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Abstract 

“Phan~oma” are records inserted into a concurrently 
aelected set of records specified by a predicate such 
that Ihe selection does not eee a transaction conaie- 
tent result. The usual locking slrategy is lo lock only 
czisling records. However, records that satisfy the ee- 
leclion predicate muat be locked even when they are 
nol present in the database to prevent their insertion. 
One way to cope with phantoms is through range lock- 
ing, 4 limited form of predicate locking. We inves- 
tigate lock modes for ranges and describe new lock 
modes lhal greatly increase concurrency. We explore 
locking strategies involving range, key, and record re- 
sources that permit trade-offs between concurrency 
and lock overhead. 

1 Introduction 

1.1 The Phantom Problem 

Relational databases permit their users to select sets 
of tuples of relations based on a predicate. nans- 
action serializability requires that such a selected set 
not change until transaction completion. The imple- 
mentation of a select normally relies on locking to 
preclude concurrent updates from changing the value 
of the set during the transaction. 

Most lock managers are simple conflict detectors, 
blocking accesses to specific resources by detecting 
conflicting lock requests from different principals. So, 
the locking of specific records to protect them from 
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change is straightforward. But, to keep a predicate- 
selected set from changing without materializing the 
set requires that insertions into a relation not sat- 
isfy outstanding selection predicates. Such inserted 
records are called phantoms. Preventing phantoms 
requires locks on records that do not exist at the time 
of the selection. 

There are many solutions to the phantom prob- 
lem. The simple qnes involve locking a superset of 
the selected set. For example, one can lock a table 
whenever a subset of the table is selected. The goal 
has been to find a solution that has high concurrency 
and low lock overhead. Locking an entire table has 
low overhead but bad concurrency. 

Predicate locking [2] is a complete solution to the 
phantom problem, but conventional lock managers 
(LMs) do not directly handle predicate locks. LMs 
need to have excellent performance and even rather 
restricted predicate locking can be expensive and dif- 
ficult. Index locking, with or without the index, haa 
been suggested [l]. The locking described there coped 
with phantoms when the predicates involved were 
equality predicates. Predicates that specify ranges 
of values were not handled. 

1.2 Ranges as Lockable Granules 

System R performed range locking within its B-tree 
indexing. This is credited to Eswaran and Blasgen 
in [4]. Recent papers [6, 71 have described this ear- 
lier work and have introduced improvements in both 
concurrency and lock overhead by showing how multi- 
granularity lock modes can be exploited. Our work 
builds on these papers. 

Because LMs are organized so aa to detect conflicts 
only on specific named resources, key ranges must be 
uniquely named so that whenever we wish to oper- 
ate on a record within the range, we @run into” the 
lock on the range that contains the record. This can 
be done by regarding index terms within indexes as 
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defining ranges. The index terms then become the 
means to identify the ranges. 

1.3 Forms of Resource Mapping 

We deal with three resources, range, key and record. 
How these are identified, i.e., whether these are 
mapped to common or separate resource ids, can sig- 
nificantly affect the locking protocol, changing the 
trade-off between concurrency and locking overhead. 
We treat several alternatives for resource mapping. 

1. 

2. 

3. 

range as a separate resource; 

range and key identified as a common resource; 

range, key and record identified as a common 
resource. 

Locking overhead declines as the number of re- 
sources in the protocol declines. Interestingly, this 
can be done without loss of concurrency when ranges 
and keys are treated as common resources. Only 
when records are also “commoned” with ranges and 
keys is concurrency lost, but with a further reduction 
in locking overhead. 

1.4 This Paper 

We begin in section 2 by describing the locking when 
ranges are treated as separate from other resources 
and independent of key values. In section 3, we in- 
troduce key valued ranges, and show how to lock such 
ranges, first with the lock modes of multigranularity 
locking, and then via new lock modes. Section 4 de- 
scribes, in two steps, how lock overhead is reduced 
by reducing the number of resources, and hence the 
number of locks. This section represents the heart of 
the paper and its main contribution. Starting with 
the new lock modes of the prior section, we show 
how to compose them to create additional lock modes 
such that no concurrency is lost when resources are 
merged. In this presentation, we consider the case 
where the records involved have unique keys. We con- 
clude with a discussion in section 5, which includes a 
description of how non-unique keys might be handled. 

2 Fundamentals 

2.1 Multi-granularity Locking 

Range locking is a restricted form of predicate lock- 
ing. Multi-granularity locking(MGL) is a technique 
invented to cope with such preplanned predicates by 
regarding the predicates as resource (‘granules” that 

[Mode ]]ISIIXISTSIX~~ 

Table 1: The lock mode compatibility mat] 
multi-granularity locking 

-ix for 

include or partially overlap with other resource gran- 
ules [3]. MGL locking can be used for range locking. 

MGL locking exploits lock modes in addition to the 
exclusion oriented S(Share) and X(eXclusive) modes. 
These additional modes are known as “intention” 
modes. The purpose of an intention lock is to indi- 
cate, at a resource that contains other resources, that 
finer grained locking is permitted at the contained re- 
sources. An intention lock prevents another principal 
from acquiring a lock which permits it to access these 
other resources in a conflicting way without further 
locking. 

Lock modes for MGL are given in Table 1. For ex- 
ample, IX (Intention exclusive) conflicts with S. S 
enables access to contained resources in share mode 
without the need for additional locking, i.e., it im- 
plicitly locks (or covers) the contained resources. IX 
indicates that locking in X mode is occurring on con- 
tained resources. IX conflicts with S to block an 
S lock on the larger resource from implicitly S lock- 
ing resources which are locked with explicit X locks. 
Similarly, IS indicates that locking in S mode is oc- 
curring on finer-grained resources. 

2.2 Independent Ranges 

Ranges of attribute values can be specified indepen- 
dently of the actual values of the attribute that are 
present. Such a specification is normally static, i.e., 
it does not vary with changes in the distribution of 
attribute values. With independent ranges, there is 
no need for an index on the file. For example, inde- 
pendent ranges can be defined via a fixed partitioning 
of the key space. 

We briefly treat independent ranges, but our pri- 
mary purpose is to deal with key ranges. For fixed in- 
dependent ranges, MGL solves the concurrency con- 
trol problem. We can use either intention locks or 
covering locks (i.e. X or S locks) at the range level. 
We assume here that keys are unique. 
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2.2.1 Srnnn 

For scans, one needs to lock ranges to prevent phan- 
toms. The locks needed must be covering locks [5], 
i.e., locks that make it unnecessary to lock contained 
records since we have no way of explicitly locking each 
potential record of the range. Hence, scans need S 
locks on the ranges that they touch. An S range lock 
implicitly locks all records in the range. Explicit S 
record locks are not needed. 

For a scan that will update some records, a range 
needs an SIX lock, with the updated records X 
locked. This implicitly locks all records of the range in 
S mode, but permits individual records of the range 
to be X locked. An update scan can avoid all record 
locking by X locking the range, at the cost of lost 
concurrency. 

2.2.2 Singleton Record Operations 

When modifying individual records, we can lock in 
one of two ways. Maximum concurrency is achieved 
by IX locking the range that contains the record be- 
ing modified (updated, inserted or deleted), followed 
by X locking the record. Locking overhead is reduced 
if we X lock the range, hence “covering” contained 
records and avoiding the need to explicitly lock the 
record itself. Concurrency is reduced when this is 
done, however, aa only one modifier is now permitted 
within a range. 

Single record reads can likewise be treated in two 
ways: Maximum concurrency is achieved by IS lock- 
ing the range, followed by S locking the record. If 
one knows that X locks will not be set on a range, 
then one needn’t post an IS lock on the range since 
it only serves to prevent X range locks. Hence, there 
need be no range locking overhead for this approach 
to single record reads. The alternative is to always 
S lock the range that includes the record being read, 
avoiding the need for record locks. 

2.2.3 Intention Locking Summary 

The above is a direct application of multi-granularity 
locking. The symmary table when intention locks are 
used for ranges when an individual record is read or 
written is given in Table 2. Using intention locks 
for ranges permits more potential concurrency, but 
also has more lock overhead, than does using covering 
locks. As noted, however, the extra cost need only 
arise when modifying data. 

Update 
Insert 
Delete 
Scan 
Read 
Update 

1 

IX X 

S none 
SIX none on read 

X on modify 

Table 2: Locking and lock modes required when 
ranges are resources independent of key values. In 
all cases, if prior operations of the transaction have 
locked a resource, the resulting lock must have a mode 
that covers both the new lock given in the table and 
the prior lock. 

3 Separate Key Value Ranges 

3.1 Key Valued Ranges 

Consider a list of attribute values (kl, Icl, . ..lei). or- 
dered such that ki < ki+l. This list defines disjoint 
semi-open ranges (Ici, hi+l]. Each range can be iden- 
tified by the value of its upper attribute. To lock the 
range (ki, k;+l], we map Ici+l to a resource id and lock 
it. [4]. (Note that we could also define our ranges as 
[ki, ki+l) and identify them by ki. To keep the ranges 
disjoint, one end must be open.) 

Key ranges normally require the existence of an 
index so that the list of attribute values can be main- 
tained in sort order. The indexed attribute name and 
the attribute value may be jointly used to name the 
ranges so aa to distinguish like values of different at- 
tributes. 

When distinguishing ranges from keys and records, 
we need two resource ids, one for the key ki and one 
for the range (ki- 1, ki]. Sometimes the resource id 
for the key value can be the record identifier (rid) of 
the record containing the attribute value and hence 
whose rid is in the index term. The key value itself 
can then denote the range. In other cases, one might 
attach value and range tags to the key value. Other 
techniques are also possible. 

Key value ranges differ from fixed ranges in that 
new attribute values can be inserted or old attribute 
values deleted, so the lockable ranges change over 
time. This keeps concurrency high because the ranges 
are small and adapt to the key distribution. The neg- 
ative is the added complexity of splitting or consoli- 
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Table 3: The maximum concurrency for operations 
when confronted with locks of other transactions, 
when range and key locks are distinguished. A “Y” 
denotes concurrent execution, a “N” means exclusion 
is required. The “[b]” means “before” a read or up- 
dated record. That is, the operation is permitted in a 
range defined and terminated by a record so locked. 
’ Not achieved by with MGL modes and separate 
range and key resources. 
’ Not achieved with ARIES/KVL locking. 

r-‘-- - -----ll-‘--- Lackn - 
OjlGiZG 
l-Record 
Read 
Update 
Insert 

I II SIX when I I 
(n.xt ,*a‘. S,SIX) 

Delete SIX instant 
Scan 

1 x L 
--- 

SIX - --.-.._ -. 

1 - 11 SIX on modify 1 X L - --_ _ 

Table 4: Locking required when key valued locks are 
used to lock ranges that are separate from keys. Each 
range above is determined by key values and has one 
record. Range boundaries can change by insertion or 
deletion of key values. This locking exploits existing 
MGL lock modes. When resources are already h&l 
by the transaction, the resulting lock needs to cover 
both previous and new locks. 

dating ranges. 

3.2 Permissible Concurrency 

Permissible concurrency when ranges are distinct 
from records and keys is indicated in Table 3. The 
concurrency shown assumes the use of a conventional 
LM, and unique keys. Records are locked via their 
key values. Ranges are specified by the adjacent key 
values present in, e.g., an index. The result is that 
there is a single key value and hence record within 
each range. It is direct that two reads can be con- 
current, but that updates should conflict with reads 
and other updates. The interesting part of Table 3 is 
the concurrency of deletes and inserts, and how they 
interact with reads and updates. 

Insert and delete introduces new complexity be- 
cause these operations change the ranges identified 
by other key values as well as needing lock protection 
as operations. The interesting cases are: 

Insert: Inserts can be permitted into a range formed 
by an uncommitted insert. The record that is 
inserted is itself locked, hence preventing its ac- 
cess while the inserter is active. However, in- 
serts into a range (Li-r, lei+r] with a delete can- 
not be permitted. If kin were inserted, the lock 
on ki+r to protect a deleted key ki would cover 
only (kit, ki+r], and is ineffective if kit > ki. Key 
range locks cannot conveniently handle this ex- 
cept by preventing all inserts into delete ranges. 

Delete: Deletes into a range (ki,ki+r] with an in- 
sert cannot be permitted. The delete needs to 
lock this range. But the inserted key ki+t may 
be removed by a transaction abort, making locks 
on Ici+l invisible to subsequent operations, and 
hence leaving the range unguarded. Further, 
deletes in a delete range cannot be permitted. 
Were this to occur, and one of the deleting trans- 
actions subsequently aborted, an insert would 
occur into the delete range, dividing it. Above, 
we discussed why this cannot be permitted. 

Read and Update: Operations on records whose 
keys denote delete ranges can continue when the: 
records are not involved in prior operations. This 
is not possible for insert ranges where the key 
that denotes a range is the inserted key. Inserts 
and deletes in front of read or updated records 
are permissible. 

3.3 Inserts, Deletes with MGL Locks 

The locking for key valued ranges when MGL lock 
modes are used is indicated in Table 4; The locking of 
Table 2 is little changed. The ranges are now named 
by key values. A range only contains a single record. 
Thus Read Single, Update Single, and Read Scan are 
essentially unchanged. For Update Scan, only one 
record appears in each range, and it is either updated 
or read. If only read, then our range lock can bc S, 
not SIX. 



3.3.1 Insert 3.3.3 ARIES/KVL and ARIES/I&l 

The insert of ki dividca range (&;-I, B, + I] into two 
ranges, (Li-1, ki] and (k;, ki+l]. The following steps 
arc needed: 

By distinguishing range from keys, we gain ex- 
tra concurrency compared with ARIES/KVL [6] or 
ARIES/IM [7], h’ h 1 w lc a so use existing lock modes 
but do not distinguish ranges from keys. In particu- 
lar, we can use an SIX lock for delete ranges instead 
of an X lock. Our cost is extra overhead, sometimes 
needing key locks as well as range locks. 

Below, we further improve concurrency by intro- 
ducing new lock modes. However, the lock overhead 
still remains high. In section 4, we merge range and 
key resources and, using new lock modes, gain maxi- 
mal key range concurrency with lock overhead compa- 
rable with ARIES/KVL. Further resource common- 
ing reduces concurrency but still gives better con- 
currency than ARIES/IM and with comparable lock 
overhead. 

1. 

2. 

3. 

4. 

An instant IX lock (the “Next Range Lock” in 
Table 4) checks whether range (ki_l, hi+l] has 
a conflicting lock, e.g., S or SIX. If not then 
key k; is inserted. The lock on (k;-l,Li+l] can 
be instant because (i) it tests that the range is 
not locked; (ii) this range is then divided; and 
(iii) after division, the range protected by a lock 
involving ki+l is (ki, ki+l], which does not guard 
any activity and does not need protection. 

(lei-1, ki] is then locked in IX (for commit dura- 
tion); and 

the ki key value is X locked (for commit dura- 
tion); 

if the (ki-1, ki+l] range had been previously 
locked by this transaction, one does not know in 
general which of the resulting ranges still needs 
protecting. Thus, if the current transaction held 
an S or SIX lock on this next range, we prop- 
agate the effect of this lock to the new range 
(ki -1, ki]. This requires an SIX lock regardless 
of which of S or SIX were held previously on the 
original range, as SIX is the leaat upper bound 
for (SIX, S) and IX. 

X3.2 Delete 

The delete of ki merges ranges (ki- 1, ki] and 
(k;, ki.+l]a We use SIX to guard the merged range, 
called a delete range, (ki-l,4+1] that results. The 
following steps are needed: 

Delete checks whether the ki record can be 
deleted with an X lock on the ki record, of com- 
mit duration to prevent insertion of another ki 
record. 

The (ki _ 1, ki] range is locked with SIX to ensure 
that a scan does not prevent the delete. This is 
an instant lock since ki is being removed and 
hence will not show up for subsequent locking. 

The merged range (ki-1, ki+l] is SIX locked for 
commit duration to guard the delete, preventing 
insertions and scans. 

Using existing locks prevents some activity that is 
permissible. We guard a delete range (ki-1, ki+l] US- 

ing SIX. Unfortunately, since SIX conflicts with 
IX, it prevents record ki+l from being updated, even 
when the key is not locked. 

3.4 New Modes for Key Ranges 

The problem with using existing lock modes for range 
locking is that they do not distinguish with sufficient 
refinement the nature of the operations that are be- 
ing performed, particularly those that involve changes 
which are indicated by an IX mode lock. Here we in- 
troduce three lock modes to replace IX, one mode for 
each form of modification operation. 

We guard a range with the form of intention lock 
that reflects the operation that has occurred within 
the range. It is held until commit to prevent subse- 
quent conflicting operations in the range. While we 
find it necessary for intention modes to reflect a spe- 
cific modify operation, it is sufficient for the key lock 
to simply indicate that exclusion is needed via an X 
mode lock. We lose no concurrency by doing this. 
Thus we have the following: 

Intention Update( an IU lock indicates that 
the record forming the upper bound of a range 
is being updated. 

Intention Insert(IIn): an Iln lock indicates that 
the record forming the upper bound of a range 
is the result of an insertion. 

Intention Delete(ID): an ID lock indicates that 
the range identified by the record forming its up- 
per bound contains a deletion. 

These new lock modes permit us to avoid using the 
overly restrictive SIX lock to guard delete ranges. 
Locking for update, insert, and delete are illustrated 
in Table 5. Read and scan locking do not change. 

The new intention modes behave like the IX mode 
with respect to other lock modes. However, their 
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Locks 

Table 5: Locking required for updates, and for insert 
and delete operations that cause ranges to change, 
when key valued locks are used and ranges are dis- 
tinct from keys. The locking exploits new lock modes. 
Once again, if the resource is already locked by the 
transaction, the new lock must cover both previous 
and new locks. 

1 Mode 11 IS 1 IU 1 IIn I ID I S I SIX I X 1 

Table 6: The compatibilities of lock modes, including 
now the new intention locks for guarding ranges in 
which a change has occurred. These are more restric- 
tive than IX (except for IU) but less restrictive than 
SIX. 

compatibilities among themselves differ so as to fa- 
cilitate increased concurrency for dynamically chang- 
ing ranges. Their compatibilities are described in Ta, 
ble 6. 

The new lock mode compatibilities permit us to 
maximise the concurrency that is possible within the 
general framework of key valued locks (see Table 3). 
In particular, we can now update a record whose 
key guards a delete range. (While this is a small 
improvement, we subsequently use these lock modes 
in more substantive ways.) What we have done is 
very straightforward. We made the intention lock 
modes operation specific. Then we constructed the 
lock mode compatibility table to directly correspond 
to the exclusion and compatibility needed by each 
operation. 

Once again, we need to handle ranges already 
locked by our transaction when range boundaries 
change. If the range (Li-i,ki+r] was previously 

scanned, when that range is divided by the insertion 
of ki, the range (hi-r, ki] must remain scan locked 
and SIX is sufficient for thie. If this range guards 
a delete, then the new current range must similarly 
guard a delete with an ID lock. For deletes, if the 
range (ki, kit.11 has been scanned, this range has now 
been scanned and guards a delete. An SIX lock is 
sufficient for this. 

4 Reduced Locking 

4.1 Ranges and Keys in Common 

Our goal is to achieve the highest possible concur- 
rency with the lowest possible locking overhead. Con- 
currency is assessed by determining how many opera- 
tions are prevented unnecessarily by locks that are too 
“heavy handed”. Lock overhead is measured by the 
number of locks needed by the locking protocol. We 
first discuss range locking using existing MGJ, locks, 
then introduce new lock modes to achieve greater con- 
currency. Here, the key value identifies both itself and 
the range for which it is an upper bound. 

4.1.1 Key Value Locks(KVL) 

The best locking protocol for range locking using ex- 
isting MGJ, lock modes is ARTES/KVL [6]. It does 
not distinguish range from key lock modes. usually 
locks with modes which are the least upper bound 
of the range and key lock modes on the separate 
resources are used. Sometimes the stronger lock 
mode for one operation will be sufficient to protect 
against the conflicts that must be precluded without 
strengthening another operation’s lock mode. For the 
operations that we are considering, the ARJES/KVl, 
lock table is given in Table 7 (for unique keys). 

The first four operations simply use the stronger 
key lock as the range lock. Insert uses the weaker 1.X 
lock. This is satisfactory in preventing read, update 
or delete of the inserted record since IX conflicts with 
S and X. Since IX is compatible with IX, inserts 
in front of inserts are permitted. For deletes, the X 
next key lock prevents inserts into a delete range. 

The result of folding range and record into a single 
resource is to prevent inserts in front of Read Single 
and Update Single. The X lock for the key guarding 
the delete range prevents the reading or update of 
this record, even though the record may not itself be 
the subject of conflicting operations. It also prevents 
deletes in front of such records. (See Table 3.) Thus, 
concurrency is impeded where logically the operations 
do not conflict. 



r----- ---.- Iv --- ..-__ 
Locks -I -.-- 

Current 

IX instant 

Table 7: Locking required in ARIES/KVL for the var- 
ious operations. ARIES/KVL identifies ranges and 
keys as the same resource and uses MGL lock modes. 

-.__..- --- 

-.----5-- Operation -...-_ ---.- 
I-Record ----~-. 
Read -_-..__- 
Update - --..- 
Insert 

---.--.-- 
Delete ----- 
Ycnn _--- 
Read _ _ -_--- 
Update I 

-- -- 

Loch ---- 
Current Key 1 Next Key -. 

--- 
IS-S 
IU-x .---- -____ 
Itn-X IIn- instant 

X when 
Jy,t Irev ID-,9,31X.X) 

X instant ID- 

S --- 
S on read 

X on modify --- 

Table 8: Locking and lock modes required when KRL 
locks for both ranges and records are mapped into a 
single resource. 

4.1.2 Expanded Lock Modes( KRL) 

It is possible to achieve high concurrency by ex- 
panding the lock modes once again BO that the lock 
modes denote the separate lock modes needed by 
both range and key. Thus, our lock modes are pairs 
(RangeMode, KeyMode). The RangeMode can be 
an intention lock or a covering lock, while KeyMode 
may be any simple covering lock or the null lock. For 
example, a lock mode of ID - X on a resource de- 
noted by k; means that the range (ki-1, Ici] is locked 
in mode ID while the key ki is locked in mode X. 
We call our locks key range locks or KRL locks. 

The lock modes for our operations are given in 
Table 8. There are only eight distinct lock modes 
while the Cartesian product of lock modes for ranges 
and lock modes for keys is 18, six range lock 

rr- Mode 11 IS-S 1 IIn- 1 ID- 1 IU-X 1 IIn-X I S I SIX I X 1 

Table 9: The lock mode compatibility matrix for the 
new combined resource lock modes needed for KRL 
locking. 

modes (IS, IV, IIn, ID, S, SIX) times three key lock 
modes (null, S, X). The combinations (IS-, IS - 
X,ICJ-,ITJ-S,IIn-S,S-S,S-X,SIX-S)do 
not arise. Some combinations share compatibilities: 
(ID - X, SIX - X) denoted as X since it is incom- 
patible with all other modes, and (ID - S, SIX-) 
denoted as SIX since it is compatible only with an 
intention shared lock mode, here IS - S. We rename 
S- as S since its compatibilities are the same. 

The lock mode compatibility for our new lock 
modes is defined in Table 9. It is a direct result of 
composing the separate lock compatibilities of ranges 
and records. That is, (RangeModel, KeyModel) 
is compatible with (RangeModel, KeyModel) if 
RangeModel is compatible with RangeModel and 
KeyModel is compatible with KeyModea. 

All the concurrency permitted when using separate 
range and key locks is achieved using KRL lock modes 
on a single combined (range, Icey) resource. Where 
separate range and key locks required that both range 
and key locks be acquired, the KRL protocol requires 
that one lock be acquired that satisfies the constraints 
of both these separate locks. KRL distinguishes pre- 
cisely the separate range and record conflicts by its 
composite lock mode. ARIES/KVL locking, with its 
restriction to traditional MGL lock modes, does not. 

As with ARIES/KVL locking, KRL locking per- 
mits or precludes the following. 

1. Inserts in front of inserts are still permitted as 
the Iln- instant lock is compatible with the 
IIn - X commit duration lock. 

2. Changes to a range that has been scanned are 
precluded as X locks of any kind conflict with S, 
SIX, or X. 

3. No inserts into a delete range are possible be- 
cause Iln- conflicts with ID-, SIX, and X. 



4. 

5. 

6. 

Deletes in front of inserts are precluded because 
ID- conflicts with IIn - X. 

Multiple scans, including update scans, are pos- 
sible so long as there is no record updated be- 
cause S locks are compatible. Similarly, single- 
ton reads are permitted in scanned ranges, so 
long as the record involved has not been updated, 
because IS - S is compatible with S and SIX. 

Scans into delete guarded ranges are precluded 
because ID- conflicts with SIX, S, and X. 

The following are correctly permitted by KRL lock- 
ing, but are precluded by ARIES/KVL locking. 

1. Inserts in front of singleton reads and updates 
are permitted because IIn- is compatible with 
IS-Sand IU-X. 

2. Deletes in front of singleton reads and updates 
are permitted because ID- is compatible with 
IS - S and IU - X, which also permits reading 
or updating a record guarding a delete range. 

KRL locking achieves all of the concurrency indi- 
cated as possible in Table 3. 

4.2 Three Resources in Common 

4.2.1 Multiple Paths and Locking 

Multi-granularity locking can be effective not only in 
tree resource hierarchies but also for directed acyclic 
graphs(DAGs). However, when the resource hierar- 
chy is a DAG, our locking protocol must provide an 
appropriate level of exclusion on all paths to the un- 
derlying data. 

A KRL lock applied to a common (range, key) re- 
source locks only the access path that proceeds by 
way of the index on the key (attribute) in question. 
This provides for high concurrency because it per- 
mits accesses on other paths to proceed. Thus, this 
approach distinguishes and locks only the ranges that 
have been scanned (see Figure l(a)). However, oper- 
ations on specific records require that exclusion be 
applied on all paths. For example, we must preclude 
other operations on an updated record, regardless of 
which access path is traversed to the record. 

For DAG locking via key value locks to be effective, 
different key values may need to be locked in several 
indexes, e.g. for insert and delete operations, all in- 
dexed values need updating and hence locking. The 
reading of a record via a scan in one index needs to 
be visible as a singleton read via other indexes. Also, 
records are usually accessible on an access path that 

(4 W 
Index: A B A B 

Data: Rx: [+I Rx: [e7 
--_-_-- 

Figure 1: Locking key values is contrasted with lock- 
ing records for locking ranges. (a) Locking a range 
and key on a path, here from index A, permits ac- 
cesses through other indexes, here index B. (b) A 
record lock used as a range Iock locks all paths that 
involve attributes from the record, here paths frotn 
indexes A and B. It also locks the access path that 
bypasses all indexes. 

does not traverse an index. This access path needs 
lock protection as well. 

The bottom line here is that, while concurrency is 
high because the ranges denoted by the key values 
in each index are carefully discriminated and kept 
separate, the cost in lock overhead and complexity 
can be high. One solution is to acquire record locks 
as well as key/range locks in an index. 

4.2.2 Record Locks 

One can short circuit the additional locking described 
above by treating the lock needed for range, key, and 

record as a single resource, as proposed in ARIES/IM 
[?I, described briefly below. The penalty of doing 
such consolidation of resources is less concurrency. 
Can KRL locking be applied when this is done? ‘l’hc 
answer is yes. 

ARIES/IM uses a lock on a record identifier instead 
of a key value lock as the way to lock a range. This 
one lock then serves as range, key and record lock. 
An index entry consists of a pair < key, rid >. When 
a scan is done through an index, range, key value and 
record resources are all identified by a single rid. This 
is a great simplification and reduces locking overhead, 
but at the expense of concurrency. The locked rid 
locks all ranges which contain attribute values from 
the record. Essentially we are preventing “phantoms” 
in key value ranges that do not participate in the scan. 
This is illustrated in Figure l(b). 

We cannot easily escape from the reduced concut- 
rency of record locking with the invention of addi- 



tional lock modes. The problem is that the lock 
modes for the common resource denoted by rid do not 
distinguish which ranges we really intended to lock. 
And the number of ranges involved varies with the 
datab,ase design, and can be quite large in any event. 
Thus, inventing new lock modes does not seem to be 
an effective strategy. 

We can, however, combine KRL lock modes with 
the record locking technique for range locks. This 
achieves greater concurrency than ARIES/IM. For 
example, KRL successfully distinguishes record locks 
for singleton updating and reading from range locks 
for phantom protection. ARIES/IM does not. How- 
ever, we can no longer maintain that the locking is 
optimal. Each range lock on a record will serve to 
lock all ranges that involve attributes values of the 
record. 

When the data is stored and clustered via a pri- 
mary index, the primary key becomes the record iden- 
tifier. Hence, key locking in a primary index is the 
same as record locking via an rid. Scans that involve 
the primary key then have the low overhead of the 
A RIES/IM’s record locking approach, even when do- 
ing key valued locking. 

5 Discussion 

Some other issues are worth discussion. 

5.1 Scans Directly on Records 

Not all scans arc through indexes. Not all attributes 
are indexed, and not all predicates controlling a scan 
can make effective use of an index. For these scans, 
one needs to search through an entire table. This 
is, in fact, very little different whether the table is 
clustered by primary key or by a more arbitrary rid. 
Table scans still need to guard against phantoms. So 
long as records might be inserted or deleted in the 
midst of already scanned records, these operations 
can give rise to phantoms. 

KRL locks are effective in preventing phantoms for 
these clustering order scans. A record and the range 
between it and its immediate physical predecessor is 
locked during a scan via the record’s rid. The range 
locks do not protect a specific logical predicate or key 
value range. Rather, the locks prevent insertions into 
physical ranges that have been previously scanned by 
active transactions. 

5.2 Object-Oriented Databases 

Providing good concurrency with great generality for 
object-oriented databases remains an open problem. 

One aspect of this problem is the complex data in OQ 
databases that is modeled by objects with component 
sets of objects. A parts database may model assem- 
blies assets of parts which are themselves assemblies, 
etc. 

Range locks are a useful mechanism for provid- 
ing concurrency control for the members of sets that 
are components of objects. These sets need to be 
scanned, sometimes for reading, sometimes for updat- 
ing. The membership of the sets change via insertion 
and deletion. Thus, the operations needing concur- 
rency control are the same operations, at this high 
level of abstraction, as those needed for maintaining 
an index and providing phantom protection. Indeed, 
phantom protection is a problem that 00 databases 
need to deal with to ensure transaction consistent 
scanning of such sets. 

The objects that are elements of sets may have 
a higher level and richer set of operations than just 
reads and updates. These operations would rely on 
locks that are likely to be less restrictive than the low 
level share and exclusive locks required by reads and 
updates. However, our methodology for composing 
new lock modes so as to support scans in the pres- 
ence of inserts and deletes should be applicable to this 
situation. 

5.3 Non-unique Keys 

Non-unique keys occur when an attribute value can 
occur more than once. An index on hair color would 
find many people with brown hair. We need to look 
again at locking protocols, their lock overhead, and 
the concurrency that they can achieve. 

One approach works well when rids are used to 
identify ranges and. keys to the lock manager. We 
organize the entries of an index in sort order by < 
key, rid > pair. These pairs are unique entries. The 
range identified by an entry is, as before, the range 
between it and its immediate predecessor. Range, 
key, and record are all identified by the rid. 

Insertion of a < key, rid > is handled as a unique 
key insbrtion. The new entry, its key and rid, is 
inserted into this ordered list. This does not opti- 
mize the potential concurrency, as the ordering of 
rids imposes a logically unnecessary restriction on 
where a new entry might be inserted. But the con- 
currency is good and the KRL locking protocol is un- 
changed. This technique does not require that each 
< key,rid > be stored as a physically separate en- 
try. One can have an index where an entry consists 
of a key paired with the ordered list of rids. It simply 
means that rid order must be preserved. 

More concurrency is possible if the entries above 



are not required to be ordered by rid within the key 
ordering. Then, one might, for example, insert a new 
rid into a set of rids associated with a key anywhere 
that was convenient. The result, however, is a more 
complex protocol. ARIES/KVL [6] discusses the non- 
unique key case when keys, not records, are the lock- 
able resources, and illustrates the less restrictive lock- 
ing that might be exploited. The concurrency advan- 
tages of the ARIES/KVL approach versus ordering 
entries by < leey, rid > and using KRL locking are 
not clear. While ARIES/KVL daes not impose an 
rid ordering, and hence will sometimes permit addi- 
tional concurrency, an ARIESjKVL key value lock in 
a scan locks all the records with that key value. This 
lowers locking overhead but leads to less concurrency. 

5.4 Deletions as Updates 

If deleted keys or records were marked aa deleted, 
instead of being removed, then some of the strict ex- 
clusion required by deletions can be relaxed. Deletion 
could then be treated as a record update. Actual re- 
moval of the “delete stub” could be done in a sepa- 
rate short atomic action when this stub is not locked. 
This improves concurrency as marking deletes does 
not consolidate ranges. It does, however, increase 
storage costs and requires a subsequent garbage col- 
lection step. 

5.5 Summary 

Our range locking protocols work with a conventional 
LM, in which the LM is a simple conflict detector for 
locks on discrete resources. Such an LM does not 
know about dependencies between resources, and, in 
particular does not work directly with ranges., Within 
this conventional context, and using key value ranges 
based on actual keys present, we derived Table 3. It 
describes the maximum concurrency possible under 
these conditions. We then introduced new lock modes 
to cope with insert and delete operations, which can 
change the ranges described by key values and showed 
that these lock modes achieve this maximum concur- 
rency. 

To reduce lock overhead, we unified range and key 
resources so that both can be locked with a single 
lock. This reduces the locking overhead dramatically. 
Maximum concurrency was retained when we intro- 
duced KRL compound lock modes that distinguish 
the separate roles of ranges and keys, but with greatly 
reduced locking overhead. 

Finally, to even further reduce lock overhead, we 
combined range, key, and record into a single lock- 
able resource, a technique exploited in ARIES/IM. 

This reduces concurrency because one record lock can 
lock ranges for multiple attribute (key) ranges, even 
when the additional ranges do not require locking. 
This appears to be an intrinsic penalty of this map- 
ping. KRL lock modes do very well under these con- 
ditions, strictly better than previous solutions. The 
extraneously locked ranges prevent us from claiming 
optimality. 
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