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1. INTRODUCTION

For many applications, it is essential that a database management system
(DBMS) maintains the data correctly, so that it reflects the effects of
exactly the preceding committed transactions. One group of problems is
caused by concurrent activities, and they are usually solved by the sched-
uler using a concurrency control algorithm. The other major source of
problems is caused by the fact that the system maintains a buffer in
memory (for efficient access), in which some of the data is cached. A system
crash destroys the buffer, and so the database must be reconstructed
during restart from values on disk (stable storage). Recovery algorithms
usually rely on the log of system activities and are complex, therefore error
prone, as the DBMS has no control as to when failures, such as crashes and
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transaction rollbacks,1 occur. The algorithm must ensure that it can
recover from a failure at any time (even when it is recovering from a
previous failure). To make recovery even more complex, the algorithm must
also be efficient such that recovery time is kept to a minimum.
ARIES [Mohan et al. 1992] is a relatively new and important recovery

algorithm that has been implemented in varying degrees in such systems
as OS/2, DB2,y Starburst, and Quicksilver. The key ideas of ARIES are
that recovery repeats history (including actions from transactions that did
not commit) and then undoes the actions of transactions that did not
commit before the crash (these are called “loser transactions”).
Formal methods have been advocated as a way to understand complex

systems, as well as offering a framework in which to prove that the system,
or some key algorithm, is correct. This has been done extensively for
concurrency control algorithms [Bernstein et al. 1987; Fekete et al. 1990;
Lynch et al. 1993], but little work has yet been done for recovery algo-
rithms. Perhaps this is because recovery algorithms are so complex, but
this makes them error prone and so makes careful analysis even more
valuable. Our motivation is reflected in Selinger [1987] where she states,

“one of the contributions that theory can make to systems is the confirmation
that an algorithm is correct . . . Recovery—an example . . . of where more work
is needed.”

Verification of an algorithm requires a precise mathematical description
of the algorithm so that we can state and prove its properties. Therefore
one of the first steps in verification is to describe the algorithm in a precise
language; that is, to model the algorithm in some formal method. This is
useful in itself, even if verification is not done, because other papers that
describe recovery algorithms use an imprecise combination of English and
pseudocode. As a result, ambiguities may be revealed when a mathematical
description is attempted.
This article presents a model and verification of a data manager whose

algorithm is based on ARIES. The formal method used in I/O automata
which is presented in Lynch et al. [1993], and Lynch and Tuttle [1987]. We
have modeled ARIES very closely. In particular we include in our model:
buffer management, write-ahead logging, asynchronous checkpointing,
multiple data items per page, and the possibility of crashes occurring
during restart processing. However, to keep the proof tractable, our model
does not include features such as partial rollback or logical logging. We
assume that there is a finite number of data items, each of which is stored
in some page and never moves. We have followed the published account of
ARIES [Mohan et al. 1992]; however, that paper is ambiguous with its
description of checkpointing of the transaction table. Thus we had to make
some choices that are discussed in more detail in Section 4.

1In Bernstein et al. [1987] and other literature, the term abort is used instead of rollback; we
use the latter to keep our terminology consistent with ARIES [Mohan et al. 1992].
yDB2, OS/2 are trademarks of the International Business Machine Corp.
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There has been some related work in understanding recovery algorithms.
In Bernstein et al. [1987], Gray and Reuter [1993], and Harder and Reuter
[1983], algorithms are presented and classified but not verified. In Hadzila-
cos [1988], general conditions are proved on log maintenance, without
which the information needed for recovery might not be available after a
crash. However, that work does not show that specific recovery mecha-
nisms use the information correctly. We have also studied other recovery
algorithms with the approach taken here. In our first attempt [Kuo and
Fekete 1992] a simple unrealistic data manager was modeled and verified.
Checkpoints were not modeled, thus recovery had to scan the whole log. In
Kuo and Fekete [1994], the partial data item logging algorithm from
Bernstein et al. [1987] was modeled and verified. In that algorithm, restart
requires two passes of the log. The first pass undoes the updates from loser
transactions and the second pass is the redo pass where updates from
committed transactions are redone. This is quite different from the method
studied here. A preliminary version of this work appeared in Kuo [1992a].
The three main contributions of this paper occupy Sections 3–5. In

Section 3, we present a specification of the data manager by first describing
the interface between the data manager and the scheduler (the component
in the DBMS that implements the concurrency control algorithm and then
we define the correctness of the data manager in terms of the permitted
sequences of interactions across this interface. This definition applies to a
range of recovery algorithms, not only to ARIES. In Section 4, we present
the precise model of the data manager whose recovery algorithm is based
on ARIES; there is also an explanation of the methodology by which an
informal account of an algorithm is converted into a tractable mathemati-
cal description. Then, in Section 5, we present the verification that shows
that the data manager is correct. The verification proceeds through several
intermediate results which make precise invariant relationships among the
data structures used by the system as it executes. These relationships aid
our understanding of the algorithm. The details of the proofs may be found
in Kuo [1992b].

2. BACKGROUND

This section summarizes the necessary background knowledge; this covers
the ARIES recovery algorithm and the I/O automaton formal method.
Readers familiar with these topics may skip this section.
The main components for transaction processing in a DBMS are the

transaction manager, the scheduler, and the data manager. This article
focuses on the data manager and the interface between the data manager
and the scheduler. We use this interface to define the correctness of the
data manager and then prove that a particular algorithm (one that is based
on a slightly simplified version of ARIES) is correct. In this section we give
a brief description of the ARIES algorithm. In Section 4 of this article, we
formally model the algorithm, giving a more detailed account. A compre-
hensive description can be found in Mohan et al. [1992].
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We use the I/O automata formal method and an overview of it is
presented in Section 2.2. A more extensive account is presented in Lynch et
al. [1993] and Lynch and Tuttle [1987]. There are several reasons why we
choose to use the I/O automata formal method; the main one is its support
for abstraction—a central concern is to define correctness in terms of the
interaction between a component and its environment. That is, the defini-
tion is independent of the data structures internal to the data manager and
the internal processes. Also, there has been much work in specification and
verification of concurrency control algorithms [Lynch et al. 1993] using this
method. We hope in future to combine our current work with other results
to show the correctness of the entire transaction processing subsystem in a
DBMS.

2.1 ARIES

A recent recovery algorithm that enforces write-ahead logging (WAL)
protocol is ARIES [Mohan et al. 1992]. It assumes that the scheduler
provides strict executions [Bernstein et al. 1987]; that is, each read and
write to a data item by a transaction is blocked until the last transaction
that wrote to it has terminated. Checkpoints are taken asynchronously and
are used to improve the performance of recovery.
During normal processing, the data manager processes transaction

reads, writes, commits, and rollbacks. For reads and writes, the data
manager fetches the data into the volatile cache if it is not already there.
The operation (read or write) is then performed and recorded in the log if
the operation is a write. Before the data can be flushed to the stable storage
on disk, all the log records that recorded updates to the page must first be
flushed to the stable log.2 This restriction on when data items are flushed is
called WAL. ARIES keeps track of the status of active transactions and
dirty pages in the system using the transaction table and dirty pages table,
respectively. Checkpoints are taken periodically; each takes a copy of these
tables and writes them into an end checkpoint log record. A begin check-
point log record is written to the log at the start of the checkpoint
procedure.
After a crash, the effects of some updates from committed transactions

may be missing from the stable database as the changed data values may
not have been flushed to the disk; also the effects of other updates may be
in the stable database even though the transaction had not committed
before the crash. Thus some updates need to be redone while others require
undo. ARIES’ recovery algorithm requires three passes of the log to achieve
recovery. The analysis pass reconstructs the transaction table and dirty
pages table to reflect the state of the database. The redo pass re-installs all
the missing updates by using the reconstructed dirty pages table to
determine which updates require redo. An operation is redone by copying
the after image of the operation back to the data item. Then the undo pass

2The term stable log is used to describe the part of the log that is stored in the stable storage.
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restores old values for all the updates from transactions that did not
commit before the crash by copying the before image of the operation to the
data item. It uses the reconstructed transaction table to determine which
updates require undo.
We have deliberately given a very brief and high-level description of

ARIES as our model in Section 4 provides a comprehensive, formal and
informal, description.

2.2 The I/O Automata Formal Method

The I/O automata method presented in Lynch et al. [1993] and Lynch and
Tuttle [1987] is designed to model discrete event systems which contain
components that operate concurrently. It has been extensively used to
model and verify concurrency control algorithms [Fekete et al. 1990; Lynch
et al. 1993], distributed algorithms [Lynch and Tuttle 1987], and network
protocols [Fekete 1993]. The method is simple to use, readable, and it
models abstraction cleanly—that is, we can define correctness independent
of the implementation. This is essential if we are to understand the
alternative algorithms that can be used for a component of a complex
system.
In the I/O automata method, changes in the system being modeled are

represented as actions. These are classified into three types: input, inter-
nal, and output actions. Input actions are generated by the environment. In
our model of the data manager, the input actions are used to model the
requests from the scheduler to the data manager. Internal and output
actions are generated autonomously and output actions have the added
property that they generate output to the environment. We use the internal
actions to model the internal steps of the data manager and we use the
output actions to model the acknowledgments of the completion of a request
from the data manager to the scheduler. The set of all actions is referred to
as acts(A) and the external actions, which are referred to as ext(A), are the
union of the input actions and the output actions. The internal and output
actions are expressed by preconditions and effects. The preconditions de-
scribe the state the model must be in for the action to be enabled, and the
effects show the transition from the old state to the new state. Input actions
are always enabled so only the effects are given. Note that the actions of the
I/O automaton are atomic—that is, there are no intermediate states show-
ing only part of the effects of an action.
Each I/O automaton model has a set of states states(A), and we usually

describe the current state of the model by assigning a value to each of the
variables in the model. We use the notation S.Variable to refer to the state
of the variable Variable in state S. There is a nonempty subset, referred to
as start(A), of states(A) which are the start states of the model. Each
element in start(A) represents a possible initial state for the model and
models the initial state of the system (when the system is first installed).
The transition relationship in the I/O automaton is denoted as

steps~A! # ~states~A! 3 acts~A! 3 states~A!!.
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Each element of this set is called a step of the automaton. An element (s9,
p, s) [ steps(A) represents the model changing from the current state s9
to the new state s via the action p. We say that the action p is enabled in
state s9 if (s9, p, s) [ steps(A). Input actions are always enabled, therefore
if p is an input action and s9 is a state, then there must exist s so that (s9,
p, s) [ steps(A).
An execution b of the automaton A is an alternating sequence of states

and actions; for example, b 5 S0p1S1p2S2, . . . , Sn21pnSn, . . . , where
S0 is a start state [i.e., S0 [ start(A)], and for each i where i . 0, (Si21,
p i, Si) is a step of A. From an execution, we can extract the schedule of the
execution which is the subsequence of the execution that consists of actions
only. For example, the schedule of the execution b is sch(b) 5 p1p2p3, . . . ,
pn, . . . .
The behavior of a schedule is the subsequence containing only the

external (input and output) actions of the schedule. That is, the behavior is
independent of state and of internal actions. Correctness is defined by
stating the acceptable behaviors of the automaton model A and this is the
approach that we have taken in our definition of correctness.
During recovery, the users are blocked from accessing the database.

However, the I/O automata model is always input action enabled; that is,
the I/O automata model can not block input actions from occurring.
Therefore, in the model it is possible for the data manager to receive a read
request from the scheduler during recovery. Instead of preventing the
illegal inputs, the I/O automata method takes the approach that inputs are
always enabled but the system may exhibit arbitrary behavior when
unwanted inputs do occur. Thus our correctness definition will explicitly
apply only to those behaviors where read and write requests do not occur at
inappropriate times—that is, our correctness condition is of the form if the
input is correct, then the output is correct.
In summary, the I/O automata method provides a way to precisely

(mathematically) describe algorithms as well as statements of properties of
the algorithm. Correctness is defined on the external behavior of the model
and is independent of the state of the model or the internal actions. This
provides a clean and abstract statement about the correctness of the model.
It is then possible to use the model to verify that the algorithm that has
been modeled is correct. We carry out this project for the ARIES algorithm
in the rest of this article.

3. SPECIFICATION OF THE DATA MANAGER

The contribution of this section is a formal definition of the correctness of
the data manager in a fashion independent of the internal data structures
and internal processing. We can therefore apply this correctness definition
to other protocols such as those described in Bernstein et al. [1987]. We
have done this in recent work [Kuo and Fekete 1994]. However, ours is not
the most general definition as it assumes that the scheduler provides strict
schedules. Our correctness definition can not be used for data managers in
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a DBMS that uses a nonstrict technique such as optimistic concurrency
control.
In Section 3.1, we present the external (input and output) actions of the

data manager and then in Section 3.2 we formally define correctness in
terms of the sequence of these actions produced by the data manager.

3.1 External Actions of the Data Manager

The legal operations, during normal processing, that the scheduler can
request to the data manager are read, write, commit, and rollback. Thus
the input and output actions of the data manager during normal processing
are the requests and acknowledgments of these operations. For example,
we have the input action ReqRead(T, x) to model the request of a read by
the transaction T to the data item x and the output action AckRead(T, x, v)
to model the completion of the read with v as the value read.3

If the data manager fails to commit a transaction, it rolls back the
transaction as if the scheduler requested a rollback. In our model, if the
data manager successfully commits a transaction T, then the action Ack-
Commit(T) occurs in the behavior; otherwise the action AckRollbk(T)
occurs.
A system failure may occur at any time and is modeled by the input

action Crash. Once a failure has occurred, recovery is enabled. The output
action AckRestart signals the successful completion of recovery.
The input and output actions of the model are shown in Table I.
It is fundamental to the formal method that correctness must be defined

in terms of sequences of these external actions. Thus instead of mentioning
internal state and saying that a system is correct if the data values are
appropriate, we instead say that it is correct if every read request receives
the appropriate return value, reflecting the committed updates to that
item. One subtle point should be mentioned. The acknowledgment of a
request models the completion of a request. While the acknowledgment is
outstanding, the scheduler does not know the status of the operation. For
example, if the scheduler submitted a commit request but has not received
the acknowledgment, then it does not know if the transaction has commit-
ted as the data manager may not have started processing the commit, or it
may have processed the commit but has not sent the acknowledgment. In

3In our model, input and output actions are respectively prefixed by Req and Ack except for
the action Crash.
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recovery algorithms there is an atomic action that commits a transaction.4

However, in our model, this step is not modeled as an external action,
hence when a crash occurs during a commit, the behavior contains insuffi-
cient information to determine the status of the transaction. This, there-
fore, complicates our correctness definition. Our approach is to say that a
sequence of external actions is correct if there exists a set of transactions
that can be regarded as committed. This set must have certain properties
such as being a subset of all the transactions that have requested a commit
and their commit did not fail. Also, it must be a superset of all transactions
that successfully committed. This gives a definition that deals only with
externally visible activities, and hence applies to many different algo-
rithms. In verifying a particular algorithm, there is no difficulty because
we have access to the whole execution which includes the internal actions,
and can thus pick the set of committed transactions exactly.

3.2 Correctness

In this section, we formally define correctness of a data manager. However,
we first informally describe it. As noted, we require that each read by any
transaction T return the appropriate value.
The appropriate value is informally defined as follows:

Case 1. If neither the transaction T nor any committed transaction have
written to the data item then the appropriate value is the initial value,
which we define as 0.
Case 2. If T itself wrote to the data item before the read, then the

appropriate value is the value that T wrote.
Case 3. In the final case, some committed transactions have written to

the data item but T has not. The appropriate value is then the value
written by the last transaction that committed and wrote to the data item.

To shed light on why this is the intuitively correct definition, let us
examine the behavior of the data manager. If neither system failures nor
transaction rollbacks ever occur, then each read should return the value
written by the transaction that last wrote to it, if such a transaction exists.
If no transaction has ever written to it, then the read should return the
initial value. Now suppose that failures do occur. Transactions are atomic;
that is, if the transaction commits, then all its effects are visible, whereas if
it aborts then none are. Also, to avoid such phenomena as cascading
rollbacks [Bernstein et al. 1987], the scheduler in the DBMS generates only
strict schedules—each access (read or write) to a data item by a transaction
T is delayed until after the most recent different transaction that wrote to
the item has terminated (i.e., either committed or rolled back). Thus if a
transaction has not written to the data item, then a read will return the
initial value if no committed transaction has written to it; otherwise it will

4In ARIES and other WAL protocols, this atomic action is the flushing of the transaction’s
commit log record.
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return the value written by the last transaction that wrote to the item and
committed. Finally, if system failures occur during recovery, all transac-
tions that were active (not committed or rolled back) at the time of the
failure are rolled back and missing updates from committed transactions
are redone. Thus taking system failures into account does not change the
appropriate value.
In making this natural definition into a precise mathematical form, there

are some areas that require care. First, in our description of appropriate
values we refer to committed transactions. As stated earlier, our specifica-
tion is independent of the internal states (the log, stable database, and
cache) of the data manager. This causes a complication to our definitions as
the external actions alone do not contain enough information to determine
exactly which transactions have committed. Let a 5 S0p1S1p2S2, . . . ,
pnSn be any execution. For each transaction T, there are now three cases
to consider.

Case 1. If ReqCommit(T) ¸ a or AckRollbk(T) [ a, then T is not
committed in state Sn.
Case 2. If AckCommit(T) [ a, then the transaction T is committed.
Case 3. If ReqCommit(T) [ a, AckRollbk(T) ¸ a, and AckCommit(T) ¸
a, then we do not know the status of transaction T as it all depends on
which internal actions, if any, have been executed.5

Our approach is to allow the protocol some freedom. Our correctness
definition is stated using a loosely constrained set of transactions Commit-
Trans(a) that can be regarded as committed such that the set is a subset of
all transactions that have requested to commit but their requests did not
fail, and a superset of all transactions that have successfully committed.
Mathematically, we require that

DefinitelyCommitted~a! # CommitTrans~a! # PossiblyCommitted~a!,

where DefinitelyCommitted(a) 5 {T : ?i, p i 5 AckCommit(T)} and Possi-
blyCommitted(a) 5 {T : ?i, p i 5 ReqCommit(T)} 2 {T : ?j, p j 5
AckRollbk(T)}. Also, if the data manager has decided a transaction has
committed in state Si, then it can not change its mind; that is, @j, i # j #
n, the data manager must consider the transaction as committed in state
Sj.
The second point requiring care is that in the I/O automaton model, input

actions are never blocked, thus they may occur at any time. However, in a
real system, normal processing operations such as reads and writes do not
occur during recovery,6 or after the requesting transaction has terminated.
We introduced a notion of transaction well-formedness to capture the

5In ARIES and other WAL protocols, if the internal action of flushing the commit log record
has occurred then we say T is committed, otherwise it has not committed.
6In a real system, users can not access the database during recovery. Hence reads and writes
do not occur during this period.
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constraints on when requests can be submitted by the scheduler. We then
say that the data manager is correct if reads see appropriate values in the
well-formed behaviors; arbitrary responses are allowed when requests
occur at unreasonable times.
We now give mathematical definitions to these concepts. We first define

the three possible alternatives for the status of a transaction. We express
this through defining the set of transactions with each status; this set is
written as though it were a “history variable” in the system state.

Definition 3.2.1. For any execution a 5 S0p1S1p2S2, . . . , pnSn,

(1) Sk.ActiveTrans denotes the set of T for which ?a such that a , k and
pa [ {ReqRead(T, x), ReqWrite(T, x, v)} for any data item x and value
v, and
?y e, a , e , k, pe [ {ReqCommit(T), ReqRollbk(T), Crash}.

(2) Sk.ReqTermTrans denotes the set of T such that ?t such that t , k and
pt [ {ReqCommit(T), ReqRollbk(T)} or
pt 5 Crash and T [ St21.ActiveTrans.

(3) Sk.TermTrans denotes the set of T such that ?t such that t , k and
pt [ {AckCommit(T), AckRollbk(T)} or
pt 5 AckRestart and T [ St21.ReqTermTrans.

Recovery follows any crash and it rolls back all active transactions. Thus
one can view a crash as a rollback request for all active transactions. We
have, in the definitions, defined the set of active transactions (Sk.Ac-
tiveTrans) as those that have requested an access (read or write) but have
not requested commit or rollback, nor have they been affected by a crash.
The transactions that have requested to terminate (Sk.ReqTermTrans) are
those which the data manager is rolling back (either due to a rollback
request or a crash) or committing. Finally, when the data manager has
completed the rollback (either due to a rollback request or a crash) or
commit of a transaction, the transaction is then defined as terminated
(Sk.TermTrans).
We now formalize the requirements on when a transaction may make

requests.

Definition 3.2.2. The execution a 5 S0p1S1p2S2, . . . , pnSn, . . . , is
well-formed provided the following hold for every k.

—If T [ Sk.ReqTermTrans then @x, v, k9 : (k , k9) f

~pk9¸ $ ReqRead~T, x!, ReqWrite~T, x, v!, ReqCommit~T!, ReqRollbk~T!%!.

—If p i 5 ReqRead(T, x) and p j 5 ReqWrite(T, x, v), then

~i , j! f ~ ' i9 : i , i9 , j, p i9 5 AckRead~T, x!!

~ j , i! f ~ ' j9 : j , j9 , i, p j9 5 AckWrite~T, x, v!!.
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—If pk [ {ReqCommit(T), ReqRollbk(T)}, then

u$i : i , k pi 5 ReqRead~T, x!%u 5 u$ j : j , k ?v, pj 5 AckRead~T, x, v!%u

u$i : i , k pi 5 ReqWrite~T, x, v!%u 5 $ j : j , k pj 5 AckWrite~T, x, v!%u.

—If pk 5 ReqWrite(T, x, v) then @k9, v9 : (k , k9) f (pk9 Þ ReqWrite(T,
x, v9)).

—If pc 5 Crash, and @c9, ((c , c9 , k) f (pc9 Þ AckRestart)) then pk is
either Crash or else an output or internal action.

The preceding definition formally states the obvious properties of transactions.
They are: once a transaction has requested to commit or rollback, or a crash has
occurred, it can no longer make any further requests (this also implicitly states
that transaction identifiers are unique); reads and writes to the same data item
are ordered (one can not issue a read if a previous write to the same data item has
not completed and vice versa); all access operations (read and writes) must be
completed before a transaction can request to commit or rollback; each transac-
tion can write to a data item at most once;7 finally, there are no requests from
transactions after a crash and before recovery is complete.
Strictness [Bernstein et al. 1987] states that before a transaction can

read or write to a data item, the previous transaction that wrote to it must
have terminated. The formal definition is shown in Definition 3.

Definition 3.2.3 The execution a 5 S0p1S1p2S2. . . pnSn is strict
provided that for any values v1, v2 and data item x, if k1 , k2, T1 Þ T2,
and

pk1 5 ReqWrite~T1, x, v1 ! and pk2 [ $ReqWrite~T2, x, v2 !, ReqRead~T2, x!%,

then ?k, k1 , k , k2 and pk [ {AckCommit(T1), AckRollbk(T1), AckRestart}.

Correctness states that each read to any data item x returns the
appropriate value. If no transaction has written to x and committed, then
we say that the appropriate value is the initial value, and if the transaction
currently reading x also wrote to x before the read, then the appropriate
value is the value it wrote. In the final case, the appropriate value is
defined as the value written by the last transaction that committed and
wrote to x. Definition 4 first defines the set of actions, in state Sk of the
execution a, that wrote to data item x by a set of transactions Trans(a);
then in Definition 5, we define the value that was written by the last action
in this set. When we use these definitions in our correctness definition, we
take Trans(a) to be the set of committed transactions. Thus we know what
is the last committed value with respect to the external actions.

Definition 3.2.4. Let a 5 S0p1S1p2S2, . . . , pnSn be an execution, 1 #
k # n, and Trans(a) is a set of transactions, then we define

7This simplifies many definitions and does not reduce the expressiveness of the model.

Data Manager Based on ARIES • 437

ACM Transactions on Database Systems, Vol. 21, No. 4, December 1996.



Updates~a, Trans~a!, x, k! 5 $i : i # kpi

5 AckWrite~T, x, v! and T [ Trans~a!%.

Definition 3.2.5. Let a 5 S0p1S1p2S2, . . . , pnSn be an execution, then
we define

LastUpdate~a, Trans~a!, x, k! 5 Hv Updates ~a, Trans(a), x, k Þ 0,

0 otherwise

where 1 # k # n, p i 5 AckWrite(T, x, v) and i 5 max(Updates
(a, Trans(a), x, k)).
Notice in Definition 3.2.5 that if no transaction in Trans(a) has written

to x, then the value is defined as 0.
The final definition now defines correctness of the data manager.

Definition 3.2.6. Given any allowable execution, a 5 S0p1S1p2S2p3 . . .
pnSn that is well-formed and strict to the data manager, we say that a is
correct provided there exists a set CommitTrans(a) such that

$T : ' i, 1 # i # n, pi 5 AckCommit~T!% # CommitTrans~a!

# $T : ' i, 1 # i # n, pi 5 ReqCommit~T!% 2 $T : ' j,

1 # j # n, p j 5 AckRollbk~T!}

and @r, if pr 5 AckRead(T, x, v), then

v 5 5v9 if ' j, j , r,
pj 5 ReqWrite~T, x, v9!

LastUpdate~CommitTrans~a!, x, r! otherwise.

We say that the data manager is correct provided that every behavior that
is well-formed and strict is correct.

4. MODEL OF THE ALGORITHM

In this section, we present the model of a data manager whose algorithm is
based on ARIES [Mohan et al. 1992]. Before we present the model, we first
describe the modeling methodology; that is, we explain how we convert the
informal description in Mohan et al. [1992] into mathematics. Next we
present the model’s data structure, which is the formal representation of
the state of the data manager at any time. Finally we give the transitions,
showing how the state evolves as the data manager runs. This mathemati-
cal description should be useful to implementors, even if they are not
interested in the verification, because it can clarify subtle alternatives in
the algorithm.
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While presenting the model, we also give a comprehensive description of
the ARIES algorithm as well as the minor simplifications and modifications
we make. The model and verification include most of the features provided
by ARIES; in particular we model buffer management, write-ahead logging,
asynchronous checkpointing, multiple data items per page, and the possi-
bility of crashes during restart processing.8

Our model, however, only models physical logging—that is, each log
record includes the before and after images of the operation, and the only
operations on the data items are reads and writes. Our model does not
model the more general type of data managers that provide logical logging
which logs the name and arguments of the operation itself. Because we are
only concerned with physical logging, we assume that the executions from
the scheduler to the data manager are strict [Bernstein et al. 1987] on data
items.
The model also makes the assumptions that the database consists of a

finite number of data items, each on a fixed page, and that each transaction
can update a data item at most once. In addition, once a transaction starts
rolling back, it can never commit; that is, our model does not include
partial rollbacks.

4.1 Methodology

Our model uses all three types of actions from the I/O automaton model.
Input actions are used to model the requests from the scheduler to the data
manager. For example, we use the action ReqRead(T, x) to model the
request from the scheduler to the data manager on behalf of the transac-
tion T to read the value stored in the data item x. Internal actions are used
to model the internal steps of the data manager, and the output actions are
used to model the acknowledgments, from the data manager to the sched-
uler, of the completion of a request.
There are three major problems in modeling and verifying a data man-

ager using the I/O automaton model: crashes can occur at any time (even
during recovery); there are many concurrent activities occurring in the data
manager; and finally, the actions of the I/O automaton model are atomic.
Thus each action should contain only one step of the real system. This
would lead to a massive model. To make our work tractable, our model
allows each action to contain more than one step of the data manager if the
following constraints are satisfied.

—There is at most one write to stable storage but any number of reads.
—There is only one write to each shared data structure.
—The sequence of steps is properly latched.

8Thus our verification proves that the recovery algorithm is idempotent [Bernstein et al.
1987]—that is, any number of incomplete executions of the recovery algorithm followed by a
complete one will restore the database to the same state as a single complete execution.
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We claim that our model does not miss anything significant for the
following reasons.

—A crash has the property that it corrupts the contents of volatile main
memory but has no effect on stable disk storage. Therefore if a crash
interrupts a sequence of steps (from one action in the formal model) that
only access volatile storage or read from stable storage, then the effect is
the same as if all the steps never occurred, because all the alterations to
the state are lost anyway. We assume that writes to stable storage are
atomic. If a sequence of steps containing only one write to stable storage
is interrupted by a crash, then its effect is equivalent to either the steps
not occurring at all (when the crash occurred before the write) or the
steps all completed followed by a crash (when the crash occurred after
the write). This is why we allow only one write to stable storage but any
number of reads in one action of the model.

—If an action contained more than one write to the same data structure
(e.g., data item or an entry in the transaction table) in volatile storage,
then our model would be incomplete as only the value written by the last
writer in the sequence can be flushed to stable storage, whereas in
reality stable storage might contain an intermediate value. Therefore we
only allow one write to each data structure within an action of the model.

—There are concurrent activities within the data manager. One transac-
tion may be rolling back while another is making forward progress (doing
reads and updates), for example. These steps may interfere with each
other when they access shared memory (e.g., transaction table, log, and
data items) and cause physical inconsistencies [Gray and Reuter 1993].
In real systems, latches are used to prevent these inconsistencies by
making a sequence of steps look atomic. Using the I/O automata model,
we do not need to model latches as the actions are already atomic but
need to model all the allowable concurrency. Therefore we require that
each action contain only steps of the real system that are properly
latched.

4.2 Data Structures

This section describes and lists the data structures used in our model. The
main data structures in ARIES are the log, transaction table, dirty pages
table, and the pages that contain the data items.

4.2.1 Log. The log is modeled as an array of log records indexed by log
sequence numbers (LSN). In the following we describe the fields in the log.

LSN: The log sequence number of the log record.

Type: Indicates the type of the log record. There are six types: update,
compensate, end, begin checkpoint, end checkpoint, and operating sys-
tem file return (OsFileReturn).

TransID: Records the identifier of the transaction if the log record is a
transaction related log record (log record of type update, compensate, or
end).
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PrevLSN: This field is only used for transaction related log records and
points to the previous log record written by the same transaction. Thus
the log records written by a transaction are backwardly linked via this
pointer. If it is the first log record from a transaction, then it points to
the start of the log (PrevLSN 5 0).

PageID: This field is only used for log records of type update, compen-
sate, and OsFileReturn. It records the page identifier of the page that
the recorded operation affected.

UndoNxtLSN: This field is only used in compensation log records and it
points to the next log record to be rolled back for the transaction; that
is, it points to the previous update, by the same transaction, to the
update that was undone by the compensation action that is recorded in
this log record. If all updates by the transaction have been undone, then
this points to the beginning of the log.

Data: This is a variant record. For update and compensation log
records, it records the undo/redo information that is the before and
after images of the operation.9 For end log records, it records the
termination of a transaction. In this field, we record the final status of
the transaction—committed or rolled back. For end checkpoint log
records, it records checkpoint related information (checkpoint’s copy of
the transaction table and dirty pages table). For all other types of log
records, this field is left empty.

In the real system, there are two logs. Older log records are stored in a
log on disk, and the most recent records are kept in a buffer (volatile
storage); from time to time, entries are moved from the buffer and ap-
pended to the log on disk. In our model we have a single array that contains
all log records, and represents the concatenation of these two real struc-
tures. We use the variable LSN to point to the next free log location for the
volatile front of the log, and we use StableLSN to point to the first entry
that is in the volatile buffer. Thus all log records whose log sequence
number is strictly less than StableLSN are in stable storage. After a crash,
the analysis pass starts scanning the log from the log record pointed to by
the master record which is stored in some well known location in stable
store. We use the variable MasterRec to model the master record. All the
data structures related to the log are shown in Figure 1.

4.2.2 Transaction Table. The transaction table keeps track of the
status of transactions and is represented as an array of transaction table
entries indexed by transaction identifiers. Each active transaction has an
entry in the transaction table and each entry contains two pointers: one
points to the last record written by the transaction (LastLSN) and the other
is to the next log record to be undone in case of a rollback (UndoNxtLSN).
The data structures are shown in Figure 2.

9As a compensation log record is never undone, in fact only the after image is needed. We
include both images for uniformity.
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4.2.3 Dirty Pages Table. The dirty pages table is used to keep track of
the dirty pages in the DBMS. The table is represented as an array of dirty
page entries indexed by page identifiers. Each entry contains a single
pointer that points to the log record that describes the first operation that
changed the page since it was last brought into cache. The data structures
are shown in Figure 3.

4.2.4 Page. Each page contains a set of data items and each data item
has an associated value (the value stored in the data item). Also, each page
records in the field PageLSN the log sequence number of the last log record
corresponding to an action whose effects are reflected in the page. A copy of
each page is maintained in stable storage and a subset of them are also in
volatile cache. Both the stable and cache pages are represented by arrays of
pages indexed by page identifiers. We represent a page which is not in
cache by assigning 0y to the page’s cache entry. The data structures are
shown in Figure 4.

Thus the value stored, in state Sn, in data item x is represented as
Sn.Stable[P]. x where P is the page identifier of the page where x resides

Fig. 1. Log.

Fig. 2. Transaction table.
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and similarly for the cache. Also, we represent a page P as not in cache by
Sn.Cache[P] 5 0y . In the model, we use the notation Page( x) to be the page
identifier of the page where x resides.

4.2.5 Checkpoints. Checkpoints are taken asynchronously and they
take a copy of both the transaction table and the dirty pages table. The
data structures used by checkpointing are, therefore, a transaction table
and a dirty pages table. These data structures are shown in Figure 5.

4.2.6 Recovery. During recovery, we use a number of variables to keep
track of the process. We use the variables AnalysisLSN, RedoLSN, and
UndoLSN to respectively point to the next log record the analysis pass,
redo pass, and undo pass have to process. Recovery needs to keep track of
which transactions have terminated and which pages have been flushed.
These are recorded in TerminatedTrans and FlushedPages. Finally, we use
a Boolean variable to record if we have already processed the last success-
ful checkpoint’s end checkpoint log record. The data structures are shown in
Figure 6.

4.2.7 System State and Control Flow. The final set of data structures
in our model is used to show the current state of the DBMS and for the
control flow of the model. The variable SystemState indicates whether the
system is down, up, or recovering, and the set ActiveSet contains a set of
internal action names. In general, an internal action is enabled if it is an
element in the set.10 An action may enable another action by inserting the
action name into the set and an action can disable itself by removing its
own name from the set. Thus an action may be enabled in state Si but
disabled in the following state. The data structures are shown in Figure 7.

10Input actions are always enabled so are never in this set.

Fig. 3. Dirty pages table.

Fig. 4. Page.
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4.3 The Actions

In this section we describe the input, internal, and output actions (precon-
ditions and effects) that model the way the data manager changes state as
it executes. A crash terminates all activities and from Definition 3.2.2 on
well-formed transactions, it follows that the actions for Read, Write, Com-
mit, and Rollback are never enabled during recovery. As a result, there is
no need to explicitly include the condition that the system must be in
normal processing for these actions to be enabled.

4.3.1 Read. The actions associated with read are modeled by an input
action ReqRead(T, x), an internal action Read(T, x), and an output action
AckRead(T, x, v). The input action enables the internal action that reads
the value and enables the output action. The output action is the acknowl-
edgment of the completion of the read.
One of the preconditions to the internal action is that the appropriate

page is in the cache. Our model does not take specific action to bring it in,
but the Fetch(P) action can occur at any time and it will cause a copy of the
page from stable storage to be in the cache. That is, our model uses
nondeterminism to be very general. This could affect the liveness, but we
do not mind, inasmuch as our proof only deals with safety (i.e., it shows
that any value returned is correct). The actions are shown in Figure 8.

4.3.2 Write. Again, three actions are used to model a write. The
internal action Write(T, x, v) models all of the following: altering the cache,
adding a record to volatile log, and updating the transaction table and dirty
pages table. In a real system, a latch on the page where x resides is held
during these steps, another latch on the transaction table is held during
the log write and the subsequent modification of T ’s entry in the transac-
tion table, and a latch on the log is held during the log write. Thus this
sequence of steps is properly latched and there are no accesses to stable
storage. Also, each data structure (each entry in the transaction table, dirty
pages table, and volatile log) is only written to once. Hence we can model
these steps in a single action. The actions are shown in Figure 9. In the
action Write(T, x, v), if the page is not dirty, then an entry in the dirty

Fig. 5. Checkpoints.

Fig. 6. Recovery.

Fig. 7. System and control flow.
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pages table is inserted as the write has now caused the page to become
dirty. An update log record is written to record the write to the database
and the transaction table is updated to record that this is now the last log
record written by T and the first to be undone in case of a rollback. We
leave the UndoNxtLSN field of the log empty as only compensation log
records use this field. Finally, the value is written to the cache’s copy of the
data item and the page’s PageLSN is updated so that it records that this
write is now the last action that affected the page.

4.3.3 Commit. When the data manager receives a commit request, it
tries to commit the transaction by ensuring that the updates, made by the
transaction, are durable. In ARIES, this is achieved by enforcing the redo
rule [Bernstein et al. 1987]; that is, write a commit log record for the
transaction and flush all log records written by the transaction to the
stable log. Log flushes are sequential; therefore when the transaction’s
commit log record is in stable storage we know that the redo rule is
satisfied. Hence the atomic action that commits a transaction is the log
flush of the transaction’s commit log record.
We model the commit procedure using the actions that are shown in

Figure 10. The action Commit(T) models the data manager writing an end
commit log record and the action FailCommit(T) models the data manager
rejecting a commit request. Note that the acknowledgment to a commit is
only enabled after the transaction’s commit log record is in the stable log.
Thus flushing is not explicitly done by these actions, but rather it is done
nondeterministically by the action that flushes the log record (see later).
Also, notice that ComLSN (in the code for AckCommit(T) and other commit
related actions) is a free variable not a state component; the meaning of
such code is that there should exist some value for ComLSN to satisfy the
preconditions, and this value is not used in the effects activity.

4.3.4 Rollback. When a transaction T rolls back, the system needs to
undo all its updates in reverse chronological order. ARIES writes a compen-
sation log record to record each undo. All log records written by a transac-

Fig. 8. Read actions.
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tion are backwardly linked by the PrevLSN pointer in each log record. The
rollback procedure repeatedly undoes the update described in the log record
pointed to by TransTable[T].UndoNxtLSN, until TransTable[T].UndoNx-
tLSN 5 0.
Initially (before the start of the rollback procedure)

TransTable@T#.UndoNxtLSN 5 TransTable@T#.LastLSN,

and each time an update is undone, the UndoNxtLSN is set to point to the
log record that recorded the previous update to the update that has just
been undone by T. Thus when the rollback procedure terminates, all
updates by the transaction will have been undone. An update is undone by
the data manager by restoring the before image of the update. A compensa-
tion log record is written to record the undo and the transaction table is
updated to reflect the new state of the transaction; that is, the next update
to be undone is the update recorded in the log record pointed to by the
PrevLSN field of the update log record just undone and T ’s LastLSN entry
in the transaction table now points to the compensation log record that was
just written.
The procedure to roll back a transaction is complex to model due to the

loop that undoes all the updates in reverse chronological order. We use the
action Rollback(T) to simulate the undo of a single log record’s update; the

Fig. 9. Write actions.
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action RollbackTerm(T) then terminates the rollback procedure when all
the updates by the transaction T have been undone. The action Rollback(T)
occurs a number of times in the execution when a transaction rolls back. To
be more precise, the number is exactly the number of update log records the
transaction has written to the log.
Notice that, unlike the commit procedure, the rollback can acknowledge

the completion of the rollback as soon as the end rollback log record is
written to volatile log. The actions are shown in Figure 11. In the action
Rollbk(T), we use the symbols UndoingLSN, P and x as a shorthand for the
values expressed in the precondition.

4.3.5 Checkpoints. In ARIES, checkpoints are taken periodically. They
can be taken asynchronously during normal processing: the redo pass and
the undo pass. However, they can not be taken during the analysis pass
because both the transaction table and dirty pages table are not up to date
(correct). Checkpoints take a copy of the transaction table and dirty pages
table, and record them in a log record. Recovery, which needs to reconstruct
these tables, uses this information to reduce the number of log records it
needs to process thus reducing recovery time. A checkpoint first writes a
begin checkpoint log record to the log, then takes a copy of the dirty pages
table and transaction table. It then writes an end checkpoint log record,
which contains a copy of the checkpoint’s copy of the dirty pages table and
transaction table, to the log. Finally, after the end checkpoint log record has
been flushed, the master record is updated such that the LSN in the master
record points to the checkpoint’s begin log record.
The paper [Mohan et al. 1992] describes how the checkpoint takes a copy

of the dirty pages table—that is, the system repeatedly latches a number of

Fig. 10. Commit actions.
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rows11 of the table, takes a copy of them, and then unlatches them until a
copy of every entry in the table has been taken. Note that after the
checkpoint unlatches the rows, the entries in the dirty pages table may
change or even be deleted (perhaps the page was flushed so it was no longer
dirty). Thus the checkpoint’s copy of the dirty pages table may be out of
date when the end checkpoint log record is written. The recovery algorithm
takes this into account when it reconstructs the table. However, Mohan et
al. [1992] do not describe how the checkpoint takes a copy of the transac-
tion table. We have naturally assumed that the procedure for the transac-
tion table is the same as the one for the dirty pages table. As a result, we
had to modify the algorithm for the analysis pass of recovery. We discuss in
detail in Section 4.3.8 these modification and why they were required.
The actions that model the checkpoint procedure are shown in Figure 12.

Notice we only allow one checkpoint to be active at any time. Also, the
action EndCheckpt(BLSN), which models the checkpoint procedure writing
the end checkpoint log record, is enabled if

$T: CheckptTransTable@T# Þ 0y% $ $T : TransTable@T# Þ 0y% and

$P: CheckptDirtyPages@P# Þ 0y% $ $P : DirtyPages@P# Þ 0y%.

That is, at the end of the checkpoint, each nonempty entry in the transac-
tion table has an entry in the checkpoint’s copy of the table. Because
checkpoints are taken asynchronously, it is possible for a transaction to
terminate after the checkpoint has taken a copy of the transaction’s entry
in the transaction table. Thus the transaction will not have an entry in the
transaction table while having an entry in the checkpoint’s copy of the
transaction table; similarly for the dirty pages table.
There are five actions that represent various activities with checkpoint-

ing: the action BgnCheckpt writes a begin checkpoint log record; the actions
CheckptTransTable(T), CheckptDirtyPages(P) model the checkpoint taking
a copy of a row of the transaction table and dirty pages table, respectively.
When copies of all rows of both tables have been taken, an end checkpoint
log record, with the tables, is written to the log by the action EndCheckpt-
(BLSN). The action WriteMaster(BLSN) then writes the LSN of the check-
point’s begin log record to the master record. A precondition is that the end
checkpoint log record, written by the action EndCheckpt(BLSN), is in the
stable log.
The actions are shown in Figure 12 and we define the set CheckptActions

to be the set of actions that model asynchronous checkpointing.

4.3.6 Flush and Fetch. Pages are continuously fetched and flushed by
the DBMS and log records are also continuously flushed to the stable log.
The actions that model the fetch and flush actions are shown in Figure 13.
Note that when a page is flushed during normal processing and the undo

11A row contains a single page’s entry in the table.
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pass of recovery, it is recorded in the log and the page’s entry in the dirty
pages table is removed as the page is no longer dirty. However, the entry is
not removed when the flush occurs during the redo pass because the effects
of some operations that are recorded in the later part of the log may still
require redo (they are still missing from the DBMS). If the page’s entry was
removed, then the redo pass would not redo these updates. Therefore
recovery would be incorrect. When a flush occurs during the redo pass, all
we know is that all operations whose corresponding log record’s LSN is less
than RedoLSN are not missing from the DBMS and we update the dirty
pages to reflect this.
The action Flush(P) models the flush of a page from volatile storage to

stable storage by copying the contents of Cache[P] to Stable[P]. One of its
preconditions is Cache[P].PageLSN , StableLSN. This condition enforces

Fig. 11. Abort actions.
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write-ahead logging. The action Fetch(P) models the cache manager fetch-
ing the page. It copies the contents of Stable[P] to Cache[P]. Notice that in
our model, the LogFlush(StableLSN) action, which represents flushing the
log record, simply involves incrementing StableLSN rather than actually
copying log records. Also, page fetches and flushes are not enabled during
the analysis pass because the pass does not access any pages.

4.3.7 Crash. When a crash occurs in a real system, the contents of
volatile storage are lost. That is, the transaction table, the dirty pages
table, all the pages in cache, and the volatile log are lost. To model this, all
pages in cache and all entries in both tables are set to 0y, all log records
whose log sequence number is greater than or equal to StableLSN are set
to 0y,12 and LSN 5 StableLSN. Finally, the ActiveSet contains the one
element Restart which enables the restart procedure. The action is shown
in Figure 14.

12We set these log entries to 0y to simplify some of the arguments in our verification. This is a
reasonable reflection of the fact that in a real system, these records are lost after a crash.

Fig. 12. Checkpoint actions.
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4.3.8 Restart. The restart procedure recovers the DBMS from a crash.
ARIES achieves recovery using three passes of the log: the analysis pass,
the redo pass, and the undo pass.

Analysis pass. The analysis pass reconstructs the transaction table and
the dirty pages table that were lost in the crash. The dirty pages table
(respectively, the transaction table) will then enable the redo (respectively,
the undo) pass to determine which logged operations require redo (respec-
tively, undo). The analysis pass scans the log forward from the log record
pointed to by the LSN stored in the master record to the end of the log.
When the pass processes an update, compensation, end, or OsFileReturn log
record, the effects on the transaction table and the dirty pages table are
similar to when the log record was initially written. In addition, when the
pass processes an end transaction log record, it records the termination of
the transaction in the set TerminatedTrans; similarly for flushed pages. At
the end of the analysis pass, an end rollback log record is written for each
transaction that has an entry in the transaction table and its UndoNxtLSN
points to the beginning of the log (TransTable[T].UndoNxtLSN 5 0). Each
of these transactions has already been completely rolled back but its end
rollback log record was lost due to the crash, so we just rewrite these
records. The action Restart initializes some recovery variables and en-
ables the analysis pass. The internal action Analysis is repeated once for
each record being processed. Finally the AnalysisTerm action enables the
redo pass and initializes RedoLSN so the redo pass knows where to start
processing the log.
We have altered the algorithm for the analysis pass from that described

in Mohan et al. [1992] so that when it processes an end checkpoint log
record, it reconstructs the transaction table using the pseudocode shown in
Figure 15. In this, let LogRec be the end checkpoint log record the analysis
pass is currently processing and let the set TerminatedTrans contain the

Fig. 13. Fetch and flush actions.
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set of transactions for which the analysis pass has processed the transac-
tion’s end log record (i.e., these are the transactions that terminated during
the checkpoint).
In contrast, in Mohan et al. [1992] the process only checks that the

transaction does not have an entry in the transaction table before inserting
one. Under our assumption that an entry in the transaction table is
unlatched after the checkpoint has taken a copy of it (thus the transaction
could commit after the checkpoint has taken a copy of the transaction’s
entry in the transaction table and before the checkpoint terminates), it is
crucial to check that the transaction did not terminate during the check-
point. The pseudocode in Figure 15 guarantees that terminated transac-
tions do not have an entry in the reconstructed transaction table. In
Appendix A we illustrate why the modification is required. Also, in our
model, we made a similar alteration for the reconstruction of the dirty
pages table. The actions for the analysis pass are shown in Figures 16 and
17, respectively.

Redo pass. The goal of the redo pass is to redo the effects of all missing
operations that were lost in the crash (even operations from transactions
that did not commit). It scans the log forward, starting from the minimum
recovery LSN in the dirty pages table to the end of the log. We prove in our
verification later that the effects of any action, whose corresponding log
record’s LSN is less than the minimum recovery LSN in the dirty pages
table, is not missing from the DBMS. When the redo pass processes a
redoable (an update or compensation) log record, the pass examines the
dirty pages table to determine if the effects of the recorded operation are
potentially missing. If the page that the operation affected is dirty and if
the page’s recovery LSN entry in the dirty pages table is less than or equal
to the log record’s LSN, then the effects of the recorded operation are
potentially missing (this is again proved in our verification). For each of
these recorded operations, the page the operation affected is fetched, if it is
not already in cache. Now, if the PageLSN is less than the log record’s LSN,
then the operation requires redo and is redone by copying the after image
of the operation to the data item; otherwise it does not require redo and we
update the dirty pages table such that the table is brought up to date.
The actions for the redo pass are shown in Figure 18. The Redo action is

repeated once for each log record processed in this pass; the RedoTerm
action terminates the redo pass and enables the undo pass.

Fig. 14. Crash action.
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Undo pass. The undo pass undoes all the updates from loser transac-
tions (these are the transactions that did not commit before the crash).
While the transaction table is not empty, the undo pass undoes the update
recorded in the log record pointed to by the maximum Undo-
NxtLSN entry in the transaction table. The procedure to undo an update is
identical to the undo during a transaction rollback. When all updates by a
transaction have been undone, an end rollback log record is written to the
log and the transaction’s entry in the transaction table is removed. Thus,
eventually, the transaction table will become empty and the undo pass will
terminate.
The actions that model the undo pass are shown in Figure 19. The action

Undo1 and Undo2(U) each represent part of the processing of a log record.
These could have been combined to form one action, but we chose to use two
as it simplifies our verification in Section 5.

4.3.9 Start State. The start state reflects the state of the database at
the time it was first installed; that is, all cache slots, the transaction table,
and dirty pages table are all empty and the value in the database for each
location is 0. To reduce the complexity of the lemmas and proofs, we define
the start state of the stable log to contain an update log record by the
transaction t0 which writes a value of 0 to a phantom location px.13 The
transaction table and dirty pages table are both empty. The variable
SystemState is Normal and the master record MasterRec 5 1. Also, Active-
Set 5 0y. The start state of the model is shown in Figure 20.

5. VERIFICATION

In this section we verify the recovery algorithm based on ARIES, by
showing that the model from Section 4 meets the correctness condition

13This log record is used only in definitions; it is never examined by any action.

Fig. 15. Pseudocode.

Fig. 16. Restart actions.
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Fig. 17. Analysis pass actions.
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given in Section 3. Any proof enhances our confidence in an algorithm, but
we believe that this article also makes a contribution to our understanding
of the way the algorithm works. Our proof is built on a sequence of
propositions, each of which can enhance the intuition about the algorithm
by revealing important relationships (called invariants) that always hold
among different aspects of the system state. We expect that development
and proof of variant algorithms can be guided by the need to keep
relationships like these.
The definition of correctness in Section 3 is stated in terms of the

sequence of input and output actions produced by the data manager,
because this is the way the rest of the system interacts with the manager.
This definition is rather general. For example, it would apply to an
algorithm that did not keep any copy of the current state of the database,
but rather used the log as the sole source of information, scanning it on
every read to find the appropriate value. An algorithm such as that would
be quite easy to verify, but the performance would be unacceptable. To
obtain fast response time and recovery time, a data manager needs to keep
copies of some items in volatile cache, allowing data to move between cache
and stable storage with few restrictions;14 it also needs to periodically take
checkpoints that place additional information in the log that can be used at

14This is usually described as a steal/no-force strategy of buffer management [Gray and Reuter
1993; Harder and Reuter 1983].

Fig. 18. Redo actions.
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restart to limit the amount of the log that must be examined. The ARIES
algorithm uses all these ideas, but the precise implementation depends on
a range of complex data structures that must be processed in subtle ways.
It is these aspects of the system that offer good performance, but they also
complicate the verification.
The main data structures used in ARIES are the stable and cached copies

of pages containing data items, the log, the transaction table, and the dirty
pages table. Our proof is structured, with a sequence of key propositions
that show relationships between the values of these data structures.
During normal processing, the relationships are obvious. For example, the
transaction table entry for an active transaction T has LastLSN field
pointing to the last log record that concerns T. In order to prove a
statement such as this, however, we need to strengthen it to give an

Fig. 19. Undo pass actions.
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invariant relationship: one that holds in all states of the execution, includ-
ing during restart. It is the main contribution of this article to identify the
invariants. Once the correct invariant relationship is stated, it is proved by
induction along the execution. That is, one can easily see that the relation-
ship holds initially, and that from a state where the relationship holds, any
possible action will result in another state satisfying the relationship. In
some cases the proofs themselves depend on other results presented as
lemmas. These are less meaningful in understanding the algorithm, and
their proofs are shown in Kuo [1992b].
Here we give a brief summary of the four main propositions of this

section. Proposition 5.2.5 gives the relationship between the transaction
table and the log. In normal processing there is an entry in the transaction
table associated with each transaction for which the log contains an update
but not an end log record. Each entry contains two pointers that respec-
tively point to the last log record written by the transaction and the next
log record to be undone in the case of a rollback. The invariant that
strengthens this statement is essentially concerned with the analysis pass
of restart processing. Similarly, there is an invariant for the dirty pages
table in Proposition 5.3.3. At the end of the analysis pass, the combination
of the two invariants implicitly shows that both tables have been correctly
reconstructed. Proposition 5.4.5 concerns the relationship between the
values stored in each page and the log. During normal processing, this says
that the effects of all the updates and compensations recorded in the log are
reflected in the database. The invariant strengthens this, and implicitly
shows the correctness of the redo pass. Finally, Proposition 5.5.5 shows the
correctness of the undo pass and of transaction rollback. It states that
when a transaction terminates, each data item that the transaction has
accessed contains the value written by the last transaction that wrote to
the item and committed.
Based on the propositions, we can complete the argument that the data

manager is correct. This is done in Theorem 5.6.1. The essential observa-
tion is to connect properties of the state with properties of the sequence of
inputs and outputs. For example, the values written in update operations
are just the after images in update log records.

Fig. 20. Start state.
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5.1 Basic Properties

The log is the central data structure used in the data manager. Here we
introduce notation that we need later. We also state and prove some basic
properties.
We use the following notation to express that an interval of the log is

equivalent in two states Si and Sj.

Notation 5.1. For two states Si and Sj of the data manager, we write
Si.Log[a. . .b] 5 Sj.Log[a9. . .b9] if and only if a 5 a9, b 5 b9 and @l, a #
l # b, Si.Log[l] 5 Sj.Log[l].

The state of the data structures such as the transaction table, dirty pages
table, pages, and the data items in the DBMS are all related to the state of
the log. The invariants that express these relationships are all proved by
induction. For the proofs, we need to know conditions when the state of
parts of the log does not change. Volatile storage is corrupted when a crash
occurs since it causes all the log records in volatile storage to be lost
(change). In the following lemma, we show that if a log record is unchanged
between state Si to Sj, then all the preceding log records are also un-
changed between the two states. The corollary, which follows, then shows
that if an action p i writes a log record Si.Log[l] that remains unchanged in
some later state Sj, then all the log records that precede Si.Log[l] in state
Si are also unchanged.

LEMMA 5.1.2 Suppose i, j, l are such that 0 # i , j, 0 # l , Si.LSN,
and @k, (i # k # j) f (Si.Log[l] 5 Sk.Log[l] Þ 0y). Then Si.Log[1. . .l] 5
Sj.Log[1. . .l].

PROOF. The proof is straightforward as the only action that can modify a
nonempty log record is the action Crash. e

COROLLARY 5.1.3. Suppose i, j, l are such that i , j, Si21.Log[l] 5 0y ,
Si.Log[l] Þ 0y , and @k, i # k # j, Sk.Log[l] 5 Si.Log[l]. Then
Si.Log[1. . .l] 5 Sj.Log[1. . .l].

PROOF. The proof follows immediately from Lemma 5.1.2. e

Whenever a read or write to a data item is requested, the page containing
the data item is first fetched into cache if it is not already there. In the case
of a write, the new value is first recorded in the cache and, at some later
stage, flushed to stable storage. In Definition 5.1.4, we introduce notation
to represent the effective state of the database for a page. This is written as
if it were a state component; when there is a copy of the page in volatile
cache, the value of that copy is the effective state of the page; when the
page is not in the cache, the effective state is the value in stable storage.
The effective state abstracts away the fact that there is volatile and stable
storage, and allows us to refer to the current state of the database easily in
later proofs.
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Definition 5.1.4. For each page P in the database, define

Sn.DB@P# 5 HSn.Cache@P# if Cache@P# Þ 0y
Sn.Stable@P# otherwise.

The PageLSN in each page points to the last log record that describes the
latest operation to the page. Because accesses (reads and writes) are
through the cache, a page in stable storage may not contain the effects of
all the operations (the effects of some updates may be in cache and have not
been flushed to stable storage). Therefore, for any page P in any state Sn,

Sn.DB@P#.PageLSN $ Sn.Stable@P#.PageLSN.

Also, the effects of an operation that has been flushed to stable storage is
never lost. Therefore, for each page in stable storage, the PageLSN is
monotonic increasing. These two basic properties are stated in the follow-
ing lemmas.

LEMMA 5.1.5 Let P be any page, and Sn any state. Then

Sn.Stable@P#.PageLSN # Sn.DB@P#.PageLSN.

PROOF. The crucial step of the induction proof is to realize that when-
ever the page is modified in volatile storage, either in an update or in a
compensation, the page’s PageLSN increases. It is then a straightforward
induction proof. e

LEMMA 5.1.6 For any i such that 0 # i , n and for any page P,

Si.Stable@P#.PageLSN # Sn.Stable@P#.PageLSN.

PROOF. The proof is by induction and it follows from Lemma 5.1.5 that
the only action that can modify a page P in stable storage is Flush(P). e

Checkpoints collate information on the state of the database that is later
used by the analysis pass of recovery. In the final lemma in this section, we
state some basic properties of checkpoints that are used in the later
lemmas and propositions. For each end checkpoint log record, there must
have been a checkpoint action that wrote the log record. Also, there is an
action that wrote the corresponding begin checkpoint log record. Each
transaction’s entry in the checkpoint’s copy of the transaction table is a
copy of the transaction’s entry in the transaction table sometime during the
checkpoint (we do not know the exact state as checkpoints are taken
asynchronously). A similar property is true of the dirty pages table.

LEMMA 5.1.7 Suppose Sn.Log[l].Type 5 EndCheckpt(BLSN). Then there
are b, e, such that 1 # b , e # n and the following hold.

(1) pb 5 BgnCheckpt, pe 5 EndCheckpt(Sb.LSN 2 1);
(2) @k, b , k , e, pk ¸ {BgnCheckpt, Crash};
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(3) @k, e # k # n, Sk.Log[Se21.LSN] 5 Sn.Log[l];
(4) for each transaction T, if Sn.Log[l].Data.TransTable[T] Þ 0y , then ?i

such that b , i , e, Si.TransTable[T] 5 Sn.Log[l].Data.Trans-
Table[T] else Se.TransTable[T] 5 0y ;

(5) for each page P, if Sn.Log[l].Data.DirtyPages[P] Þ 0y , then
?j such that b , j , e and Sj.DirtyPages[P] 5 Sn.Log[l].Data.Dirt-
yPages[P] else Se.DirtyPages[P] 5 0y .

PROOF. The proof is straightforward by inspection of the model. e

5.2 Transaction Table

We now present the first major invariant that states precisely what is
contained in the transaction table during recovery and normal processing.
We say that a transaction is active during normal processing if the log
contains a record that is written by the transaction, and the log does not
contain its end log record (i.e., the transaction has not committed or rolled
back).15 The invariant strengthens the observation that during normal
processing a transaction has an entry in the transaction table if and only if
the transaction is active. Also, each entry contains two pointers: the first
points to the last log record written by the transaction (LastLSN) and the
other points to the next log record to be undone in the case of a rollback
(UndoNxtLSN).
After a crash, the contents of the transaction table are lost and during

the analysis pass, the table is reconstructed. A trivial algorithm to recon-
struct the table is to scan the complete log. If such an algorithm were used,
there would be a simple invariant: a transaction has an entry in the
transaction table if and only if the portion of the log that the pass has
processed contains a record written by the transaction and does not contain
its end log record. Scanning the complete log after a failure is obviously too
inefficient, which is why checkpoints are required. Processing checkpoint
information stored in an end checkpoint log record has the same net effect
as scanning all the log records that precede the begin checkpoint log record.
Informally, the invariant for the transaction table is as follows.

(1) During normal processing, redo pass, and undo pass of recovery, the
transaction table reflects the state of the whole log.

(2) During the analysis pass,
(a) if it has not processed an end checkpoint log record, then the

transaction table reflects the state of all the log records the analy-
sis pass has processed;

(b) otherwise, the table reflects all the log records from the beginning
of the log up to the log record it is currently processing.

15A transaction that has not made any updates needs no undo or redo in a failure which is why
we say a transaction is active only after it has made an update.
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Before we formally state and prove the invariant on the transaction table
we present four definitions. They identify the lower bound (Sn.Lower-
Bound) and the upper bound (Sn.UpperBound) of the portion of the log that
the transaction table reflects. During normal processing, the lower bound
points to the beginning of the log and the upper bound points to the end of
the log, for example. The set Sn.LogBy(T, i, j) is defined as the set of log
sequence numbers whose corresponding log record lies in the interval [i, j]
of the log and are written by the transaction T. We then define Sn.LastLog-
By(T, i, j) to be the greatest log sequence number in Sn.LogBy(T, i, j). A
transaction has an entry in the transaction table if the set Sn.LogBy(T,
Sn.LowerBound, Sn.UpperBound) is not empty and the transaction’s entry
in the transaction table is dependent on the type of the log record pointed
to by Sn.LastLogBy(T, Sn.LowerBound, Sn.UpperBound).

Definition 5.2.1. Let Sn be any state.

Sn.LowerBound 5

HSn.MasterRec if Analysis [ ActiveSet and Sn.FirstCheckpt 5 True
1 otherwise.

Definition 5.2.2. Let Sn be any state.

Sn.UpperBound 5 HSn.AnalysisLSN 2 1 if Analysis [ Sn.ActiveSet
Sn.LSN 2 1 otherwise.

Definition 5.2.3. Let Sn be any state.

Sn.LogBy~T, i, j! 5

$l : i # l , j, Sn.Log@l#.Type 5 UpdateuCompuEnd, Sn.Log@l#.TransID 5 T%.

Definition 5.2.4.

Sn.LastLogBy~T, i, j! 5 max~$l : l [ Sn.LogBy~T, i, j!% ø $0%!.

Using the notation previously defined, we now state and prove the first
important invariant of the data manager.

PROPOSITION 5.2.5 For any transaction T, let Sn.LLB 5 Sn.LastLogBy(T,
Sn.LowerBound, Sn.UpperBound).

If Sn.SystemState Þ Down, Sn.LogBy(T, Sn.LowerBound, Sn.Upper-
Bound) Þ 0y, and there is no i such that Sn.LowerBound # i # Sn.Upper-
Bound, Sn.Log[i].Type 5 End, Sn.Log[i].TransID 5 T, then

(1) Sn.TransTable[T].LastLSN 5 Sn.LLB and
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(2) Sn.TransTable[T].UndoNxtLSN 5

HSn.Log@Sn.LLB#.UndoNxtLSN if Sn.Log@Sn.LLB#.Type 5 Comp

Sn.LLB otherwise;

otherwise, Sn.TransTable[T] 5 0y.

PROOF. The proof is by induction. During normal processing, redo pass,
and undo pass the proof is straightforward as a transaction related log
record is written by an action if and only if the action also updates the
transaction table appropriately. During the analysis pass, if the pass is
processing the last successful checkpoint’s log record, the proof shows the
correctness of the checkpointing procedure (gathers the right information)
and of the analysis pass processing the checkpoint information; otherwise,
the proof is similar to the proof during normal processing as when the pass
processes a transaction related log record, the transaction table is updated
appropriately. The proof can be found in Appendix B. e

5.3 Dirty Pages Table

We now show the invariant that states the correctness of the dirty pages
table. It is very similar to the invariant for the transaction table; however,
there is one crucial difference. In the transaction table, the entries have to
be exact—a transaction has an entry in the table if and only if the
transaction is active and each pointer in each entry can point to exactly one
location in the log (there is no flexibility). This is not the case for the dirty
pages table.
A page may have an entry in the dirty pages table even though it is not

dirty. Also, the recovery LSN does not need to point to a particular location
in the log. In fact, the algorithm is still correct even if all pages have an
entry in the table and the recovery LSN points to the beginning of the log.
This would be very inefficient as the redo pass will then need to process the
whole log. However, it would be correct, and in fact our proof works as long
as the dirty pages table satisfies quite weak conditions.
The dirty pages table is correct as long as each dirty page has an entry in

the dirty pages table and the recovery LSN(RecLSN) points to somewhere
in the log such that it partitions the log into two portions: in the front
portion (S.Log[1. . .S.DirtyPages[P].RecLSN]) the effects of all recorded
operations for the page P are reflected in stable storage; however, in the
back portion this may not be the case. The reason for the flexibility is that
the dirty pages table and the log only indicate which recorded operations
are potentially missing from the database. The redo pass compares the log
sequence number of the log record and the PageLSN of the page that the
recorded operation affected to determine if the effects of the operation are
really missing from the database and thus requiring redo.
We define the set Sn.Unflush(P, LowerBound, UpperBound) to be the set of

recorded operations in the interval [LowerBound, UpperBound] of the log that
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are potentially missing from the page P. We then define the set Sn.ReallyUn-
flush(P) to be the set of updates that are actually missing from the database.

Definition 5.3.1

Sn.Unflush~P, i, j!

5 Hl : i # l # j, Sn.Log@l#.PageID 5 P,

?ye, l , e , j, Sn.Log@e#.Type 5 OsFileReturn, Sn.Log@e#.PageID 5 P
J.

Definition 5.3.2

Sn.ReallyUnflush~P!

5 Hl : l [ Sn.Unflush~P, 1, Sn.LSN 2 1!

and l . Sn.Stable@P#.PageLSN J ø $Sn.LSN %.

The invariant for the dirty pages table is presented in the following
proposition.

PROPOSITION 5.3.3 Let P be a page in the database. If Sn.System-
State Þ Down and Sn.Unflush(P, Sn.LowerBound, Sn.UpperBound) Þ 0y,
then Sn.DirtyPages[P].RecLSN , min(Sn.ReallyUnflush(P)) else Sn.Dirty
Pages[P] 5 0y .

PROOF. The proof is similar to the proof of Proposition 5.2.5 as the dirty
pages table and transaction table have similar functionality. The dirty
pages table keeps track of dirty pages whereas the transaction table keeps
track of transactions. Also, the analysis pass uses similar procedures to
reconstruct the tables. e

For each dirty page in the database, we have found an upper bound for
its entry in the dirty pages table. In fact a lower bound also holds.
In state Sn, if Sn.Unflush(P, Sn.LowerBound, Sn.UpperBound 2 1) Þ 0y ,

then

Sn.DirtyPages@P#.RecLSN $

min~Sn.Unflush~P, Sn.LowerBound, Sn.UpperBound 2 1!.

The lower bound shows us the maximum number of log records that the
redo pass has to process.
What we have implicitly shown in Propositions 5.2.5 and 5.3.3 and from

the definitions of Sn.LowerBound and Sn.UpperBound is the correctness of
the analysis pass and the checkpointing procedure.

5.4 The Page

During normal processing the value stored in each data item is consistent
with what is recorded in the log; that is, the value stored in each data item
is the after image of the last log record that recorded an operation to the
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data item. After a crash, this relationship is no longer valid as the effects of
some operations are lost. The redo pass re-establishes the relationship by
redoing the effects of the missing operations. Then the relationship contin-
ues to hold during the undo pass. Proposition 5.4.5 formally describes the
relationship during the undo pass and normal processing. It also describes
the relationship during the redo pass—how the redo pass restores the
effects of missing operations.
The proposition is in parts:

(1) During the redo pass, it states that for each data item, the value stored
in the data item is the after image of the log record that describes the
latest update or compensation operation to the data item in some
interval [1. . .l]16 of the log where RedoLSN 2 1 # l # LSN 2 1.

(2) During normal processing and the undo pass, the invariant is the same
except l 5 LSN 2 1; that is, the value stored in each data item is the
after image of the latest log record that recorded an operation to the
data item. Notice that at the end of the redo pass, RedoLSN 5 LSN so
the previous invariant becomes identical to this one.

In the proof of the proposition, we show that whenever the redo pass
processes a log record, it redoes the operation if the effects are missing. The
proof needs to identify the state of each data item, which is formally stated
in Lemmas 5.4.3 and 5.4.4, as the proof needs to show that a recorded
operation is redone if and only if the effects are missing. In Lemma 5.4.3 we
show that during the redo pass, each data item contains the effects of all
operations whose corresponding log record lies in the interval [1. . .Re-
doLSN 2 1] of the log. Then, in Lemma 5.4.4, we show that if a page is not
dirty, then the effects of all recorded operations that affected the page are
not missing.
The lemmas and proposition need to identify the LSN of the last log

record in the interval [a. . .b] of the log, which recorded an operation to a
data item x, also, the PageLSN of the page where the data item x resides.
Notations for these concepts are defined in the following.

Definition 5.4.1

Sn.Lwr~a, b, x! 5

maxSHi: a # i # b,
x 5 Sn.Log@i#.Data.DataItemName
Sn.Log@i#.Type 5 UpdateuComp J ø $0%D.

Definition 5.4.2

Sn.PgLSN~x! 5 Sn.DB@Page~x!#.PageLSN.

LEMMA 5.4.3 Suppose Sn.SystemState Þ Down and Analysis ¸ Sn.Active-
Set. For each data item x

16The invariant actually states something a little stronger by precisely stating the value of l.
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(1) Sn.DB[Page( x)]. x 5 Sn.Log[Sn.Lwr(1, Sn.PgLSN( x), x)].Data.After-
Image;

(2) if Redo [ Sn.ActiveSet then @l, Sn.PgLSN( x) , l , Sn.RedoLSN, either

Sn.Log@l#.PageID Þ Page~x! or Sn.Log@l#.Type Þ UpdateuComp

(3) if Redo [y Sn.ActiveSet then @l, Sn.PgLSN( x) , l , Sn.LSN, either

Sn.Log@l#.PageID Þ Page~x! or Sn.Log@l#.Type Þ UpdateuComp.

PROOF. The proof is shown in Kuo [1992b]. e

LEMMA 5.4.4 For any data item x, let

Sn.LastFlushLSN~x! 5

maxSHi: 1 # i , Sk.LSN, Sn.Log@i#.Type 5 OsFileReturn,
Sn.Log@i#.PageID 5 Page~x! J ø $0%D.

If Sn.Unflush(Page( x), 1, Sn.LSN 2 1) 5 0y, then

Sn.DB@Page~x!#.x

5 Sn.Log@Sn.Lwr~1, Sn.LastFlushLSN~x!, x!#.Data.AfterImage

5 Sn.Log@Sn.Lwr~1, Sn.LSN 2 1, x!#.Data.AfterImage.

PROOF. The proof is a straightforward induction proof and is shown in
Kuo [1992b]. e

PROPOSITION 5.4.5 For any page P, let Sn.MaxLSN(P)5

max~Sn.RedoLSN 2 1, Sn.DirtyPages@P#.RecLSN 2 1, Sn.DB@P#.PageLSN!

Sn.UpdateToLSN~P! 5

HSn.LSN 2 1 if Sn.Unflush(P, 1, Sn.LSN21)50y
Sn.MaxLSN(P) otherwise.

If Redo [ Sn.ActiveSet, then
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Sn.DB@Page~x!#.x 5

Sn.Log@Sn.Lwr~1, Sn.UpdateToLSN ~P!, x!#.Data.AfterImage ,

else if Undo [ Sn.ActiveSet or S n.SystemState 5 Normal, then

Sn.DB@Page~x!#.x 5 Sn.Log@Sn.Lwr~1, Sn.LSN, x!#.Data.AfterImage .

PROOF. The proof is by induction and is shown in Appendix C. e

5.5 The Database

The final proposition states precisely what value is stored in a data item
when a transaction that updated the data item terminates; that is, the
value stored in the item is the last committed value (the value written by
the last transaction that updated the data item and committed). This is
crucial to prove correctness, because the last committed value is what
should be returned by a subsequent read of that item. This last step to
prove the correctness of the data manager is shown in Section 5.6.
ARIES uses an update-in-place policy; that is, each data item has only

one slot in the database.17 When a transaction makes an update to a data
item, it updates the only copy. Thus if the transaction later rolls back due
to a crash or transaction failure, the update must be undone. In Lemma
5.5.4 we show that whenever an update is undone, the data manager
restores the last committed value. When a transaction completes its
rollback—all updates have been rolled back—the last committed value is
restored in each of the data items updated by the transaction. An update is
undone by copying the before image from the log record to the data item.
Therefore we must show that the before image is the current last commit-
ted value for the data item. In Lemma 5.5.3 we first show that the before
image of an update log record is the after image of the previous log record
that recorded an operation to the data item. Because the execution is strict,
the after image is the data item’s current last committed value. When a
transaction commits, it is elementary to show from the definitions that
each data item that was updated by the transaction contains the last
committed value.
Lemmas 5.5.3 and 5.5.4 and Proposition 5.5.5 need to identify the log

record that recorded the last update to the data item by a committed
transaction.
Notation for this concept, the last committed write, is defined in the

following.

17In contrast, with methods such as shadow paging or multiversion techniques, each item has
several locations.
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Definition 5.5.1

Sn.Lcw~a, b, x! 5

maxSHi: a # i # b, x 5 Sn.Log@i#.Data.DataItemName,
Sn.Log@i#.TransID [ Sn.CommittedTrans.

J ø $0%D
where Sn.CommittedTrans 5

HT : ' j,
Sn.Log@ j#.Type 5 End, Sn.Log@ j#.TransID 5 T,
Sn.Log@ j#.Data 5 Commit J.

Also, we need to identify when an update has been undone. We define
UpdateLSN(T, x) to be the log sequence number of the log record that recorded
an update to a data item x by a transaction T. Lemma 5.5.3 shows that when
UpdateLSN(T, x) is greater than T’s UndoNxtLSN entry in the transaction
table, then the update recorded in the log record pointed to by UpdateLSN(T,
x) has been undone and the last committed value is restored in the data item.

Definition 5.5.2

Sn.UpdateLSN~T, x! 5

5i if
?i Sn.Log@i#.Type 5 Update, Sn.Log@i#.TransID 5 T,
Sn.Log@i#.Data.DataItemName 5 x,

21 otherwise.

Because each transaction can update a data item at most once, the value is
well defined.

LEMMA 5.5.3 If Sn.Log[l].Type 5 Update and Sn.Log[l].Data.DataItem-
Name 5 x, then

Sn.Log@l#.Data.BeforeImage 5 Sn.Log@Sn.Lwr~1, l 2 1, x!#.Data.AfterImage.

PROOF. Proof follows from Proposition 5.4.5. e

LEMMA 5.5.4 Suppose Sn.SystemState 5 Normal or Undo [ Sn.Active-
Set. If Sn.TransTable[T] Þ 0y and ?i, v such that p i 5 ReqWrite(T, x, v)
then

Sn.DB@Page~ x!#. x 5

5
Sn.Log@Sn.Lwr~1, Sn.LSN 2 1, x!#. if Sn.Undone~T, x! 5 False

Data.AfterImage
Sn.Log@Sn.Lcw~1, Sn.LSN 2 1, x!#. otherwise

Data.AfterImage
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where Sn.Undone(T, x)5

HTrue if Sn.UpdateLSN~T, x! , Sn.TransTable@T#.UndoNxtLSN

False otherwise.

PROOF. The proof is by induction and shows that whenever an update to
a data item is undone, the data item’s last committed value is restored. The
proof is shown in Kuo [1992b]. e

We now present the proposition that shows that when a transaction
terminates, the correct value is stored in each of the data items that the
transaction updated.

PROPOSITION 5.5.5 Suppose Sn.SystemState 5 Normal. If ?T, i, v such
that 0 # i # n, T [ Sn.TermTrans, pi 5 ReqWrite(T, x, v) and @j, v9, i ,
j # n, pj Þ ReqWrite(T, x, v), then

Sn.DB@Page~x!#.x 5 Sn.Log@Sn.Lcw~1, Sn.LSN 2 1, x!#.Data.AfterImage.

PROOF. The proof is by induction and it shows that whenever a transac-
tion terminates, each data item that the transaction updated contains the
last committed value, no matter if the transaction committed or rolled
back. The proof is shown in Appendix D. e

5.6 Correctness

It is now straightforward to show that the DBMS is correct. The
scheduler provides strict schedules, so whenever the data manager
receives a read request from the scheduler, it knows that the previous
transaction that wrote to the item has terminated (unless the reader
transaction itself wrote the item). For example, conventional two-phase
locking is strict, because the reader’s shared lock would conflict with the
exclusive lock held by a different, unterminated, writer. Because the
read observes the effective state of the item, and Proposition 5.5.5 shows
that this value is the one written by the last committed writer, we find
that each read will return the appropriate value.

THEOREM 5.6.1 Let a 5 S0p1S1p2S2p3S3, . . . , pnSn be any allowable
execution of the data manager that is well formed and strict on data items.
Then a is correct, as defined in Definition 3.2.6.

PROOF. The proof is presented in Appendix E. e

This completes the proof of the recovery algorithm based on ARIES and
presented in Section 4.
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6. CONCLUSION AND FUTURE WORK

In this article we have used a formal method for specification, modeling,
and verification, and applied this method to ARIES which is an impor-
tant recovery algorithm. The contributions of this article are a definition
of correctness that can be used with many different recovery algorithms,
a detailed mathematical model of a recovery algorithm that includes the
main features of ARIES, a proof that shows that the model has the
desired property, and several intermediate results that show important
relationships among data structures during execution of the algorithm.
We have already applied these techniques to other recovery algorithms

[Kuo and Fekete 1994]. In our future work, we would like to extend our
model and proof to include logical logging and partial rollbacks. We also
will explore combining this with existing proofs of concurrency control,
to show the correctness of a complete transaction processing system. In
addition, we hope to incorporate distribution and a commit protocol.

APPENDIX

A. EXAMPLE
Suppose a crash has just occurred and the state of the log is shown in
Figure 21. Also, suppose the checkpoint took a copy of T1’s entry in the
transaction table after T1 updated the data item z but before it committed.
Thus the transaction T1 will have an entry in the checkpoint’s copy of the
transaction table.
The restart procedure’s first pass is the analysis pass. The pass will start

processing from the begin checkpoint log record. It will then insert an entry
into the transaction table for the transaction T1 when it processes the
second update log record written by T1 (log record whose LSN is 4). Then
the pass will delete the entry from the transaction when it processes T1’s
end commit log record. When the analysis pass processes the end check-
point log record, it should insert an entry into the transaction table for the
transaction T2 as T2 was active at the time of the crash. However, it should
not insert an entry for T1 into the transaction table as T1 has terminated
(committed in this case). If an entry for T1 is inserted into the transaction
table, then the undo pass (the final pass of recovery) will undo the updates
by T1 as the pass will undo all updates from transactions who have an
entry in the reconstructed transaction table, thus undoing the effects of
updates from committed transactions. Hence under our assumption that
the latch on a transaction’s entry is released after the checkpoint has taken

Fig. 21. State of the stable log after the crash.
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a copy of the entry, it is crucial to make the additional check that the
transaction did not terminate (commit or abort) during the checkpoint.

B. PROOF OF PROPOSITION 5.2.5

It is straightforward to show that the statement is true in state S0.
Assume that the statement is true in all states Si such that i # k. To

complete the induction, we must show that the statement is true in state
Sk11. The nontrivial cases are those actions pk11 that modify the transac-
tion table and/or the log. By inspection of the model, the cases are:

pk11 [ HWrite~T, x, v!, Commit~T!, Rollbk~T!, RollbkTerm~T!,
Crash, Analysis, AnalysisTerm, Undo1, Undo2~U! J.

Case 1. pk11 [ {Write(T, x, v), Rollbk(T), Undo1}. By inspection of the
action pk11 and from the induction hypothesis, it is elementary to show that
the statement is true in state Sk11.

Case 2. pk11 [ {Commit(T), RollbkTerm(T), AnalysisTerm, Undo2(U)}.
The action pk11 writes a transactions end log record to the log if and only if it
removes the transaction’s entry from the transaction table. Hence, from the
induction hypothesis, the statement is true in state Sk11.

Case 3. pk11 5 Analysis. The proof is split into two parts. In this first
case, the analysis pass is not processing the last successful checkpoint’s end
log record whereas in the later case it is.

Case 3.1. Sk.Log[Sk.AnalysisLSN].Type Þ EndCheckpt or Sk.First-
Checkpt 5 False. It is elementary to show that

Sk11.LowerBound 5 Sk.LowerBound and Sk11.UpperBound

5 Sk.UpperBound 1 1.

The upper bound is incremented by one and if Sk.Log[Sk.AnalysisLSN] is a
transaction related log record, then the transaction table is updated in the
same way as if the log record were written during normal processing
(similar to Case 1). If the log record is not transaction related, the action
has no effect on the transaction table or the log.
It follows from the induction hypothesis and the effects of the action that

the statement is true in state Sk11.

Case 3.2. Sk.Log[Sk.AnalysisLSN].Type 5 EndCheckpt and Sk.First-
Checkpt 5 True. Let T be a transaction. The proof for the transaction T is
in two cases.

Case 3.2.1 Sk.LogBy(T, Sk.LowerBound, Sk.UpperBound) Þ 0y . In this
case, the analysis pass has already processed a log record from the
transaction T. The action pk11 in this case does not modify T ’s entry in the
transaction table as it is already correct. We now formally prove that the
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statement is true in state Sk11. From the definitions, Sk.MasterRec 5
Sk11.LowerBound 5 1. It is elementary to show that the log sequence
number stored in the master record is monotonic increasing. Therefore,
Sk11.LowerBound 5 1 # Sk.MasterRec 5 Sk.LowerBound, also,

Sk11.UpperBound 5 Sk.UpperBound 1 1

Sk11.Log@Sk11.UpperBound#.Type Þ UpdateuCompuEnd

Hence

Sk11.LogBy~T, Sk11.LowerBound, Sk11.UpperBound!

$ Sk.LogBy~T, Sk.LowerBound, Sk.UpperBound!

Therefore

Sk11.LastLogBy~T, Sk11.LowerBound, Sk11.UpperBound!

5 Sk.LastLogBy~T, Sk.LowerBound, Sk.UpperBound!.

From the effects of the action pk11,

Sk11.TransTable@T# 5 Sk.TransTable@T#

Sk11.Log@1. . .Sk11.LSN# 5 Sk.Log@1. . .Sk.LSN#.

Therefore, from the induction hypothesis, the statement is true in state
Sk11.

Case 3.2.2 Sk.LogBy(T, Sk.LowerBound, Sk.UpperBound) 5 0y . In this
case, the transaction did not write any log records during the checkpoint
(from the time it wrote the begin checkpoint log record till it wrote the end
checkpoint log record). Thus T ’s entry in the transaction table is unchanged
during this period. Checkpoints are taken asynchronously and a copy of
each nonempty entry in the table is taken sometime during the checkpoint.
Hence the checkpoint’s copy of T ’s entry in the transaction table is the
same as T ’s entry in the transaction table at the end of the checkpoint.
From the induction hypothesis, it follows that the statement is true in state
Sk11. We formally prove this below.
From the definitions, Sk.LowerBound 5 Sk.MasterRec. The two crucial

steps of the proof are to show

Sk11.TransTable@T# 5 Sk.Log@Sk.AnalysisLSN#.Data.TransTable@T#

5 Se.TransTable@T#

Sk.Log@1. . .Sk.AnalysisLSN# 5 Se.Log@1. . .Se.LSN 2 1#,
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where pe was the action that wrote the end checkpoint log record. Then, by
the induction hypothesis on state Se and the effects of the action, it follows
that the statement is true in state Sk11.
From Lemma 5.1.7, there are b, e such that b , e,

pb 5 BgnCheckpt, pe 5 EndCheckpt~Sb.LSN 2 1!,

;k, b , k , e, pk [y $BgnCheckpt, Crash%,

;k, e # k # n, Sk.Log@Se21.LSN# 5 Sn.Log@l#,

and for each transaction T, if Sn.Log[l].Data.TransTable[T] Þ 0y , then

?i such that b , i , e, Si.TransTable@T# 5 Sn.Log@l#.Data.TransTable@T#,

else Se.TransTable[T] 5 0y . It follows from Lemma 5.1.2

; j, b # j # e, Se.Log@1. . . Sj.LSN 2 1# 5 Sj.Log@1. . . Sj.LSN 2 1# and

Sk11.Log@1. . . Sk.AnalysisLSN 2 1# 5 Se.Log@1. . . Se.LSN 2 1#. (1)

As Sk.LogBy(T, Sk.LowerBound, Sk.UpperBound) 5 0y, it follows that @b #
j # e,

Se.LastLogBy~T, Se.LowerBound, Se.UpperBound! 5

Sj.LastLogBy~T, Sj.LowerBound, Sj.UpperBound!.

Hence by the induction hypothesis, on the state Se and Si,

Sk.Log@Sk.AnalysisLSN#.DataTransTable@T# 5 Si.TransTable@T#

5 Se.TransTable@T#.

Therefore from the effects of the action pk11,

Sk11.TransTable@T# 5 Sk.Log@Sk.AnalysisLSN#.Data.TransTable@T#

5 Se.TransTable@T#. (2)

Hence, by (1), (2), and the induction hypothesis, the statement is true in
state Sk11. e

C. PROOF OF PROPOSITION 5.4.5

During the undo pass and normal processing, the proof is straightforward
as the value stored in a data item is changed if and only if a log record is
written to record the change. During the redo pass, the induction step (S9,
p, S) shows that if S.MaxLSN(P) 5 S.RedoLSN 2 1, then the operation
recorded in S.Log[S.RedoLSN 2 1] is redone if the effects are missing.
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It is straightforward to show that the statement is true in state S0.
Assume that the statement is true for all states Si such that i # k. To

complete the induction, we must show that the statement is true in state
Sk11.

Case 1. pk11 5 AnaTerm. Let x be any date item. There are two
possible cases.

Case 1.1. Sk11.Unflush(Page( x), 1, Sk11.LSN 2 1) 5 0y. That is, the
page is not dirty. Therefore, from Lemma 5.4.4,

Sk11.DB@Page~x!#.x 5

Sk11.Log@Sk11.Lwr~1, Sk11.LSN 2 1, x!#.Data.AfterImage.

Hence the statement is true in state Sk11.

Case 1.2. Sk11.Unflush(Page( x), 1, Sk11.LSN 2 1) Þ 0y. That is, the
page is dirty. The action sets the RedoLSN to be the minimum recovery
LSN in the dirty pages table. That is,

Sk11.RedoLSN 5 min~$Sk.DirtyPages@P#.RecLSN : Sk.DirtyPages@P# Þ 0y%!.

Therefore

Sk11.UpdateToLSN~Page~x!! 5

max~Sk11.DirtyPages@Page~x!#.RecLSN 2 1, Sk11.DB@Page~x!#.PageLSN!.

If Sk11.MaxLSN(Page( x))5Sk11.DB[Page( x)].PageLSN, then it follows
from Lemma 5.4.3 that the statement is true in the state Sk11.

Suppose Sk11.UpdateToLSN(Page(x)) 5 Sk11.DirtyPages[Page(x)].RecLSN.
If ?i such that

Sk11.DB@Page~x!#.PageLSN , i , Sk11.DirtyPages@Page~x!#.RecLSN,

Sk11.Log@i#.Type 5 UpdateuComp and Sk11.Log@i#.PageID 5 Page~x!,

then i [ Sk11.ReallyUnflush(Page( x)). From Proposition 5.3.3, it follows
that

Sk11.DirtyPages@Page~x!#.RecLSN # i.

This is a contradiction. Therefore, @j, Sk11.DB[Page( x)].PageLSN , j ,
Sk11.DirtyPages[Page( x)].RecLSN Sk 1 1.Log[i].Type Þ Update uComp
or Sk11.Log[i].PageID Þ Page( x). Hence it follows from Lemma 5.4.3
that the statement is true in state Sk11.

Case 2. pk11 5 Redo. If Sk.Log[Sk.RedoLSN].Type Þ Update u Comp
then it is straightforward to show that the statement is true in state Sk11.
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Suppose Sk.Log[Sk.RedoLSN].Type 5 Update u Comp. Let x 5
Sk.Log[Sk.RedoLSN].Data.DataItemName. There are four possible cases
for x. For any data item x9 such that x9 Þ x but Page( x9) 5 Page( x), it
follows from Lemma 5.4.3 and the induction hypothesis that the statement
is true in state Sk11. For all other data items x9 such that
x9 Þ x and Page( x9) Þ Page( x), the statement is true in state Sk11 by the
induction hypothesis.

Case 2.1. Sk.DirtyPages[Page( x)] 5 0y . In this case, the page that the
recorded operation affected is not missing and from Lemma 5.4.3 it follows
that the statement is true in state Sk11.

Case 2.2. Sk.DirtyPages[Page( x)] Þ 0y and Sk.DirtyPages[Page( x)].
RecLSN . Sk.RedoLSN. The log record that the redo pass is currently
processing does not require redo even though the page is dirty, as it is the
effects of some later operation that caused the page to be dirty.

From the effects of the action, Sk11.RedoLSN 5 Sk.RedoLSN11

, Sk.DirtyPages@Page~x!#.RecLSN 1 1

, Sk11.DirtyPages@Page~x!#.RecLSN 1 1

# Sk11.DirtyPages@Page~x!#.RecLSN

Also, Sk11.DB[Page(x)].x 5 Sk.DB[Page(x)].x, therefore Sk11.MaxLSN(P) 5
Sk.MaxLSN(P). Hence by the induction hypothesis, the statement is true in
state Sk11.

Case 2.3. Sk.DirtyPages[Page( x)] Þ 0y , Sk.RedoLSN $ Sk.DirtyPages-
[Page( x)].RecLSN and Sk.DB[Page( x)].PageLSN , Sk.RedoLSN. In this
case, the effects of the operation recorded in the log record that the redo
pass is currently processing are missing. The actions then redo the
operation. In this case, Sk11.MaxLSN(Page( x)) 5 Sk11.RedoLSN 2 1 5
Sk.RedoLSN. From the effects of the action pk11,

Sk11.DB@Page~x!#.x 5 Sk.Log@Sk.RedoLSN#.Data.AfterImage.

Therefore

Sk11.DB@Page~x!#.x 5

Sk11.Log@Sk11.Lwr~1, Sk11.MaxLSN~Page~x!!, x!#.Data.AfterImage.

Hence, the statement is true in state Sk11.

Case 2.4. Sk.DirtyPages[Page( x)] Þ 0y , Sk.RedoLSN $ Sk.DirtyPages-
[Page( x)].RecLSN and Sk.DB[Page( x)].PageLSN $ Sk.RedoLSN. The
final case is where the dirty pages table indicates that the recorded
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operation (in the log record) that the redo pass is currently processing is
potentially missing. However, when the page that the operation affected is
fetched and the page’s PageLSN is examined, the redo pass determines
that the effects are not missing. In this case, Sk.MaxLSN(Page( x)) 5
Sk.DB[Page( x)].PageLSN. From the effects of the action pk11,

Sk11.RedoLSN 5 Sk.RedoLSN 1 1,

Sk11.DB@Page~x!# 5 Sk.DB@Page~x!# and

Sk11.DirtyPages@Page~x!#.RecLSN 5 Sk11.DB@Page~x!#.PageLSN 1 1.

Therefore Sk11.DB[Page( x)].PageLSN $ Sk11.RedoLSN 2 1. Hence
Sk11.MaxLSN(Page( x)) 5 Sk.MaxLSN(Page( x)). Therefore by the induc-
tive hypothesis the statement is true in state Sk11.

Case 3. pk11 [y {AnalysisTerm, Redo}. The action modifies the database
if and only if it recorded the operation in the log. Thus it is elementary to
show that the statement is true in state Sk11. This completes the
induction. e

D. PROOF OF PROPOSITION 5.5.5

It is elementary to show that the statement is true in state S0.
Assume that the statement is true in state Sk. To complete the induction,

we must show that the statement is true in state Sk11. The nontrivial cases
are when a transaction terminates or normal operation is resumed; that is,

pk11 [ $AckCommit~T!, AckRollbk~T!, AckRestart%.

Case 1. pk11 5 AckCommit(T). Since all active transactions are rolled
back after a crash, it follows that no crash has occurred since the transac-
tion became active. In this case, the transaction T successfully commits. It
follows from the definitions that the value the transaction wrote to the data
item x is the last committed value for x. From Proposition 5.4.5 and the
definitions,

Sk11.DB@Page~ x!#. x

5 Sk11.Log@Sk11.Lwr~1, Sk11.LSN 2 1, x!#.Data.AfterImage

5 Sk11.Log@Sk11.Lcw~1, Sk11.LSN 2 1, x!#.Data.AfterImage.

Therefore the statement is true in state Sk11.

Case 2. pk11 5 AckRollbk(T). A transaction’s rollback terminates when
all the updates by the transaction have been undone. Therefore from
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Lemma 5.5.4,

Sk11.DB@Page~x!#.x 5

Sk11.Log@Sk11.Lcw~1, Sk11.LSN 2 1, x!#.Data.AfterImage.

Therefore the statement is true in state Sk11.

Case 3. pk11 5 AckRestart. From the model, it is elementary to show
that ?c such that pc 5 Crash and @c9, c , c9 , k, pc9 Þ Crash.

Let x be any data item and T 5 Sc.Log[Sc.Lwr(1, Sc.LSN 2 1, x)].TransID.

Case 3.1. ?e such that 1 # e , Sc.LSN, Sc.log[e].Type 5 End,
Sc.log[e].TransID 5 T. In this case, the transaction that last wrote to x
terminated and its end log record was flushed to the stable log. From
Proposition 5.4.5,

Sk11.DB@Page~ x!#. x 5

Sk11.Log@Sk11.Lwr~1, Sk11.LSN 2 1, x!#.Data.AfterImage.

Let Si be the state immediately after the action that wrote the end log
record. Since T was the last transaction that wrote to the data item x, it
follows from the induction hypothesis on state Si that

Sk11.DB@Page~ x!#. x

5 Sk11.Log@Sk11.Lwr~1, Sk11.LSN 2 1, x!#.Data.AfterImage

5 Si.Log@Sk11.Lwr~1, Si.LSN 2 1, x!#.Data.AfterImage

5 Si.Log@Sk11.Lcw~1, Si.LSN 2 1, x!#.Data.AfterImage

5 Sk11.Log@Sk11.Lcw~1, Sk11.LSN 2 1, x!#.Data.AfterImage.

Hence the statement is true in state Sk11.

Case 3.2. ?y e such that 1 # e , Sc.LSN, Sc.log[e].Type 5 End,
Sc.log[e].TransID 5 T. In this case, the transaction was either active
before the crash or it terminated, but its end log record never made it out to
the stable log. There are two cases to consider.

Case 3.2.1. Sk.UpdateLSN(T, x) Þ 21. In this case, the transaction
recorded the update to x in the stable log before the crash. The proof is
similar to Case 2 because the undo pass will undo the update and restore
the last committed value.

Case 3.2.2. Sk.UpdateLSN(T, x) 5 21. Due to the crash, either the
update log record was never written or was lost. The cache manager
enforces write-ahead logging, therefore the effects of the update to x by the
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transaction was not flushed out to the stable database. From Proposition
5.4.5,

Sk11.DB@Page~ x!#. x 5

Sk11.Log@Sk11.Lwr~1, Sk11.LSN 2 1, x)].Data.AfterImage.

The action p i requested a write to x and, since the execution is strict, it
follows that the transaction Sk11.Log[Sk11.Lwr(1, Sk11.LSN 2 1,
x)].TransID terminated before state Si. From the inductive hypothesis on
state Si,

Sk11.DB@Page~ x!#. x

5 Sk11.Log@Sk11.Lwr~1, Sk11.LSN 2 1, x!#.Data.AfterImage

5 Si.Log@Si.Lwr~1, Si.LSN 2 1, x!#.Data.AfterImage

5 Si.Log@Si.Lcw~1, Si.LSN 2 1, x!#.Data.AfterImage

5 Sk11.Log@Sk11.Lcw~1, Sk11.LSN 2 1, x!#.Data.AfterImage.

This completes the induction. e

E. PROOF OF CORRECTNESS (THEOREM 5.6.1)

The definition requires us to show the existence of a set CommitTrans(a),
which we choose to be

CommitTrans~a! 5

HT : ' i, 1 # i $ n, pi 5 LogFlush@l#,

Si.Log@l#, Type 5 End, Si.Log@l#.Data 5 Commit
J.

We require to show for all r, l # x # n, that if pr 5 AckRead(T, x, v), then

v 5 Hv9 if ?j, j , r, pj 5 ReqWrite~T, x, v9!

LastUpdate~CommitTrans~a!, x, n! otherwise

Case 1. ?j, v9 such that j , n and p j 5 WriteReq(T, x, v9). This case is
when the transaction T has written to the data item x. Crashes terminate
all transactions, therefore @i, j # i # n, p i Þ Crash. Transactions are
well-formed, thus we know that between the states Sj and Sn, the transac-
tion stored the value v9 to the data item x. Because executions are strict
and no crashes have occurred since Sj, the read would have read the value
v9. Hence v 5 v9.
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Case 2. ?y j, v9 such that j , r and p j 5 WriteReq(T, x, v9). It is
elementary to show by induction that @k, 0 # k

Sk.Log@Sk.Lcw~1, Sk.LSN 2 1, x!#.Data.AfterImage

5 LastUpdate~a, CommitTrans~a!, x, k!.

Executions are strict, therefore,

Sr.Log@Sr.Lwr~1, Sr.LSN 2 1, x!#.TransID ¸ Sr.ActiveSet.

That is, the last writer transaction that wrote to the data item x has
terminated. From Proposition 5.5.5,

v 5 Sr.Log[Sr .Lcw(1, Sr.LSN 2 1, x)].Data.AfterImage.

Hence, v 5 LastUpdate(a, CommitTrans(a), x, r).
Therefore a is correct. e
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