
Key Range Locking Strategies
for Improved Concurrency

David B. Lomet
DEC Cambridge Research Lab
One Kendall Square, Bldg 700

Cambridge, MA 02139

Abstract

“Phan~oma” are records inserted into a concurrently
aelected set of records specified by a predicate such
that Ihe selection does not eee a transaction conaie-
tent result. The usual locking slrategy is lo lock only
czisling records. However, records that satisfy the ee-
leclion predicate muat be locked even when they are
nol present in the database to prevent their insertion.
One way to cope with phantoms is through range lock-
ing, 4 limited form of predicate locking. We inves-
tigate lock modes for ranges and describe new lock
modes lhal greatly increase concurrency. We explore
locking strategies involving range, key, and record re-
sources that permit trade-offs between concurrency
and lock overhead.

1 Introduction

1.1 The Phantom Problem

Relational databases permit their users to select sets
of tuples of relations based on a predicate. nans-
action serializability requires that such a selected set
not change until transaction completion. The imple-
mentation of a select normally relies on locking to
preclude concurrent updates from changing the value
of the set during the transaction.

Most lock managers are simple conflict detectors,
blocking accesses to specific resources by detecting
conflicting lock requests from different principals. So,
the locking of specific records to protect them from
,_ -_ ___,.__ _-
Pcrmirrion to copy without fee all or part of thir material is
granted provided thot the copies are not made or dirtributed
for direct commcrciol odvantoge, the VLDB copyright notice

and the title of the publication and itr date oppear, and notice
ir giacn thot copying ir bv permirrion of the Verv Large Dato
Uaac Endowment. To copy otherwire, or to npublirh, require6
a jee and/or rpcciol psrmirrion from the Endowment.

Proceedings of the 10th VLDB Conference,
Dublin, Ireland, 19Og

change is straightforward. But, to keep a predicate-
selected set from changing without materializing the
set requires that insertions into a relation not sat-
isfy outstanding selection predicates. Such inserted
records are called phantoms. Preventing phantoms
requires locks on records that do not exist at the time
of the selection.

There are many solutions to the phantom prob-
lem. The simple qnes involve locking a superset of
the selected set. For example, one can lock a table
whenever a subset of the table is selected. The goal
has been to find a solution that has high concurrency
and low lock overhead. Locking an entire table has
low overhead but bad concurrency.

Predicate locking [2] is a complete solution to the
phantom problem, but conventional lock managers
(LMs) do not directly handle predicate locks. LMs
need to have excellent performance and even rather
restricted predicate locking can be expensive and dif-
ficult. Index locking, with or without the index, haa
been suggested [l]. The locking described there coped
with phantoms when the predicates involved were
equality predicates. Predicates that specify ranges
of values were not handled.

1.2 Ranges as Lockable Granules

System R performed range locking within its B-tree
indexing. This is credited to Eswaran and Blasgen
in [4]. Recent papers [6, 71 have described this ear-
lier work and have introduced improvements in both
concurrency and lock overhead by showing how multi-
granularity lock modes can be exploited. Our work
builds on these papers.

Because LMs are organized so aa to detect conflicts
only on specific named resources, key ranges must be
uniquely named so that whenever we wish to oper-
ate on a record within the range, we @run into” the
lock on the range that contains the record. This can
be done by regarding index terms within indexes as

655

defining ranges. The index terms then become the
means to identify the ranges.

1.3 Forms of Resource Mapping

We deal with three resources, range, key and record.
How these are identified, i.e., whether these are
mapped to common or separate resource ids, can sig-
nificantly affect the locking protocol, changing the
trade-off between concurrency and locking overhead.
We treat several alternatives for resource mapping.

1.

2.

3.

range as a separate resource;

range and key identified as a common resource;

range, key and record identified as a common
resource.

Locking overhead declines as the number of re-
sources in the protocol declines. Interestingly, this
can be done without loss of concurrency when ranges
and keys are treated as common resources. Only
when records are also “commoned” with ranges and
keys is concurrency lost, but with a further reduction
in locking overhead.

1.4 This Paper

We begin in section 2 by describing the locking when
ranges are treated as separate from other resources
and independent of key values. In section 3, we in-
troduce key valued ranges, and show how to lock such
ranges, first with the lock modes of multigranularity
locking, and then via new lock modes. Section 4 de-
scribes, in two steps, how lock overhead is reduced
by reducing the number of resources, and hence the
number of locks. This section represents the heart of
the paper and its main contribution. Starting with
the new lock modes of the prior section, we show
how to compose them to create additional lock modes
such that no concurrency is lost when resources are
merged. In this presentation, we consider the case
where the records involved have unique keys. We con-
clude with a discussion in section 5, which includes a
description of how non-unique keys might be handled.

2 Fundamentals

2.1 Multi-granularity Locking

Range locking is a restricted form of predicate lock-
ing. Multi-granularity locking(MGL) is a technique
invented to cope with such preplanned predicates by
regarding the predicates as resource (‘granules” that

[Mode]]ISIIXISTSIX~~

Table 1: The lock mode compatibility mat]
multi-granularity locking

-ix for

include or partially overlap with other resource gran-
ules [3]. MGL locking can be used for range locking.

MGL locking exploits lock modes in addition to the
exclusion oriented S(Share) and X(eXclusive) modes.
These additional modes are known as “intention”
modes. The purpose of an intention lock is to indi-
cate, at a resource that contains other resources, that
finer grained locking is permitted at the contained re-
sources. An intention lock prevents another principal
from acquiring a lock which permits it to access these
other resources in a conflicting way without further
locking.

Lock modes for MGL are given in Table 1. For ex-
ample, IX (Intention exclusive) conflicts with S. S
enables access to contained resources in share mode
without the need for additional locking, i.e., it im-
plicitly locks (or covers) the contained resources. IX
indicates that locking in X mode is occurring on con-
tained resources. IX conflicts with S to block an
S lock on the larger resource from implicitly S lock-
ing resources which are locked with explicit X locks.
Similarly, IS indicates that locking in S mode is oc-
curring on finer-grained resources.

2.2 Independent Ranges

Ranges of attribute values can be specified indepen-
dently of the actual values of the attribute that are
present. Such a specification is normally static, i.e.,
it does not vary with changes in the distribution of
attribute values. With independent ranges, there is
no need for an index on the file. For example, inde-
pendent ranges can be defined via a fixed partitioning
of the key space.

We briefly treat independent ranges, but our pri-
mary purpose is to deal with key ranges. For fixed in-
dependent ranges, MGL solves the concurrency con-
trol problem. We can use either intention locks or
covering locks (i.e. X or S locks) at the range level.
We assume here that keys are unique.

656

2.2.1 Srnnn

For scans, one needs to lock ranges to prevent phan-
toms. The locks needed must be covering locks [5],
i.e., locks that make it unnecessary to lock contained
records since we have no way of explicitly locking each
potential record of the range. Hence, scans need S
locks on the ranges that they touch. An S range lock
implicitly locks all records in the range. Explicit S
record locks are not needed.

For a scan that will update some records, a range
needs an SIX lock, with the updated records X
locked. This implicitly locks all records of the range in
S mode, but permits individual records of the range
to be X locked. An update scan can avoid all record
locking by X locking the range, at the cost of lost
concurrency.

2.2.2 Singleton Record Operations

When modifying individual records, we can lock in
one of two ways. Maximum concurrency is achieved
by IX locking the range that contains the record be-
ing modified (updated, inserted or deleted), followed
by X locking the record. Locking overhead is reduced
if we X lock the range, hence “covering” contained
records and avoiding the need to explicitly lock the
record itself. Concurrency is reduced when this is
done, however, aa only one modifier is now permitted
within a range.

Single record reads can likewise be treated in two
ways: Maximum concurrency is achieved by IS lock-
ing the range, followed by S locking the record. If
one knows that X locks will not be set on a range,
then one needn’t post an IS lock on the range since
it only serves to prevent X range locks. Hence, there
need be no range locking overhead for this approach
to single record reads. The alternative is to always
S lock the range that includes the record being read,
avoiding the need for record locks.

2.2.3 Intention Locking Summary

The above is a direct application of multi-granularity
locking. The symmary table when intention locks are
used for ranges when an individual record is read or
written is given in Table 2. Using intention locks
for ranges permits more potential concurrency, but
also has more lock overhead, than does using covering
locks. As noted, however, the extra cost need only
arise when modifying data.

Update
Insert
Delete
Scan
Read
Update

1

IX X

S none
SIX none on read

X on modify

Table 2: Locking and lock modes required when
ranges are resources independent of key values. In
all cases, if prior operations of the transaction have
locked a resource, the resulting lock must have a mode
that covers both the new lock given in the table and
the prior lock.

3 Separate Key Value Ranges

3.1 Key Valued Ranges

Consider a list of attribute values (kl, Icl, . ..lei). or-
dered such that ki < ki+l. This list defines disjoint
semi-open ranges (Ici, hi+l]. Each range can be iden-
tified by the value of its upper attribute. To lock the
range (ki, k;+l], we map Ici+l to a resource id and lock
it. [4]. (Note that we could also define our ranges as
[ki, ki+l) and identify them by ki. To keep the ranges
disjoint, one end must be open.)

Key ranges normally require the existence of an
index so that the list of attribute values can be main-
tained in sort order. The indexed attribute name and
the attribute value may be jointly used to name the
ranges so aa to distinguish like values of different at-
tributes.

When distinguishing ranges from keys and records,
we need two resource ids, one for the key ki and one
for the range (ki- 1, ki]. Sometimes the resource id
for the key value can be the record identifier (rid) of
the record containing the attribute value and hence
whose rid is in the index term. The key value itself
can then denote the range. In other cases, one might
attach value and range tags to the key value. Other
techniques are also possible.

Key value ranges differ from fixed ranges in that
new attribute values can be inserted or old attribute
values deleted, so the lockable ranges change over
time. This keeps concurrency high because the ranges
are small and adapt to the key distribution. The neg-
ative is the added complexity of splitting or consoli-

657

Table 3: The maximum concurrency for operations
when confronted with locks of other transactions,
when range and key locks are distinguished. A “Y”
denotes concurrent execution, a “N” means exclusion
is required. The “[b]” means “before” a read or up-
dated record. That is, the operation is permitted in a
range defined and terminated by a record so locked.
’ Not achieved by with MGL modes and separate
range and key resources.
’ Not achieved with ARIES/KVL locking.

r-‘-- - -----ll-‘--- Lackn -
OjlGiZG
l-Record
Read
Update
Insert

I II SIX when I I
(n.xt ,*a‘. S,SIX)

Delete SIX instant
Scan

1 x L

SIX - --.-.._ -.

1 - 11 SIX on modify 1 X L - --_ _

Table 4: Locking required when key valued locks are
used to lock ranges that are separate from keys. Each
range above is determined by key values and has one
record. Range boundaries can change by insertion or
deletion of key values. This locking exploits existing
MGL lock modes. When resources are already h&l
by the transaction, the resulting lock needs to cover
both previous and new locks.

dating ranges.

3.2 Permissible Concurrency

Permissible concurrency when ranges are distinct
from records and keys is indicated in Table 3. The
concurrency shown assumes the use of a conventional
LM, and unique keys. Records are locked via their
key values. Ranges are specified by the adjacent key
values present in, e.g., an index. The result is that
there is a single key value and hence record within
each range. It is direct that two reads can be con-
current, but that updates should conflict with reads
and other updates. The interesting part of Table 3 is
the concurrency of deletes and inserts, and how they
interact with reads and updates.

Insert and delete introduces new complexity be-
cause these operations change the ranges identified
by other key values as well as needing lock protection
as operations. The interesting cases are:

Insert: Inserts can be permitted into a range formed
by an uncommitted insert. The record that is
inserted is itself locked, hence preventing its ac-
cess while the inserter is active. However, in-
serts into a range (Li-r, lei+r] with a delete can-
not be permitted. If kin were inserted, the lock
on ki+r to protect a deleted key ki would cover
only (kit, ki+r], and is ineffective if kit > ki. Key
range locks cannot conveniently handle this ex-
cept by preventing all inserts into delete ranges.

Delete: Deletes into a range (ki,ki+r] with an in-
sert cannot be permitted. The delete needs to
lock this range. But the inserted key ki+t may
be removed by a transaction abort, making locks
on Ici+l invisible to subsequent operations, and
hence leaving the range unguarded. Further,
deletes in a delete range cannot be permitted.
Were this to occur, and one of the deleting trans-
actions subsequently aborted, an insert would
occur into the delete range, dividing it. Above,
we discussed why this cannot be permitted.

Read and Update: Operations on records whose
keys denote delete ranges can continue when the:
records are not involved in prior operations. This
is not possible for insert ranges where the key
that denotes a range is the inserted key. Inserts
and deletes in front of read or updated records
are permissible.

3.3 Inserts, Deletes with MGL Locks

The locking for key valued ranges when MGL lock
modes are used is indicated in Table 4; The locking of
Table 2 is little changed. The ranges are now named
by key values. A range only contains a single record.
Thus Read Single, Update Single, and Read Scan are
essentially unchanged. For Update Scan, only one
record appears in each range, and it is either updated
or read. If only read, then our range lock can bc S,
not SIX.

3.3.1 Insert 3.3.3 ARIES/KVL and ARIES/I&l

The insert of ki dividca range (&;-I, B, + I] into two
ranges, (Li-1, ki] and (k;, ki+l]. The following steps
arc needed:

By distinguishing range from keys, we gain ex-
tra concurrency compared with ARIES/KVL [6] or
ARIES/IM [7], h’ h 1 w lc a so use existing lock modes
but do not distinguish ranges from keys. In particu-
lar, we can use an SIX lock for delete ranges instead
of an X lock. Our cost is extra overhead, sometimes
needing key locks as well as range locks.

Below, we further improve concurrency by intro-
ducing new lock modes. However, the lock overhead
still remains high. In section 4, we merge range and
key resources and, using new lock modes, gain maxi-
mal key range concurrency with lock overhead compa-
rable with ARIES/KVL. Further resource common-
ing reduces concurrency but still gives better con-
currency than ARIES/IM and with comparable lock
overhead.

1.

2.

3.

4.

An instant IX lock (the “Next Range Lock” in
Table 4) checks whether range (ki_l, hi+l] has
a conflicting lock, e.g., S or SIX. If not then
key k; is inserted. The lock on (k;-l,Li+l] can
be instant because (i) it tests that the range is
not locked; (ii) this range is then divided; and
(iii) after division, the range protected by a lock
involving ki+l is (ki, ki+l], which does not guard
any activity and does not need protection.

(lei-1, ki] is then locked in IX (for commit dura-
tion); and

the ki key value is X locked (for commit dura-
tion);

if the (ki-1, ki+l] range had been previously
locked by this transaction, one does not know in
general which of the resulting ranges still needs
protecting. Thus, if the current transaction held
an S or SIX lock on this next range, we prop-
agate the effect of this lock to the new range
(ki -1, ki]. This requires an SIX lock regardless
of which of S or SIX were held previously on the
original range, as SIX is the leaat upper bound
for (SIX, S) and IX.

X3.2 Delete

The delete of ki merges ranges (ki- 1, ki] and
(k;, ki.+l]a We use SIX to guard the merged range,
called a delete range, (ki-l,4+1] that results. The
following steps are needed:

Delete checks whether the ki record can be
deleted with an X lock on the ki record, of com-
mit duration to prevent insertion of another ki
record.

The (ki _ 1, ki] range is locked with SIX to ensure
that a scan does not prevent the delete. This is
an instant lock since ki is being removed and
hence will not show up for subsequent locking.

The merged range (ki-1, ki+l] is SIX locked for
commit duration to guard the delete, preventing
insertions and scans.

Using existing locks prevents some activity that is
permissible. We guard a delete range (ki-1, ki+l] US-

ing SIX. Unfortunately, since SIX conflicts with
IX, it prevents record ki+l from being updated, even
when the key is not locked.

3.4 New Modes for Key Ranges

The problem with using existing lock modes for range
locking is that they do not distinguish with sufficient
refinement the nature of the operations that are be-
ing performed, particularly those that involve changes
which are indicated by an IX mode lock. Here we in-
troduce three lock modes to replace IX, one mode for
each form of modification operation.

We guard a range with the form of intention lock
that reflects the operation that has occurred within
the range. It is held until commit to prevent subse-
quent conflicting operations in the range. While we
find it necessary for intention modes to reflect a spe-
cific modify operation, it is sufficient for the key lock
to simply indicate that exclusion is needed via an X
mode lock. We lose no concurrency by doing this.
Thus we have the following:

Intention Update(an IU lock indicates that
the record forming the upper bound of a range
is being updated.

Intention Insert(IIn): an Iln lock indicates that
the record forming the upper bound of a range
is the result of an insertion.

Intention Delete(ID): an ID lock indicates that
the range identified by the record forming its up-
per bound contains a deletion.

These new lock modes permit us to avoid using the
overly restrictive SIX lock to guard delete ranges.
Locking for update, insert, and delete are illustrated
in Table 5. Read and scan locking do not change.

The new intention modes behave like the IX mode
with respect to other lock modes. However, their

659

Locks

Table 5: Locking required for updates, and for insert
and delete operations that cause ranges to change,
when key valued locks are used and ranges are dis-
tinct from keys. The locking exploits new lock modes.
Once again, if the resource is already locked by the
transaction, the new lock must cover both previous
and new locks.

1 Mode 11 IS 1 IU 1 IIn I ID I S I SIX I X 1

Table 6: The compatibilities of lock modes, including
now the new intention locks for guarding ranges in
which a change has occurred. These are more restric-
tive than IX (except for IU) but less restrictive than
SIX.

compatibilities among themselves differ so as to fa-
cilitate increased concurrency for dynamically chang-
ing ranges. Their compatibilities are described in Ta,
ble 6.

The new lock mode compatibilities permit us to
maximise the concurrency that is possible within the
general framework of key valued locks (see Table 3).
In particular, we can now update a record whose
key guards a delete range. (While this is a small
improvement, we subsequently use these lock modes
in more substantive ways.) What we have done is
very straightforward. We made the intention lock
modes operation specific. Then we constructed the
lock mode compatibility table to directly correspond
to the exclusion and compatibility needed by each
operation.

Once again, we need to handle ranges already
locked by our transaction when range boundaries
change. If the range (Li-i,ki+r] was previously

scanned, when that range is divided by the insertion
of ki, the range (hi-r, ki] must remain scan locked
and SIX is sufficient for thie. If this range guards
a delete, then the new current range must similarly
guard a delete with an ID lock. For deletes, if the
range (ki, kit.11 has been scanned, this range has now
been scanned and guards a delete. An SIX lock is
sufficient for this.

4 Reduced Locking

4.1 Ranges and Keys in Common

Our goal is to achieve the highest possible concur-
rency with the lowest possible locking overhead. Con-
currency is assessed by determining how many opera-
tions are prevented unnecessarily by locks that are too
“heavy handed”. Lock overhead is measured by the
number of locks needed by the locking protocol. We
first discuss range locking using existing MGJ, locks,
then introduce new lock modes to achieve greater con-
currency. Here, the key value identifies both itself and
the range for which it is an upper bound.

4.1.1 Key Value Locks(KVL)

The best locking protocol for range locking using ex-
isting MGJ, lock modes is ARTES/KVL [6]. It does
not distinguish range from key lock modes. usually
locks with modes which are the least upper bound
of the range and key lock modes on the separate
resources are used. Sometimes the stronger lock
mode for one operation will be sufficient to protect
against the conflicts that must be precluded without
strengthening another operation’s lock mode. For the
operations that we are considering, the ARJES/KVl,
lock table is given in Table 7 (for unique keys).

The first four operations simply use the stronger
key lock as the range lock. Insert uses the weaker 1.X
lock. This is satisfactory in preventing read, update
or delete of the inserted record since IX conflicts with
S and X. Since IX is compatible with IX, inserts
in front of inserts are permitted. For deletes, the X
next key lock prevents inserts into a delete range.

The result of folding range and record into a single
resource is to prevent inserts in front of Read Single
and Update Single. The X lock for the key guarding
the delete range prevents the reading or update of
this record, even though the record may not itself be
the subject of conflicting operations. It also prevents
deletes in front of such records. (See Table 3.) Thus,
concurrency is impeded where logically the operations
do not conflict.

r----- ---.- Iv --- ..-__
Locks -I -.--

Current

IX instant

Table 7: Locking required in ARIES/KVL for the var-
ious operations. ARIES/KVL identifies ranges and
keys as the same resource and uses MGL lock modes.

-.__..- ---

-.----5-- Operation -...-_ ---.-
I-Record ----~-.
Read -_-..__-
Update - --..-
Insert

---.--.--
Delete -----
Ycnn _---
Read _ _ -_---
Update I

-- --

Loch ----
Current Key 1 Next Key -.

IS-S
IU-x .---- -____
Itn-X IIn- instant

X when
Jy,t Irev ID-,9,31X.X)

X instant ID-

S ---
S on read

X on modify ---

Table 8: Locking and lock modes required when KRL
locks for both ranges and records are mapped into a
single resource.

4.1.2 Expanded Lock Modes(KRL)

It is possible to achieve high concurrency by ex-
panding the lock modes once again BO that the lock
modes denote the separate lock modes needed by
both range and key. Thus, our lock modes are pairs
(RangeMode, KeyMode). The RangeMode can be
an intention lock or a covering lock, while KeyMode
may be any simple covering lock or the null lock. For
example, a lock mode of ID - X on a resource de-
noted by k; means that the range (ki-1, Ici] is locked
in mode ID while the key ki is locked in mode X.
We call our locks key range locks or KRL locks.

The lock modes for our operations are given in
Table 8. There are only eight distinct lock modes
while the Cartesian product of lock modes for ranges
and lock modes for keys is 18, six range lock

rr- Mode 11 IS-S 1 IIn- 1 ID- 1 IU-X 1 IIn-X I S I SIX I X 1

Table 9: The lock mode compatibility matrix for the
new combined resource lock modes needed for KRL
locking.

modes (IS, IV, IIn, ID, S, SIX) times three key lock
modes (null, S, X). The combinations (IS-, IS -
X,ICJ-,ITJ-S,IIn-S,S-S,S-X,SIX-S)do
not arise. Some combinations share compatibilities:
(ID - X, SIX - X) denoted as X since it is incom-
patible with all other modes, and (ID - S, SIX-)
denoted as SIX since it is compatible only with an
intention shared lock mode, here IS - S. We rename
S- as S since its compatibilities are the same.

The lock mode compatibility for our new lock
modes is defined in Table 9. It is a direct result of
composing the separate lock compatibilities of ranges
and records. That is, (RangeModel, KeyModel)
is compatible with (RangeModel, KeyModel) if
RangeModel is compatible with RangeModel and
KeyModel is compatible with KeyModea.

All the concurrency permitted when using separate
range and key locks is achieved using KRL lock modes
on a single combined (range, Icey) resource. Where
separate range and key locks required that both range
and key locks be acquired, the KRL protocol requires
that one lock be acquired that satisfies the constraints
of both these separate locks. KRL distinguishes pre-
cisely the separate range and record conflicts by its
composite lock mode. ARIES/KVL locking, with its
restriction to traditional MGL lock modes, does not.

As with ARIES/KVL locking, KRL locking per-
mits or precludes the following.

1. Inserts in front of inserts are still permitted as
the Iln- instant lock is compatible with the
IIn - X commit duration lock.

2. Changes to a range that has been scanned are
precluded as X locks of any kind conflict with S,
SIX, or X.

3. No inserts into a delete range are possible be-
cause Iln- conflicts with ID-, SIX, and X.

4.

5.

6.

Deletes in front of inserts are precluded because
ID- conflicts with IIn - X.

Multiple scans, including update scans, are pos-
sible so long as there is no record updated be-
cause S locks are compatible. Similarly, single-
ton reads are permitted in scanned ranges, so
long as the record involved has not been updated,
because IS - S is compatible with S and SIX.

Scans into delete guarded ranges are precluded
because ID- conflicts with SIX, S, and X.

The following are correctly permitted by KRL lock-
ing, but are precluded by ARIES/KVL locking.

1. Inserts in front of singleton reads and updates
are permitted because IIn- is compatible with
IS-Sand IU-X.

2. Deletes in front of singleton reads and updates
are permitted because ID- is compatible with
IS - S and IU - X, which also permits reading
or updating a record guarding a delete range.

KRL locking achieves all of the concurrency indi-
cated as possible in Table 3.

4.2 Three Resources in Common

4.2.1 Multiple Paths and Locking

Multi-granularity locking can be effective not only in
tree resource hierarchies but also for directed acyclic
graphs(DAGs). However, when the resource hierar-
chy is a DAG, our locking protocol must provide an
appropriate level of exclusion on all paths to the un-
derlying data.

A KRL lock applied to a common (range, key) re-
source locks only the access path that proceeds by
way of the index on the key (attribute) in question.
This provides for high concurrency because it per-
mits accesses on other paths to proceed. Thus, this
approach distinguishes and locks only the ranges that
have been scanned (see Figure l(a)). However, oper-
ations on specific records require that exclusion be
applied on all paths. For example, we must preclude
other operations on an updated record, regardless of
which access path is traversed to the record.

For DAG locking via key value locks to be effective,
different key values may need to be locked in several
indexes, e.g. for insert and delete operations, all in-
dexed values need updating and hence locking. The
reading of a record via a scan in one index needs to
be visible as a singleton read via other indexes. Also,
records are usually accessible on an access path that

(4 W
Index: A B A B

Data: Rx: [+I Rx: [e7
--_-_--

Figure 1: Locking key values is contrasted with lock-
ing records for locking ranges. (a) Locking a range
and key on a path, here from index A, permits ac-
cesses through other indexes, here index B. (b) A
record lock used as a range Iock locks all paths that
involve attributes from the record, here paths frotn
indexes A and B. It also locks the access path that
bypasses all indexes.

does not traverse an index. This access path needs
lock protection as well.

The bottom line here is that, while concurrency is
high because the ranges denoted by the key values
in each index are carefully discriminated and kept
separate, the cost in lock overhead and complexity
can be high. One solution is to acquire record locks
as well as key/range locks in an index.

4.2.2 Record Locks

One can short circuit the additional locking described
above by treating the lock needed for range, key, and

record as a single resource, as proposed in ARIES/IM
[?I, described briefly below. The penalty of doing
such consolidation of resources is less concurrency.
Can KRL locking be applied when this is done? ‘l’hc
answer is yes.

ARIES/IM uses a lock on a record identifier instead
of a key value lock as the way to lock a range. This
one lock then serves as range, key and record lock.
An index entry consists of a pair < key, rid >. When
a scan is done through an index, range, key value and
record resources are all identified by a single rid. This
is a great simplification and reduces locking overhead,
but at the expense of concurrency. The locked rid
locks all ranges which contain attribute values from
the record. Essentially we are preventing “phantoms”
in key value ranges that do not participate in the scan.
This is illustrated in Figure l(b).

We cannot easily escape from the reduced concut-
rency of record locking with the invention of addi-

tional lock modes. The problem is that the lock
modes for the common resource denoted by rid do not
distinguish which ranges we really intended to lock.
And the number of ranges involved varies with the
datab,ase design, and can be quite large in any event.
Thus, inventing new lock modes does not seem to be
an effective strategy.

We can, however, combine KRL lock modes with
the record locking technique for range locks. This
achieves greater concurrency than ARIES/IM. For
example, KRL successfully distinguishes record locks
for singleton updating and reading from range locks
for phantom protection. ARIES/IM does not. How-
ever, we can no longer maintain that the locking is
optimal. Each range lock on a record will serve to
lock all ranges that involve attributes values of the
record.

When the data is stored and clustered via a pri-
mary index, the primary key becomes the record iden-
tifier. Hence, key locking in a primary index is the
same as record locking via an rid. Scans that involve
the primary key then have the low overhead of the
A RIES/IM’s record locking approach, even when do-
ing key valued locking.

5 Discussion

Some other issues are worth discussion.

5.1 Scans Directly on Records

Not all scans arc through indexes. Not all attributes
are indexed, and not all predicates controlling a scan
can make effective use of an index. For these scans,
one needs to search through an entire table. This
is, in fact, very little different whether the table is
clustered by primary key or by a more arbitrary rid.
Table scans still need to guard against phantoms. So
long as records might be inserted or deleted in the
midst of already scanned records, these operations
can give rise to phantoms.

KRL locks are effective in preventing phantoms for
these clustering order scans. A record and the range
between it and its immediate physical predecessor is
locked during a scan via the record’s rid. The range
locks do not protect a specific logical predicate or key
value range. Rather, the locks prevent insertions into
physical ranges that have been previously scanned by
active transactions.

5.2 Object-Oriented Databases

Providing good concurrency with great generality for
object-oriented databases remains an open problem.

One aspect of this problem is the complex data in OQ
databases that is modeled by objects with component
sets of objects. A parts database may model assem-
blies assets of parts which are themselves assemblies,
etc.

Range locks are a useful mechanism for provid-
ing concurrency control for the members of sets that
are components of objects. These sets need to be
scanned, sometimes for reading, sometimes for updat-
ing. The membership of the sets change via insertion
and deletion. Thus, the operations needing concur-
rency control are the same operations, at this high
level of abstraction, as those needed for maintaining
an index and providing phantom protection. Indeed,
phantom protection is a problem that 00 databases
need to deal with to ensure transaction consistent
scanning of such sets.

The objects that are elements of sets may have
a higher level and richer set of operations than just
reads and updates. These operations would rely on
locks that are likely to be less restrictive than the low
level share and exclusive locks required by reads and
updates. However, our methodology for composing
new lock modes so as to support scans in the pres-
ence of inserts and deletes should be applicable to this
situation.

5.3 Non-unique Keys

Non-unique keys occur when an attribute value can
occur more than once. An index on hair color would
find many people with brown hair. We need to look
again at locking protocols, their lock overhead, and
the concurrency that they can achieve.

One approach works well when rids are used to
identify ranges and. keys to the lock manager. We
organize the entries of an index in sort order by <
key, rid > pair. These pairs are unique entries. The
range identified by an entry is, as before, the range
between it and its immediate predecessor. Range,
key, and record are all identified by the rid.

Insertion of a < key, rid > is handled as a unique
key insbrtion. The new entry, its key and rid, is
inserted into this ordered list. This does not opti-
mize the potential concurrency, as the ordering of
rids imposes a logically unnecessary restriction on
where a new entry might be inserted. But the con-
currency is good and the KRL locking protocol is un-
changed. This technique does not require that each
< key,rid > be stored as a physically separate en-
try. One can have an index where an entry consists
of a key paired with the ordered list of rids. It simply
means that rid order must be preserved.

More concurrency is possible if the entries above

are not required to be ordered by rid within the key
ordering. Then, one might, for example, insert a new
rid into a set of rids associated with a key anywhere
that was convenient. The result, however, is a more
complex protocol. ARIES/KVL [6] discusses the non-
unique key case when keys, not records, are the lock-
able resources, and illustrates the less restrictive lock-
ing that might be exploited. The concurrency advan-
tages of the ARIES/KVL approach versus ordering
entries by < leey, rid > and using KRL locking are
not clear. While ARIES/KVL daes not impose an
rid ordering, and hence will sometimes permit addi-
tional concurrency, an ARIESjKVL key value lock in
a scan locks all the records with that key value. This
lowers locking overhead but leads to less concurrency.

5.4 Deletions as Updates

If deleted keys or records were marked aa deleted,
instead of being removed, then some of the strict ex-
clusion required by deletions can be relaxed. Deletion
could then be treated as a record update. Actual re-
moval of the “delete stub” could be done in a sepa-
rate short atomic action when this stub is not locked.
This improves concurrency as marking deletes does
not consolidate ranges. It does, however, increase
storage costs and requires a subsequent garbage col-
lection step.

5.5 Summary

Our range locking protocols work with a conventional
LM, in which the LM is a simple conflict detector for
locks on discrete resources. Such an LM does not
know about dependencies between resources, and, in
particular does not work directly with ranges., Within
this conventional context, and using key value ranges
based on actual keys present, we derived Table 3. It
describes the maximum concurrency possible under
these conditions. We then introduced new lock modes
to cope with insert and delete operations, which can
change the ranges described by key values and showed
that these lock modes achieve this maximum concur-
rency.

To reduce lock overhead, we unified range and key
resources so that both can be locked with a single
lock. This reduces the locking overhead dramatically.
Maximum concurrency was retained when we intro-
duced KRL compound lock modes that distinguish
the separate roles of ranges and keys, but with greatly
reduced locking overhead.

Finally, to even further reduce lock overhead, we
combined range, key, and record into a single lock-
able resource, a technique exploited in ARIES/IM.

This reduces concurrency because one record lock can
lock ranges for multiple attribute (key) ranges, even
when the additional ranges do not require locking.
This appears to be an intrinsic penalty of this map-
ping. KRL lock modes do very well under these con-
ditions, strictly better than previous solutions. The
extraneously locked ranges prevent us from claiming
optimality.

Acknowledgments

Conversations with Russ Green of Digital’s Liv-
ingston, Scotland lab prompted this investigation.
Subsequent interactions with Russ were very helpful
in working out the concepts presented in this paper.
Jim Gray provided comments and encouragement.

References

PI

PI

PI

PI

PI

PI

PI

Bernstein, P., Hadailacos, V. and Goodman, N.
Concurrency Control and Recovery in Database
Systems Addison Wesley, Reading MA (1967)

Eswaren, K., Gray, J., Lorie, R., and Traiger, I.
The notions of consistency and predicate locks in
a database system. Communications of the ACM
19,ll (Nov. 1976) 624-633.

Gray, J.N., Lorie, R. A., Putrulo, G. Ii., and
‘I’raiger, I. L. Granularity of locks and degrees ot
consistency in a shared data base. IFIP Working
Conf on Modeling of Data Base Management Sys-
tems (1976) l-29.

Gray, J. and Reuter, A. Danaaction Procesu-
ing: Concepts and Techniquea. Morgan Kauf-
mann, San Mateo, CA (1992)

Lomet, D. Private Lock Management Digital
Equipment Corp. Tech Report CRL 92/9 (Nov.
1992) Cambridge Research Lab, Cambridge, MA.

Mohan, C. ARIES/KVL: A key-value locking
method for concurrency control of multiaction
transactions operating on B-tree indexes, Proc.

Very Large Databases Conf. Brisbane, AU (Aug
1990).

Mohan, C. and Levine, P. ARIES/IM: an efficient
and high concurrency index management method
using write-ahead logging. IBM Research Report
RJ 6846, (Aug 1989) Almaden Research Center,
San Jose, CA.

664

