINITIONS F R O M ArrayStoreDefs;

ArrayClient: P R O G R A M =
BEGIN
--Integer array primitives
lntArray: TYPE = P O I N T E R T O P O I N T E R T O

R E C O R D [p: Prefix, a: A R R A Y [0..0] OF I N T E G E R] ;
AlloclntArray: P R O C E D U R E [INTEGER] RETURNS [lntArray]

= RECAST[AllocArray];
FreelntArray : P R O C E D U R E [lntArray]

= RECAST[FreeArray];
--String array primitives
StrArray: T Y P E = P O I N T E R T O P O I N T E R T O

R E C O R D [p : Prefix, a: A R R A Y [0..0] OF STRING];
AllocStrArray: P R O C E D U R E [INTEGER] R E T UR NS [StrArray]

= RECAST[AllocArray];
FreeStrArray : P R O C E D U R E [StrArray]

= R E C A S T [FreeArray];

C, edanken: P R O C E D U R E =
- - T h i s procedure ' s only role in life is to fail to
compile if ArrayStore does not have the right sort of
procedures .
BEGIN
uAllocArray:

P R O C E D U R E [INTEGER]~RETURNS [UNSPECIFIED]
= AllocArray;

uFreeArray: P R O C E D U R E [UNSPECIFIED] = FreeArray;
EN D;

1A : lntArray = AlloclntArray [100];
SA : StrArray = AllocStrArray [10];
i: I N T E G E R ;

F O R i IN [0..1A '~ "f .p.length) D O IA '~ '~ .a [i] ~-- il3 E N D L O O P ;

SA "F "F .a[0] ~-- "zero" ; SA "~ "(.a[1] ~ "one" ;
SA ~ "~ .a[2] , - - " t w o " ; SA ~ "~ .a[3] <-- "surpr ise" ;
SA '~ '~ .a[4] ~- -" four" ;

FreelntArray [1A];
FreeStrA rray [SA];
END.

Splodge in a new location (s) which is fixed to be red.
We chose not to do so for three reasons:
(1) Making copies can be expensive.
(2) Making a copy destroys useful sharing relations.
(3) This loophole has yet to cause a problem.

Consider the following procedure, which is repre-
sentative of those found throughout the Mesa com-
piler's symbol table processor:

AddS: P R O C E D U R E [x: P O I N T E R T O Splodge] =
B E G I N y : P O I N T E R T O green Splodge;
I F x = NIL T H E N R E T U R N ;
W I T H s: x ~' SELEC T F R O M

blue ~ R E T U R N ;
red

B E G I N s .item ,,-- s .item + 5;
Add5[s.lefi]; Add5[s.right] E ND;

green
B E G I N y ~- @s; - - m e a n s y , , - x
U N T I L y = NIL D O

Y "r .item ~ y ~ .item + 5; y ,,-- y ~ .next;
E N D L O O P ;

E N D
E N D C A S E

E N D

As it stands, this procedure runs through a Splodge,
adding 5 to all the integers in it. Suppose we chose to
copy while discriminating: i .e. suppose x "~ were copied
into some new storage named s . In the blue arm a lot of
space and t ime would be wasted copying a 1000-char-
acter array into s , even though it was never used. In the
red arm the assignment to s's item field is useless since it
doesn't affect the original structure.

The green arm illustrates the usefulness of declaring
bound variant types like green Splodge explicitly. If we
had to declare y and the next field of a green Splodge to
be simply Splodges, even though we knew they were
always green, the loop in that arm would have to be
rewritten to contain a useless discrimination.

To achieve the effect we desire under a copy-while-
discriminating regime, we would have to redesign our
data structure to include another level of pointers:

Splodge: T Y P E = R E C O R D [
refcount: I N T E G E R ;
vp: S E L E C T t: * F R O M

blue ~ [P O I N T E R TO BlueSplodge],
red ~ [P O I N T E R TO RedSplodge],
green ~ [P O I N T E R TO GreenSplodge],
E N D C A S E] ;

BlueSplodge: T Y P E = R E C O R D [
x: A R R A Y [0 . . 1 0 0 0) OF C H A R A C T E R] ;

RedSpolodge: T Y P E = R E C O R D [
item: I N T E G E R , left, right: P O I N T E R T O Splodge];

Green@lodge: T Y P E = R E C O R D [
item: I N T E G E R , next: P O I N T E R T O GreenSplodge];

Now we do not mind copying because it doesn' t con-
sume much time or space, and it doesn' t destroy the
sharing relations. Unfortunately, we must pay for the
storage occupied by the extra pointers, and this might
be intolerable if we have a large collection of Splodges.

How have we lived with this loophole so far without
getting burnt? It seems that we hardly ever change the
variant of a record once it has been initialized. There-
fore the possible confusions never occur because the
variant never changes after being discriminated. In
light of this observation, our suggestion for getting rid
of the breach is simply to invent an attribute IMMUT-
ABLE whose at tachment to a variant record declaration
guarantees that changing the variant is impossible after
initialization. This means that special syntax must be
invented for the initialization step, but that is all to the
good since it provides an opportunity for a storage
allocator to allocate precisely the right amount of
space.

6. Conclusions

In this paper, we have discussed our experiences
with program modularization and strict type checking.
It is hard to resist drawing parallels between the disci-
plines introduced by these features on the one hand and
those introduced by programming without gotos on the
other. In view of the great goto debates of recent

552 Communica t ions Augus t 1977
of Volume 20
the ACM Number 8

memory, we would like to summarize our experiences
with the following observations and cautions.

(1) The benefits from these linguistic mechanisms,
large though they might be, do not come automatically.
A programmer must learn to use them effectively. We
are just beginning to learn how to do so.

(2) Just as the absence of gotos does not always
make a program better, the absence of type errors does
not make it better if their absence is purchased by
sacrificing clarity, efficiency, or type articulation.

(3) Most good programmers use many of the tech-
niques implied by these disciplines, often subcon-
sciously, and can do so in any reasonable language.
Language design can help by making the discipline
more convenient and systematic, and by catching blun-
ders or other unintended violations of conventions.
Acquiring a particular programming style seems to de-
pend on having a language that supports or requires it;
once assimilated, however, that style can be applied in
many other languages.

Acknowledgments. The principal designers of Mesa,
in addition to the authors, have been Butler Lampson
and Jim Mitchell. The major portion of the Mesa oper-
ating system was programmed by Richard Johnsson
and John Wick of the System Development Division of
Xerox. In addition to those mentioned above, Douglas
Clark, Howard Sturgis, and Niklaus Wirth have made
helpful comments on earlier versions of this paper.

References
1. Dahl, O.-J., Myhrhaug, B., and Nygaard, K. The SIMULA 67
common base language. Publ. No. S-2, Norwegian Comptng. Ctr.,
Oslo, May 1968.
2. Dennis, J.B., and Van Horn, E. Programming semantics for
multiprogrammed computations. Comm. A C M 9, 3 (March 1966),
143-155.
3. Geschke, C., and Mitchell, J. On the problem of uniform refer-
ences to data structures. 1EEE Trans. Software Eng. SE-1, 2 (June
1975), 207-219.
4. Habermann, A.N. Critical comments on the programming lan-
guage PASCAL. Acta Informatica 3 (1973), 47-57.
5. Knuth,D. The Art o f Computer Programming , Vol. l : Funda-
mental Algorithms. Addison-Wesley, Reading, Mass., 1968.
6. Koster, C.H.A. On infinite modes. ALGOL Bull. A B 30.3.3
(Feb. 1969), 109-112.
7. Lampson, B., Mitchell, J., and Satterthwaite, E. On the transfer
of control between contexts. In Lecture Notes in Computer Science,
Vol. 19, G. Goos and J. Hartmanis, Eds., Springer-Verlag, New
York. (1974), 181-203.
8. Mitchell, J., and Wegbreit, B. Schemes: a high level data struc-
turing concept. To appear in Current Trends in Programming Metho-
dologies, R. Yeh, Ed., Prentice-Hall, Englewood Cliffs, N.J.
9. Morris, J. Protection in programming languages. Comm. A C M
16, 1 (Jan 1973), 15-21,
10. Parnas, D. A technique for software module specification.
Comm. A C M 15, 5 (May 1972), 330-336.
11. Stoy, J.E., and Strachey, C. O S 6 - a n experimental operating
system for a small computer, Part 2; input/output and filing system.
ComputerJ. 15, 3 (Aug 1972), 195-203.
12. van Wijngaarden, A., Ed. A report on the algorithmic language
ALGOL 68. Num. Math. 14, 2 (1969), 79-218.
13. Wegbreit, B. The treatment of data types in EL1. Comm. A CM
17, 5 (May 1974), 251-264.
14. Wirth, N. The programming language PASCAL. Acta Informa-
tica 1 (1971), 35-63.

553

Language Design for
Reliable Software

S.L. Graham
Editor

Abstraction and Verification
in Alphard" Defining and
Specifying Iteration and
Generators
M a r y S h a w and Wi l l i am A . W u l f
C a r n e g i e - M e l l o n U n i v e r s i t y

R a l p h L . L o n d o n
U n i v e r s i t y o f S o u t h e r n C a l i f o r n i a

The Alphard "form" provides the programmer with
a great deal of control over the implementation of
abstract data types. In this paper the abstraction
techniques are extended from simple data
representation and function definition to the iteration
statement, the most important point of interaction
between data and the control structure of the language
itseff. A means of specializing Alphard's loops to
operate on abstract entities without explicit
dependence on the representation of those entities is
introduced. Specification and verification techniques
that allow the properties of the generators for such
iterations to be expressed in the form of proof rules are
developed. Results are obtained that for common
special cases of these loops are essentially identical to
the corresponding constructs in other languages. A
means of showing that a generator will terminate is also
provided.

Key Words and Phrases: abstraction and
representation, abstract data types, assertions, control
specialization, correctness, generators, invariants,
iteration statements, modular decomposition, program
specifications, programming languages, programming
methodology, proofs of correctness, types, verification

CR Categories: 4.20, 5.24

Copyright © 1977, Association for Computing Machinery, Inc. General
permission to republish, but not for profit, all or part of this material is granted
provided that ACM's copyright notice is given and that reference is made to the
publication, to its date of issue, and to the fact that reprinting privileges were
granted by permission of the Association for Computing Machinery.

Research supported in part by NSF grant DCR 74-04187 and in part by
the Defense Advanced Research Projects Agency contracts F44620-73-C-
0074 (monitored by the Air Force Office of Scientific Research) and DAHC-
15-72-C-0308.

A version of this paper was presented at the SIGPLAN/SIGOPS/SIC-
SOFF Conference on Language Design for Reliable Software, Raleigh, N.C.
March 28-30, 1977.

Authors' addresses: M. Shaw and W.A. Wulf, Department of Computer
Science, Carnegie-Mellon University, Schenley Park, Pittsburgh, PA 15213;
R.L. London, University of Southern California Information Sciences Institute,
4676 Admiralty Way, Marina del Rey, CA 90291.

Communications August 1977
of Volume 20
the ACM Number 8

