
E
xperience w

ith P
rocesses and M

onitors in M
esa

1

E
xperience w

ith P
rocesses and M

onitors in M
esa

1

B
utler W

. L
am

pson
X

erox P
alo A

lto R
esearch C

enter

D
avid D

. R
edell

X
erox B

usiness System
s

A
bstract

T
he use of m

onitors for describing concurrency has been m
uch discussed in the literature. W

hen
m

onitors are used in real system
s of any size, how

ever, a num
ber of problem

s arise w
hich have

not been adequately dealt w
ith: the sem

antics of nested m
onitor calls; the various w

ays of
defining the m

eaning of W
A

IT; priority scheduling; handling of tim
eouts, aborts and other

exceptional conditions; interactions w
ith process creation and destruction; m

onitoring large
num

bers of sm
all objects. T

hese problem
s are addressed by the facilities described here for

concurrent program
m

ing in M
esa. E

xperience w
ith several substantial applications gives us som

e
confidence in the validity of our solutions.

K
ey W

ords and P
hrases: concurrency, condition variable, deadlock, m

odule, m
onitor, operating

system
, process, synchronization, task

C
R

 C
ategories: 4.32, 4.35, 5.24

1.
Introduction

In early 1977 w
e began to design the concurrent program

m
ing facilities of Pilot, a new

 operating
system

 for a personal com
puter [18]. Pilot is a fairly large program

 itself (24,000 lines of M
esa

code). In addition, it m
ust support a variety of quite large application program

s, ranging from
database m

anagem
ent to inter-netw

ork m
essage transm

ission, w
hich are heavy users of

concurrency; our experience w
ith som

e of these applications is discussed later in the paper. W
e

intended the new
 facilities to be used at least for the follow

ing purposes:

L
ocal concurrent program

m
ing. A

n individual application can be im
plem

ented as
a tightly

coupled group of synchronized processes to express the concurrency inherent in the
application.

1 T
his paper appeared in C

om
m

unications of the A
C

M
23, 2 (Feb. 1980), pp 105-117. A

n earlier version w
as

presented at the 7th A
C

M
 Sym

posium
 on O

perating System
s P

rinciples, P
acific G

rove, C
A

, D
ec. 1979. T

his version
w

as created from
 the published version by scanning and O

C
R

; it m
ay have errors.

P
erm

ission to copy w
ithout fee all or part of this m

aterial is granted provided that the copies are not m
ade or

distributed for direct com
m

ercial advantage, the A
C

M
 copyright notice and the title of the publication and its date

appear, and notice is given that copying is by perm
ission of the A

ssociation for C
om

puting M
achinery. T

o copy
otherw

ise, or to republish, requires a fee and/or specific perm
ission.

E
xperience w

ith P
rocesses and M

onitors in M
esa

2

G
lobal resource sharing. Independent applications can run together on the sam

e m
achine,

cooperatively sharing the resources; in particular, their processes can share the processor.

R
eplacing interrupts. A

 request for softw
are attention to a device can be handled directly by

w
aking up an appropriate process, w

ithout going through a separate interrupt m
echanism

 (for
exam

ple, a forced branch).

Pilot is closely coupled to the M
esa language [17], w

hich is used to w
rite both Pilot itself and the

applications program
s it supports. H

ence it w
as natural to design these facilities as part of M

esa;
this m

akes them
 easier to use, and also allow

s the com
piler to detect m

any kinds of errors in their
use. T

he idea of integrating such facilities into a language is certainly not new
; it goes back at

least as far as PL
/1 [1]. Furtherm

ore, the invention of m
onitors by D

ijkstra, H
oare, and B

rinch
H

ansen [3, 5, 8] provided a very attractive fram
ew

ork for reliable concurrent program
m

ing.
T

here follow
ed a num

ber of papers on the integration of concurrency into program
m

ing
languages, and at least one im

plem
entation [4].

W
e therefore thought that our task w

ould be an easy one: read the literature, com
pare the

alternatives offered there, and pick the one m
ost suitable for our needs. T

his expectation proved
to be naive. B

ecause of the large size and w
ide variety of our applications, w

e had to address a
num

ber of issues w
hich w

ere not clearly resolved in the published w
ork on m

onitors. T
he m

ost
notable am

ong these are listed below
, w

ith the sections in w
hich they are discussed.

(a)
P

rogram
 structure.M

esa has facilities for organizing program
s into m

odules w
hich

com
m

unicate through w
ell-defined interfaces. P

rocesses m
ust fit into this schem

e (see
Section 3.1).

(b)
C

reating processes.A
 set of processes fixed at com

pile-tim
e is unacceptable in such a

general-purpose system
 (See Section 2). E

xisting proposals for varying the am
ount of

concurrency w
ere lim

ited to concurrent elaboration of the statem
ents in a block, in the style

of A
lgol 68 (except for the rather com

plex m
echanism

 in PL
/1).

(c)
C

reating m
onitors.A

 fixed num
ber of m

onitors is also unacceptable, since the num
ber of

synchronizers should be a function of the am
ount of data, but m

any of the details of existing
proposals depended on a fixed association of a m

onitor w
ith a block of the program

 text (see
Section 3.2).

(d)
W

A
IT in a nested m

onitor call.T
his issue had been (and has continued to be) the source of a

considerable am
ount of confusion, w

hich w
e had to resolve in an acceptable m

anner before
w

e could proceed (see Section 3.1).

(e)
E

xceptions.A
 realistic system

 m
ust have tim

eouts, and it m
ust have a w

ay to abort a process
(see Section 4.1). M

esa has an U
N

W
IN

D
 m

echanism
 for abandoning part of a sequential

com
putation in an orderly w

ay, and this m
ust interact properly w

ith m
onitors (see Section

3.3).

(f)
Scheduling.T

he precise sem
antics of w

aiting on a condition variable had been discussed [10]
but not agreed upon, and the reasons for m

aking any particular choice had not been
articulated (see Section 4). N

o attention had been paid to the interaction betw
een m

onitors
and priority scheduling of processes (see Section 4.3).

E
xperience w

ith P
rocesses and M

onitors in M
esa

3

(g)
Input-O

utput.T
he details of fitting I/O

 devices into the fram
ew

ork of m
onitors and condition

variables had not been fully w
orked out (see Section 4.2).

Som
e of these points have also been m

ade by K
eedy [12], w

ho discusses the usefulness of
m

onitors in a m
odern general-purpose m

ainfram
e operating system

. T
he M

odula language [21]
addresses (b) and (g), but in a m

ore lim
ited context than ours.

B
efore settling on the m

onitor schem
e described below

, w
e considered other possibilities. W

e
felt that our first task w

as to choose either shared m
em

ory (that is, m
onitors) or m

essage passing
as our basic interprocess com

m
unication paradigm

.

M
essage passing has been used (w

ithout language support) in a num
ber of operating system

s; for
a recent proposal to em

bed m
essages in a language, see [9]. A

n analysis of the differences
betw

een such schem
es and those based on m

onitors w
as m

ade by L
auer and N

eedham
 [14]. T

hey
conclude that, given certain m

ild restrictions on program
m

ing style, the tw
o schem

es are duals
under the transform

ation

m
essage

��������
process

�	
�
����

send/reply
����������

Since our w
ork is based on a language w

hose m
ain tool of program

 structuring is the procedure,
it w

as considerably easier to use a m
onitor schem

e than to devise a m
essage-passing schem

e
properly integrated w

ith the type system
 and control structures of the language.

W
ithin the shared m

em
ory paradigm

, w
e considered the possibility of adopting a sim

pler
prim

itive synchronization facility than m
onitors. A

ssum
ing the absence of m

ultiple processors,
the sim

plest form
 of m

utual exclusion appears to be a non-preem
ptive scheduler; if processes

only yield the processor voluntarily, then m
utual exclusion is insured betw

een yield points. In its
sim

plest form
, this approach tends to produce very delicate program

s, since the insertion of a
yield in a random

 place can introduce a subtle bug in a previously correct program
. T

his danger
can be alleviated by the addition of a m

odest am
ount of “syntactic sugar” to delineate critical

sections w
ithin w

hich the processor m
ust not be yielded (for exam

ple, pseudo m
onitors). T

his
sugared form

 of non-preem
ptive scheduling can provide extrem

ely efficient solutions to sim
ple

problem
s, but w

as nonetheless rejected for four reasons:

(1)
W

hile w
e w

ere w
illing to accept an im

plem
entation that w

ould not w
ork on m

ultiple
processors, w

e did not w
ant to em

bed this restriction in our basic sem
antics.

(2)
A

 separate preem
ptive m

echanism
 is needed anyw

ay, since the processor m
ust respond to

tim
e-critical events (for exam

ple, I/O
 interrupts) for w

hich voluntary process sw
itching is

clearly too sluggish. W
ith preem

ptive process scheduling, interrupts can be treated as
ordinary process w

akeups, w
hich reduces the total am

ount of m
achinery needed and

elim
inates the aw

kw
ard situations that tend to occur at the boundary betw

een tw
o scheduling

regim
es.

(3)
T

he use of non-preem
ption as m

utual exclusion restricts program
m

ing generality w
ithin

critical sections; in particular, a procedure that happens to yield the processor cannot be
called. In large system

s w
here m

odularity is essential, such restrictions are intolerable.

E
xperience w

ith P
rocesses and M

onitors in M
esa

4

(4)
T

he M
esa concurrency facilities function in a virtual m

em
ory environm

ent. T
he use of non-

preem
ption as m

utual exclusion forbids m
ultiprogram

m
ing across page faults, since that

w
ould effectively insert preem

ptions at arbitrary points in the program
.

For m
utual exclusion w

ith a preem
ptive scheduler, it is necessary to introduce explicit locks, and

m
achinery that m

akes requesting processes w
ait w

hen a lock is unavailable. W
e considered

casting our locks as sem
aphores, but decided that, com

pared w
ith m

onitors, they exert too little
structuring discipline on concurrent program

s. Sem
aphores do solve several different problem

s
w

ith a single m
echanism

 (for exam
ple, m

utual exclusion, producer/consum
er) but w

e found
sim

ilar econom
ies in our im

plem
entation of m

onitors and condition variables (see Section 5.1).

W
e have not associated any protection m

echanism
 w

ith processes in M
esa, except w

hat is
im

plicit in the type system
 of the language. Since the system

 supports only one user, w
e feel that

the considerable protection offered by the strong typing of the language is sufficient. T
his fact

contributes substantially to the low
 cost of process operations.

2.
P

rocesses

M
esa casts the creation of a new

 process as a special procedure activation that executes
concurrently w

ith its caller. M
esa allow

s any
procedure (except an internal procedure of a

m
onitor; see Section 3.1) to be invoked in this w

ay, at the caller’s discretion. It is possible to later
retrieve the results returned by the procedure. For exam

ple, a keyboard input routine m
ight be

invoked as a norm
al procedure by w

riting:

buffer
 R

eadL
ine[term

inal]

but since R
eadL

ine
is likely to w

ait for input, its caller m
ight w

ish instead to com
pute

concurrently:

p
�FO

R
K

R
eadL

ine[term
inal];

... <
concurrent com

putation>
 ...

buffer
JO

IN
p;

H
ere the types are

R
eadL

ine:
PR

O
C

E
D

U
R

E [D
evice]

R
E

T
U

R
N

S [L
ine];

p:
PR

O
C

E
SS R

E
T

U
R

N
S [L

ine];

T
he rendezvous betw

een the return from
 R

eadL
ine

that term
inates the new

 process and the join
in the old process is provided autom

atically. R
eadL

ine
is the rootprocedure of the new

 process.

T
his schem

e has a num
ber of im

portant properties.

(h)
It treats a process as a first class value in the language, w

hich can be assigned to a variable or
an array elem

ent, passed as a param
eter, and in general treated exactly like any other value. A

process value is like a pointer value or a procedure value that refers to a nested procedure, in
that it can becom

e a dangling reference if the process to w
hich it refers goes aw

ay.

(i)
T

he m
ethod for passing param

eters to a new
 process and retrieving its results is exactly the

sam
e as the corresponding m

ethod for procedures, and is subject to the sam
e strict type

E
xperience w

ith P
rocesses and M

onitors in M
esa

5

checking. Just as PR
O

C
E

D
U

R
E

is a generator for a fam
ily of types (depending on the argum

ent
and result types), so PR

O
C

E
SS

is a sim
ilar generator, slightly sim

pler since it depends only on
result types.

(j)
N

o special declaration is needed for a procedure that is invoked as a process. B
ecause of the

im
plem

entation of procedure calls and other global control transfers in M
esa [13], there is no

extra execution cost for this generality.

(k)
T

he cost of creating and destroying a process is m
oderate, and the cost in storage is only

tw
ice the m

inim
um

 cost of a procedure instance. It is therefore feasible to program
 w

ith a
large num

ber of processes, and to vary the num
ber quite rapidly. A

s L
auer and N

eedham
 [14]

point out, there are m
any synchronization problem

s that have straightforw
ard solutions using

m
onitors only w

hen obtaining a new
 process is cheap.

M
any patterns of process creation are possible. A

 com
m

on one is to create a detached process
that never returns a result to its creator, but instead functions quite independently. W

hen the root
procedure

p of a detached process returns, the process is destroyed w
ithout any fuss. T

he fact that
no one intends to w

ait for a result from
 p can be expressed by executing:

D
etach[p]

From
 the point of view

 of the caller, this is sim
ilar to freeing a dynam

ic variable—
it is generally

an error to m
ake any further use of the current value of p, since the process, running

asynchronously, m
ay com

plete its w
ork and be destroyed at any tim

e. O
f course the design of the

program
 m

ay be such that this cannot happen, and in this case the value of p
can still be useful as

a param
eter to the A

bortoperation (see Section 4.1).

T
his rem

ark illustrates a general point: Processes offer som
e new

 opportunities to create dangling
references. A

 process variable itself is a kind of pointer, and m
ust not be used after the process is

destroyed. Furtherm
ore, param

eters passed by reference to a process are pointers, and if they
happen to be local variables of a procedure, that procedure m

ust not return until the process is
destroyed. L

ike m
ost im

plem
entation languages, M

esa does not provide any protection against
dangling references, w

hether connected w
ith processes or not.

T
he ordinary M

esa facility for exception handling uses the ordering established by procedure
calls to control the processing of exceptions. A

ny block m
ay have an attached exception handler.

T
he block containing the statem

ent that causes the exception is given the first chance to handle it,
then its enclosing block, and so forth until a procedure body is reached. T

hen the caller of the
procedure is given a chance in the sam

e w
ay. Since the root procedure of a process has no caller,

it m
ust be prepared to handle any exceptions that can be generated in the process, including

exceptions generated by the procedure itself. If it fails to do so, the resulting error sends control
to the debugger, w

here the identity of the procedure and the exception can easily be determ
ined

by a program
m

er. T
his is not m

uch com
fort, how

ever, w
hen a system

 is in operational use. T
he

practical consequence is that w
hile any procedure suitable for forking can also be called

sequentially, the converse is not generally true.

E
xperience w

ith P
rocesses and M

onitors in M
esa

6

3.
M

onitors

W
hen several processes interact by sharing data, care m

ust be taken to properly synchronize
access to the data. T

he idea behind m
onitors is that a proper vehicle for this interaction is one

that unifies

•
the synchronization,

•
the shared data,

•
the body of code w

hich perform
s the accesses.

T
he data is protected by a m

onitor,and can only be accessed w
ithin the body of a m

onitor
procedure.T

here are tw
o kinds of m

onitor procedures: entry procedures, w
hich can be called

from
 outside the m

onitor, and internal procedures, w
hich can only be called from

 m
onitor

procedures. Processes can only perform
 operations on the data by calling entry procedures. T

he
m

onitor ensures that at m
ost one process is executing a m

onitor procedure at a tim
e; this process

is said to be in
the m

onitor. If a process is in the m
onitor, any other process that calls an entry

procedure w
ill be delayed. T

he m
onitor procedures are w

ritten textually next to each other, and
next to the declaration of the protected data, so that a reader can conveniently survey all the
references to the data.

A
s long as any order of calling the entry procedures produces m

eaningful results, no additional
synchronization is needed am

ong the processes sharing the m
onitor. If a random

 order is not
acceptable, other provisions m

ust be m
ade in the program

 outside the m
onitor. For exam

ple, an
unbounded buffer w

ith P
utand

G
etprocedures im

poses no constraints (of course a G
etm

ay have
to w

ait, but this is taken care of w
ithin the m

onitor, as described in the next section). O
n the

other hand, a tape unit w
ith R

eserve, R
ead, W

rite, and
R

elease
operations requires that each

process execute a R
eserve

first and a R
elease

last. A
 second process executing a R

eserve
w

ill be
delayed by the m

onitor, but another process doing a R
ead

w
ithout a prior R

eserve
w

ill produce
chaos. T

hus m
onitors do not solve all the problem

s of concurrent program
m

ing; they are
intended, in part, as prim

itive building blocks for m
ore com

plex scheduling policies. A
discussion of such policies and how

 to im
plem

ent them
 using m

onitors is beyond the scope of
this paper.

3.1
M

onitor m
odules

In M
esa the sim

plest m
onitor is an instance of a m

odule,w
hich is the basic unit of global

program
 structuring. A

 M
esa m

odule consists of a collection of procedures and their global data,
and in sequential program

m
ing is used to im

plem
ent a data abstraction. Such a m

odule has
PU

B
L

IC procedures that constitute the external interface to the abstraction, and PR
IV

A
T

E proce-
dures that are internal to the im

plem
entation and cannot be called from

 outside the m
odule; its

data is norm
ally entirely private. A

 M
O

N
IT

O
R m

odule differs only slightly. It has three kinds of
procedures:entry, internal (private), and external (non-m

onitor procedures). T
he first tw

o are the
m

onitor procedures, and execute w
ith the m

onitor lock held. For exam
ple, consider a sim

ple
storage allocator w

ith tw
o entry procedures, A

llocate and
F

ree,and an external procedure
E

xpand
that increases the size of a block.

E
xperience w

ith P
rocesses and M

onitors in M
esa

7

StorageA
llocator:

M
O

N
IT

O
R =

 B
E

G
IN

availableStorage:
IN

T
E

G
E

R:
m

oreA
vailable:

C
O

N
D

IT
IO

N
:

A
llocate:

E
N

T
R

Y
 PR

O
C

E
D

U
R

E [size:
IN

T
E

G
E

R

R
E

T
U

R
N

S [p:
PO

IN
T

E
R] =

 B
E

G
IN

U
N

T
IL

availableStorage
��size

D
O

W
A

IT
m

oreA
vailable E

N
D

L
O

O
P;

p
��

rem
ove chunk of size w

ords &
 update availableStorage>

E
N

D
;

F
ree:

E
N

T
R

Y
 PR

O
C

E
D

U
R

E [p:
PO

IN
T

E
R,Size:

IN
T

E
G

E
R] =

 B
E

G
IN

 <
put back chunk of size w

ords &
 update availableStorage>

;
N

O
T

IFY
 m

oreA
vailable E

N
D

;

E
xpand:PU

B
L

IC
 PR

O
C

E
D

U
R

E [pO
ld:

PO
IN

T
E

R,size:
IN

T
E

G
E

R]
R

E
T

U
R

N
S [pN

ew
:

PO
IN

T
E

R] =
 B

E
G

IN

pN
ew

A
llocate[size];

<
copy contents from

 old block to new
 block>

;
F

ree[pO
ld]

E
N

D
;

E
N

D
.

A
 M

esa m
odule is norm

ally used to package a collection of related procedures and protect their
private data from

 external access. In order to avoid introducing a new
 lexical structuring

m
echanism

, w
e chose L

O
 m

ake the scope of a m
onitor identical to a m

odule. Som
etim

es,
how

ever, procedures that belong in an abstraction do not need access to any shared data, and
hence need not be entry procedures of the m

onitor; these m
ust be distinguished som

ehow
.

For exam
ple, tw

o asynchronous processes clearly m
ust not execute in the A

llocate or
F

ree
procedures at the sam

e tim
e; hence, these m

ust be entry procedures. O
n the other hand, it is

unnecessary to hold the m
onitor lock during the copy in E

xpand,even though this procedure
logically belongs in the storage allocator m

odule; it is thus w
ritten as an external procedure. A

m
ore com

plex m
onitor m

ight also have internal procedures, w
hich are used to structure its

com
putations, but w

hich are inaccessible from
 outside the m

onitor. T
hese do not acquire and

release the lock on call and return, since they can only be called w
hen the lock is already held.

If no suitable block is available, A
llocate m

akes its caller w
ait on the condition

variable
m

oreA
vailable. F

ree does a N
O

T
IFY

 to this variable w
henever a new

 block becom
es available;

this causes som
e process w

aiting on the variable to resum
e execution (see Section 4 for details).

T
he

W
A

IT releases the m
onitor lock, w

hich is reacquired w
hen the w

aiting process reenters the
m

onitor. If a W
A

IT is done in an internal procedure, it still releases the lock. If, how
ever, the

m
onitor calls som

e other procedure w
hich is outside the m

onitor m
odule, the lock is not released,

even if the other procedure is in (or calls) another m
onitor and ends up doing a W

A
IT. T

he sam
e

rule is adopted in C
oncurrent Pascal [4].

T
o understand the reasons for this, consider the form

 of a correctness argum
ent for a program

using a m
onitor. T

he basic idea is that the m
onitor m

aintains an invariantthat is alw
ays true of

its data, except w
hen som

e process is executing in the m
onitor. W

henever control leaves the
m

onitor, this invariant m
ust be established. In return, w

henever control enters the m
onitor the

invariant can be assum
ed. T

hus an entry procedure m
ust establish the invariant before returning,

and a m
onitor procedure m

ust establish it before doing a W
A

IT. T
he invariant can be assum

ed at

E
xperience w

ith P
rocesses and M

onitors in M
esa

8

the start of an entry procedure, and after each W
A

IT. U
nder these conditions, the m

onitor lock
ensures that no one can enter the m

onitor w
hen the invariant is false. N

ow
, if the lock w

ere to be
released on a W

A
IT done in another m

onitor w
hich happens to be called from

 this one, the
invariant w

ould have to be established before m
aking the call w

hich leads to the W
A

IT. Since in
general there is no w

ay to know
 w

hether a call outside the m
onitor w

ill lead to a W
A

IT, the
invariant w

ould have to be established before every such call. T
he result w

ould be to m
ake

calling such procedures hopelessly cum
bersom

e.

A
n alternative solution is to allow

 an outside block to be w
ritten inside a m

onitor, w
ith the

follow
ing m

eaning: on entry to the block the lock is released (and hence the invariant m
ust be

established); w
ithin the block the protected data is inaccessible; on leaving the block the lock is

reacquired. T
his schem

e allow
s the state represented by the execution environm

ent of the
m

onitor to be m
aintained during the outside call, and im

poses a m
inim

al burden on the
program

m
er: to establish the invariant before m

aking the call. T
his m

echanism
 w

ould be easy to
add to M

esa; w
e have left it out because w

e have not seen convincing exam
ples in w

hich it
significantly sim

plifies the program
.

If an entry procedure generates an exception in the usual w
ay, the result w

ill be a call on the
exception handler from

 w
ithin the m

onitor, so that the lock w
ill not be released. In particular, this

m
eans that the exception handler m

ust carefully avoid invoking that sam
e m

onitor, or a deadlock
w

ill result. T
o avoid this restriction, the entry procedure can restore the invariant and then

execute

R
E

T
U

R
N

W
IT

H
E

R
R

O
R[(argum

ents)]

w
hich returns from

 the entry procedure, thus releasing the lock, and then generates the exception.

3.2
M

onitors and deadlock

T
here are three patterns of pairw

ise deadlock that can occur using m
onitors. In practice, of

course, deadlocks often involve m
ore than tw

o processes, in w
hich case the actual patterns

observed tend to be m
ore com

plicated; conversely, it is also possible for a single process to
deadlock w

ith itself (for exam
ple, if an entry procedure is recursive).

T
he sim

plest form
 of deadlock takes place inside a single m

onitor w
hen tw

o processes do a W
A

IT,
each expecting to be aw

akened by the other. T
his represents a localized bug in the m

onitor code
and is usually easy to locate and correct.

A
 m

ore subtle form
 of deadlock can occur if there is a cyclic calling pattern betw

een tw
o

m
onitors. T

hus if m
onitor M

calls an entry procedure in N
,and

N
calls one in M

, each w
ill w

ait
for the other to release the m

onitor lock. T
his kind of deadlock is m

ade neither m
ore nor less

serious by the m
onitor m

echanism
. It arises w

henever such cyclic dependencies are allow
ed to

occur in a program
, and can be avoided in a num

ber of w
ays. T

he sim
plest is to im

pose a partial
ordering on resources such that all the resources sim

ultaneously possessed by any process are
totally ordered, and insist that if resource r

precedes 5 in the ordering, then r
cannot be acquired

later than 5.W
hen the resources are m

onitors, this reduces to the sim
ple rule that m

utually
recursive m

onitors m
ust be avoided. C

oncurrent Pascal [4] m
akes this check at com

pile tim
e;

M
esa cannot do so because it has procedure variables.

E
xperience w

ith P
rocesses and M

onitors in M
esa

9

A
 m

ore serious problem
 arises if M

calls N
,and

N
then w

aits for a condition w
hich can only

occur w
hen another process enters N

through M
and m

akes the condition true. In this situation, N
w

ill be unlocked, since the W
A

IT occurred there, but M
w

ill rem
ain locked during the W

A
IT in N

.
T

his kind of tw
o level data abstraction m

ust be handled w
ith som

e care. A
 straightforw

ard
solution using standard m

onitors is to break M
into tw

o parts: a m
onitor M

’ and an ordinary
m

odule
0

w
hich im

plem
ents the abstraction defined by M

,and calls M
’ for access to the shared

data. T
he call on N

m
ust be done from

 0
rather than from

 w
ithin M

’.

M
onitors, like any other interprocess com

m
unication m

echanism
, are a toolfor im

plem
enting

synchronization constraints chosen by the program
m

er. It is unreasonable to blam
e the tool w

hen
poorly chosen constraints lead to deadlock. W

hat is crucial, how
ever, is that the tool m

ake the
program

 structure as understandable as possible, w
hile not restricting the program

m
er too m

uch
in his choice of constraints (for exam

ple, by forcing a m
onitor lock to be held m

uch longer than
necessary). T

o som
e extent, these tw

o goals tend to conflict; the M
esa concurrency facilities

attem
pt to strike a reasonable balance and provide an environm

ent in w
hich the conscientious

program
m

er can avoid deadlock reasonably easily. O
ur experience in this area is reported in

Section 6.

3.3
M

onitored objects

O
ften w

e w
ish to have a collection of shared data objects, each one representing an instance of

som
e abstract object such as a file, a storage volum

e, a virtual circuit, or a database view
, and w

e
w

ish to add objects to the collection and delete them
 dynam

ically. In a sequential program
 this is

done w
ith standard techniques for allocating and freeing storage. In a concurrent program

,
how

ever, provision m
ust also be m

ade for serializing access to each object. T
he straightforw

ard
w

ay is to use a single m
onitor for accessing all instances of the object, and w

e recom
m

end this
approach w

henever possible. If the objects function independently of each other for the m
ost

part, how
ever, the single m

onitor drastically reduces the m
axim

um
 concurrency that can be

obtained. In this case, w
hat w

e w
ant is to give each object its ow

n m
onitor; all these m

onitors
w

ill share the sam
e code, since all the instances of the abstract object share the sam

e code, but
each object w

ill have its ow
n lock.

O
ne w

ay to achieve this result is to m
ake m

ultiple instances of the m
onitor m

odule. M
esa m

akes
this quite easy, and it is the next recom

m
ended approach. H

ow
ever, the data associated w

ith a
m

odule instance includes inform
ation that the M

esa system
 uses to support program

 linking and
code sw

apping, and there is som
e cost in duplicating this inform

ation. Furtherm
ore, m

odule
instances are allocated by the system

; hence the program
 cannot exercise the fm

e control over
allocation strategies w

hich is possible for ordinary M
esa data objects. W

e have therefore
introduced a new

 type constructor called a m
onitored record, w

hich is exactly like an ordinary
record, except that it includes a m

onitor lock and is intended to be used as the protected data of a
m

onitor.

In w
riting the code for such a m

onitor, the program
m

er m
ust specify how

 to access the m
onitored

record, w
hich m

ight be em
bedded in som

e larger data structure passed as a param
eter to the entry

procedures. T
his is done w

ith a L
O

C
K

S clause w
hich is w

ritten at the beginning of the m
odule:

M
O

N
IT

O
R

L
O

C
K

S file
�U

SIN
G

file:
PO

IN
T

E
R

T
O

F
ileD

ata;

E
xperience w

ith P
rocesses and M

onitors in M
esa

10

if the F
ileD

ata is the protected data. A
n arbitrary expression can appear in the L

O
C

K
S clause; for

instance, L
O

C
K

S
file.buffers[currentP

age]
m

ight be appropriate if the protected data is one of the
buffers in an array w

hich is part of the file.E
very entry procedure of this m

onitor, and every
internal procedure that does a W

A
IT, m

ust have access to a file, so that it can acquire and release
the lock upon entry or around a W

A
IT. T

his can be accom
plished in tw

o w
ays: the file m

ay be a
global variable of the m

odule, or it m
ay be a param

eter to every
such procedure. In the latter case,

w
e have effectively created a separate m

onitor for each object, w
ithout lim

iting the program
’s

freedom
 to arrange access paths and storage allocation as it likes.

U
nfortunately, the type system

 of M
esa is not strong enough to m

ake this construction
com

pletely safe. If the value of file is changed w
ithin an entry procedure, for exam

ple, chaos w
ill

result, since the return from
 this procedure w

ill release not the lock w
hich w

as acquired during
the call, but som

e other lock instead. In this exam
ple w

e can insist that file be read-only, but w
ith

another level of indirection aliasing can occur and such a restriction cannot be enforced. In
practice this lack of safety has not been a problem

.

3.4
A

bandoning a com
putation

Suppose that a procedure P
1

has called another procedure P
2 ,w

hich in turn has called P
3

and so
forth until the current procedure is P

n .If P
n generates an exception w

hich is eventually handled
by P

1
(because

P
2 ... P

n do not provide handlers), M
esa allow

s the exception handler in P
1

to
abandon the portion of the com

putation being done in P
2 ... P

n and continue execution in P
1 .

W
hen this happens, a distinguished exception called U

N
W

IN
D

 is first generated, and each of P
2 ...

P
n

is given a chance to handle it and do any necessary cleanup before its activation is destroyed.

T
his feature of M

esa is not part of the concurrency facilities, but it does interact w
ith those

facilities in the follow
ing w

ay. If one of the procedures being abandoned, say P
i ,is an entry

procedure, then the invariant m
ust be restored and the m

onitor lock released before P
i is

destroyed. T
hus if the logic of the program

 allow
s an U

N
W

IN
D

, the program
m

er m
ust supply a

suitable handler in P
i to restore the invariant; M

esa w
ill autom

atically supply the code to release
the lock. If the program

m
er fails to supply an U

N
W

IN
D

 handler for an entry procedure, the lock is
notautom

atically released, but rem
ains set; the cause of the resulting deadlock is not hard to find.

4.
C

ondition variables

In this section w
e discuss the precise sem

antics of W
A

IT and other details associated w
ith

condition variables. H
oare’s definition of m

onitors [8] requires that a process w
aiting on a

condition variable m
ust run im

m
ediately w

hen another process signals
that variable, and that the

signaling process in turn runs as soon as the w
aiter leaves the m

onitor. T
his definition allow

s the
w

aiter to assum
e the truth of som

e predicate stronger than the m
onitor invariant (w

hich the
signaler m

ust of course establish), but it requires several additional process sw
itches w

henever a
process continues after a W

A
IT. It also requires that the signaling m

echanism
 be perfectly reliable.

M
esa takes a different view

: W
hen one process establishes a condition for w

hich som
e other

process m
ay be w

aiting, it notifies the corresponding condition variable. A
 N

O
T

IFY
 is regarded as

a
hintto a w

aiting process; it causes execution of som
e process w

aiting on the condition to
resum

e at som
e convenient future tim

e. W
hen the w

aiting process resum
es, it w

ill reacquire the

E
xperience w

ith P
rocesses and M

onitors in M
esa

11

m
onitor lock. T

here is no guarantee that som
e other process w

ill not enter the m
onitor before the

w
aiting process. H

ence nothing m
ore than the m

onitor invariant m
ay be assum

ed after a W
A

IT,
and the w

aiter m
ust reevaluate the situation each tim

e it resum
es. T

he proper pattern of code for
w

aiting is therefore:

W
H

IL
E

N
O

T <
O

K
 to proceed>

 D
O

W
A

IT
c

E
N

D
L

O
O

P.

T
his arrangem

ent results in an extra evaluation of the <
O

K
 to proceed>

 predicate after a w
ait,

com
pared to H

oare’s m
onitors, in w

hich the code is:

IF
N

O
T <

O
K

 to proceed>
 T

H
E

N
W

A
IT

c.

In return, how
ever, there are no extra process sw

itches, and indeed no constraints at all on w
hen

the w
aiting process m

ust run after a N
O

T
IFY

. In fact, it is perfectly all right to run the w
aiting

process even if there is no N
O

T
IFY

, although this is presum
ably pointless if a N

O
T

IFY
 is done

w
henever an interesting change is m

ade to the protected data.

It is possible that such a laissez-faire attitude to scheduling m
onitor accesses w

ill lead to
unfairness and even starvation. W

e do not think this is a legitim
ate cause for concern, since in a

properly designed system
 there should typically be no processes w

aiting for a m
onitor lock. A

s
H

oare, B
rinch H

ansen, K
eedy, and others have pointed out, the low

 level scheduling m
echanism

provided by m
onitor locks should not be used to im

plem
ent high level scheduling decisions

w
ithin a system

 (for exam
ple, about w

hich process should get a printer next). H
igh level

scheduling should be done by taking account of the specific characteristics of the resource being
scheduled (for exam

ple, w
hether the right kind of paper is in the printer). Such a scheduler w

ill
delay its client processes on condition variables after recording inform

ation about their
requirem

ents, m
ake its decisions based on this inform

ation, and notify the proper conditions. In
such a design the data protected by a m

onitor is never a bottleneck.

T
he verification rules for M

esa m
onitors are thus extrem

ely sim
ple: T

he m
onitor invariant m

ust
be established just before a return from

 an entry procedure or a W
A

IT, and it m
ay be assum

ed at
the start of an entry procedure and just after a W

A
IT. Since aw

akened w
aiters do not run

im
m

ediately, the predicate established before a N
O

T
IFY

 cannot be assum
ed after the

corresponding W
A

IT, but since the w
aiter tests explicitly for <

O
K

 to proceed>
, verification is

actually m
ade sim

pler and m
ore localized.

A
nother consequence of M

esa’s treatm
ent of N

O
T

IFY
 as a hint is that m

any applications do not
trouble to determ

ine w
hether the exact condition needed by a w

aiter has been established.
Instead, they choose a very cheap predicate w

hich im
plies the exact condition (for exam

ple, som
e

change has occurred), and N
O

T
IFY

 a covering condition variable. A
ny w

aiting process is then
responsible for determ

ining w
hether the exact condition holds; if not, it sim

ply w
aits again. For

exam
ple, a process m

ay need to w
ait until a particular object in a set changes state. A

 single
condition covers the entire set, and a process changing any of the objects broadcasts to this
condition (see Section 4.1). T

he inform
ation about exactly w

hich objects are currently of interest
is im

plicit in the states of the w
aiting processes, rather than having to be represented explicitly in

a shared data structure. T
his is an attractive w

ay to decouple the detailed design of tw
o processes:

it is feasible because the cost of w
aking up a process is sm

all.

E
xperience w

ith P
rocesses and M

onitors in M
esa

12

4.1
A

lternatives to N
O

T
IFY

W
ith this rule it is easy to add three additional w

ays to resum
e a w

aiting process:

T
im

eout.A
ssociated w

ith a condition variable is a tim
eout interval t.A

 process w
hich has been

w
aiting for tim

e tw
ill resum

e regardless of w
hether the condition has been notified. Presum

ably
in m

ost cases it w
ill check the tim

e and take som
e recovery action before w

aiting again. T
he

original design for tim
eouts raised an exception if the tim

eout occurred; it w
as changed because

m
any users sim

ply w
anted to retry on a tim

eout, and objected to the cost and coding com
plexity

of handling the exception. T
his decision could certainly go either w

ay.

A
bort.A

 process m
ay be aborted at any tim

e by executing A
bort[p].T

he effect is that the next
tim

e the process w
aits, or if it is w

aiting now
, it w

ill resum
e im

m
ediately and the A

borted
exception w

ill occur. T
his m

echanism
 allow

s one process to gently prod another, generally to
suggest that it should clean up and term

inate. T
he aborted process is, how

ever, free to do
arbitrary com

putations, or indeed to ignore the abort entirely.

B
roadcast.Instead of doing a N

O
T

IFY
 to a condition, a process m

ay do a B
R

O
A

D
C

A
ST, w

hich
causes

allthe processes w
aiting on the condition to resum

e, instead of sim
ply one of them

. Since
a

N
O

T
IFY

 is just a hint, it is alw
ays correct to use B

R
O

A
D

C
A

ST. It is better to use N
O

T
IFY

 if there
w

ill typically be several processes w
aiting on the condition, and it is know

n that any w
aiting

process can respond properly. O
n the other hand, there are tim

es w
hen a B

R
O

A
D

C
A

ST is correct
and a N

O
T

IFY
 is not; the alert reader m

ay have noticed a problem
 w

ith the exam
ple program

 in
Section 3.1, w

hich can be solved by replacing the N
O

T
IFY

 w
ith a B

R
O

A
D

C
A

ST.

N
one of these m

echanism
s affects the proof rule for m

onitors at all. E
ach provides a w

ay to
attract the attention of a w

aiting process at an appropriate tim
e.

N
ote that there is no w

ay to stop a runaw
ay process. T

his reflects the fact that M
esa processes are

cooperative. M
any aspects of the design w

ould not be appropriate in a com
petitive environm

ent
such as a general-purpose tim

esharing system
.

4.2
N

aked N
O

T
IFY

C
om

m
unication w

ith input/output devices is handled by m
onitors and condition variables m

uch
like com

m
unication am

ong processes. T
here is typically a shared data structure, w

hose details are
determ

ined by the hardw
are, for passing com

m
ands to the device and returning status

inform
ation. Since it is not possible for the device to w

ait on a m
onitor lock, the update

operations on this structure m
ust be designed so that the single w

ord atom
ic read and w

rite
operations provided by the m

em
ory are sufficient to m

ake them
 atom

ic. W
hen the device needs

attention, it can N
O

T
IFY

 a condition variable to w
ake up a w

aiting process (that is, the interrupt
handler); since the device does not actually acquire the m

onitor lock, its N
O

T
IFY

 is called a naked
N

O
T

IFY
. T

he device finds the address of the condition variable in a ftxed m
em

ory location.

T
here is one com

plication associated w
ith a naked N

O
T

IFY
: Since the notification is not protected

by a m
onitor lock, there can be a race. It is possible for a process to be in the m

onitor, find the
<

O
K

 to proceed>
 predicate to be FA

L
SE (that is, the device does not need attention), and be about

to do a W
A

IT, w
hen the device updates the shared data and does its N

O
T

IFY
. T

he W
A

IT w
ill then be

done and the N
O

T
IFY

 from
 the device w

ill be lost. W
ith ordinary processes, this cannot happen,

E
xperience w

ith P
rocesses and M

onitors in M
esa

13

since the m
onitor lock ensures that one process cannot be testing the predicate and preparing to

W
A

IT, w
hile another is changing the value of <

O
K

 to proceed>
 and doing the N

O
T

IFY
. T

he
problem

 is avoided by providing the fam
iliar w

akeup-w
aiting sw

itch [19] in a condition variable,
thus turning it into a binary sem

aphore [8]. T
his sw

itch is needed only for condition variables
that are notified by devices.

W
e briefly considered a design in w

hich devices w
ould w

ait on and acquire the m
onitor lock,

exactly like ordinary M
esa processes; this design is attractive because it avoids both the

anom
alies just discussed. H

ow
ever, there is a serious problem

 w
ith any kind of m

utual exclusion
betw

een tw
o processes w

hich run on processors of substantially different speeds: T
he faster

process m
ay have to w

ait for the slow
er one. T

he w
orst-case response tim

e of the faster process
therefore cannot be less than the tim

e the slow
er one needs to finish its critical section. A

lthough
one can get higher throughput from

 the faster processor than from
 the slow

er one, one cannot get
better w

orst-case real tim
e perform

ance. W
e consider this a fundam

ental deficiency.

It therefore seem
ed best to avoid any m

utual exclusion (except for that provided by the atom
ic

m
em

ory read and w
rite operations) betw

een M
esa code and device hardw

are and m
icrocode.

T
heir relationship is easily cast into a producer-consum

er form
, and this can be im

plem
ented,

using linked lists or arrays, w
ith only the m

em
ory’s m

utual exclusion. O
nly a sm

all am
ount of

M
esa code m

ust handle device data structures w
ithout the protection of a m

onitor. C
learly a

change of m
odels m

ust occur at som
e point betw

een a disk head and an application program
; w

e
see no good reason w

hy it should not happen w
ithin M

esa code, although it should certainly be
tightly encapsulated.

4.
P

riorities

In som
e applications it is desirable to use a priority scheduling discipline for allocating the

processor(s) to processes w
hich are not w

aiting. U
nless care is taken, the ordering im

plied by the
assignm

ent of priorities can be subverted by m
onitors. Suppose there are three priority levels (3

highest, 1 low
est), and three processes P

1 , P
2 ,and

P
3 ,one running at each level. L

et P
1 and P

3
com

m
unicate using a m

onitor M
.N

ow
 consider the follow

ing sequence of events:

1.
P

1 enters M
.

2.
P

1 is preem
pted by P

2 .
3.

P
2 is preem

pted by P
3 .

4.
P

3 tries to enter the m
onitor, and w

aits for the lock.
5.

P
2 runs again, and can effectively prevent P

3 from
 running, contrary to the purpose of the

priorities.

A
 sim

ple w
ay to avoid this situation is to associate w

ith each m
onitor the priority of the highest

priority process w
hich ever enters that m

onitor. T
hen w

henever a process enters a m
onitor, its

priority is tem
porarily increased to the m

onitor’s priority. M
odula solves the problem

 in an even
sim

pler w
ay—

interrupts are disabled on entry to M
, thus effectively giving the process the

highest possible priority, as w
ell as supplying the m

onitor lock for M
. T

his approach fails if a
page fault can occur w

hile executing in M
.

T
he m

echanism
 is not free, and w

hether or not it is needed depends on the application. For
instance, if only processes w

ith adjacent priorities share a m
onitor, the problem

 described above

E
xperience w

ith P
rocesses and M

onitors in M
esa

14

cannot occur. E
ven if this is not the case, the problem

 m
ay occur rarely, and absolute

enforcem
ent of the priority scheduling m

ay not be im
portant.

5.
Im

plem
entation

T
he im

plem
entation of processes and m

onitors is split m
ore or less equally am

ong the M
esa

com
piler, the runtim

e package, and the underlying m
achine. T

he com
piler recognizes the various

syntactic constructs and generates appropriate code, including im
plicit calls on built-in (that is,

know
n to the com

piler) support procedures. T
he runtim

e im
plem

ents the less heavily used
operations, such as process creation and destruction. T

he m
achine directly im

plem
ents the m

ore
heavily used features, such as process scheduling and m

onitor entry/exit.

N
ote that it w

as prim
arily frequency of use, rather than cleanliness of abstraction, that m

otivated
our division of labor betw

een processor and softw
are. N

onetheless, the split did turn out to be a
fairly clean layering, in w

hich the birth and death of processes are im
plem

ented on top of
m

onitors and process scheduling.

5.1
T

he processor

T
he existence of a process is norm

ally represented only by its stack of procedure activation
records or fram

es,plus a sm
all (10-byte) description called a P

rocessState. Fram
es are allocated

from
 a fram

e heap by a m
icrocoded allocator. T

hey com
e in a range of sizes that differ by 20

percent to 30 percent; there is a separate free list for each size up to a few
 hundred bytes (about

15 sizes). A
llocating and freeing fram

es are thus very fast, except w
hen m

ore fram
es of a given

size are needed. B
ecause all fram

es com
e from

 the heap, there is no need to preplan the stack
space needed by a process. W

hen a fram
e of a given size is needed but not available, there is a

fram
e fault, and the fault handler allocates m

ore fram
es in virtual m

em
ory. R

esident procedures
have a private fram

e heap that is replenished by seizing real m
em

ory from
 the virtual m

em
ory

m
anager.

T
he

P
rocessStates

are kept in a fixed table know
n to the processor; the size of this table

determ
ines the m

axim
um

 num
ber of processes. A

t any given tim
e, a P

rocessState is on exactly
one

queue.T
here are four kinds of queues:

R
eady queue.T

here is one ready queue, containing all processes that are ready to run.

M
onitor lock queue.W

hen a process attem
pts to enter a locked m

onitor, it is m
oved from

 the
ready queue to a queue associated w

ith the m
onitor lock.

C
ondition variable queue.W

hen a process executes a W
A

IT, it is m
oved from

 the ready queue to
a queue associated w

ith the condition variable.

F
ault queue.A

 fault can m
ake a process tem

porarily unable to run; such a process is m
oved from

the ready queue to a fault queue, and a fault handling process is notified.

E
xperience w

ith P
rocesses and M

onitors in M
esa

15

Q
ueue cell

P
rocessS

tate
P

rocessS
tate

P
rocessState

H
ead

T
ail

F
igure 1: A

 process queue

Q
ueues are kept sorted by process priority. T

he im
plem

entation of queues is a sim
ple one w

ay
circular list, w

ith the queue cell pointing to the tailof the queue (see Figure 1). T
his com

pact
structure allow

s rapid access to both the head and the tail of the queue. Insertion at the tail and
rem

oval at the head are quick and easy; m
ore general insertion and deletion involve scanning

som
e fraction of the queue. T

he queues are usually short enough that this is not a problem
. O

nly
the ready queue grow

s to a substantial size during norm
al operation, and its patterns of insertions

and deletions are such that queue scanning overhead is sm
all.

T
he queue cell of the ready queue is kept in a fixed location know

n to the processor, w
hose

fundam
ental task is to alw

ays execute the next instruction of the highest priority ready process.
T

o this end, a check is m
ade before each instruction, and a process sw

itch is done if necessary. In
particular, this is the m

echanism
 by w

hich interrupts are serviced. T
he m

achine thus im
plem

ents
a sim

ple priority scheduler, w
hich is preem

ptive betw
een priorities and FIFO

 w
ithin a given

priority.

Q
ueues other than the ready list are passed to the processor by softw

are as operands of
instructions, or through a trap vector in the case of fault queues. T

he queue cells are passed by
reference, since in general they m

ust be updated (that is, the identity of the tail m
ay change.)

M
onitor locks and condition variables are im

plem
ented as sm

all records containing their
associated queue cells plus a sm

all am
ount of extra inform

ation: in a m
onitor lock, the actual

lock; in a condition variable, the tim
eout interval and the w

akeup-w
aiting sw

itch.

A
t a fixed interval (about 20 tim

es per second) the processor scans the table of P
rocessStates

and
notifies any w

aiting processes w
hose tim

eout intervals have expired. T
his special N

O
T

IFY
 is

tricky because the processor does not know
 the location of the condition variables on w

hich such
processes are w

aiting, and hence cannot update the queue cells. T
his problem

 is solved by
leaving the queue cells out of date, but m

arking the processes in such a w
ay that the next norm

al
usage of the queue cells w

ill notice the situation and update them
 appropriately.

T
here is no provision for tim

e-slicing in the current im
plem

entation, but it could easily be added,
since it has no effect on the sem

antics of processes.

E
xperience w

ith P
rocesses and M

onitors in M
esa

16

5.2
T

he runtim
e support package

T
he

P
rocess

m
odule of the M

esa runtim
e package does creation and deletion of processes. T

his
m

odule is w
ritten (in M

esa) as a m
onitor, using the underlying synchronization m

achinery of the
processor to coordinate the im

plem
entation of FO

R
K

 and JO
IN

 as the built-in entry procedures
P

rocess.F
ork

and
P

rocess.Join, respectively. T
he unused P

rocessStates
are treated as essentially

norm
al processes w

hich are all w
aiting on a condition variable called rebirth.A

 call of
P

rocess.F
ork

perform
s appropriate “brain surgery” on the first process in the queue and then

notifies rebirth
to bring the process to life: P

rocess.Join synchronizes w
ith the dying process and

retrieves the results. T
he (im

plicitly invoked) procedure P
rocess.E

nd
synchronizes the dying

process w
ith the joining process and then com

m
its suicide by w

aiting on rebirth.A
n explicit call

on
P

rocess.D
etach m

arks the process so that w
hen it later calls P

rocess.E
nd,it w

ill sim
ply

destroy itself im
m

ediately.

T
he operations P

rocess.A
bortand

P
rocess.Y

ield are provided to allow
 special handling of

processes that w
ait too long and com

pute too long, respectively. B
oth adjust the states of the

appropriate queues, using the m
achine’s standard queueing m

echanism
s. U

tility routines are also
provided by the runtim

e for such operations as setting a condition variable tim
eout and setting a

process priority.

5.3
T

he com
piler

T
he com

piler recognizes the syntactic constructs for processes and m
onitors and em

its the
appropriate code (for exam

ple, a M
O

N
IT

O
R

E
N

T
R

Y
 instruction at the start of each entry procedure,

an im
plicit call of P

rocess.F
ork

for each FO
R

K
). T

he com
piler also perform

s special static checks
to help avoid certain frequently encountered errors. For exam

ple, use of W
A

IT in an external
procedure is flagged as an error, as is a direct call from

 an external procedure to an internal one.
B

ecause of the pow
er of the underlying M

esa control structure prim
itives, and the care w

ith
w

hich concurrency w
as integrated into the language, the introduction of processes and m

onitors
into M

esa resulted in rem
arkably little upheaval inside the com

piler.

5.4
P

erform
ance

M
esa’s concurrent program

m
ing facilities allow

 the intrinsic parallelism
 of application program

s
to be represented naturally; the hope is that w

ell structured program
s w

ith high global efficiency
w

ill result. A
t the sam

e tim
e, these facilities have nontrivial local costs in storage and/or

execution tim
e w

hen com
pared w

ith sim
ilar sequential constructs; it is im

portant to m
inim

ize
these costs, so that the facilities can be applied to a finer grain of concurrency. T

his section
sum

m
arizes the costs of processes and m

onitors relative to other basic M
esa constructs, such as

sim
ple statem

ents, procedures, and m
odules. O

f course, the relative efficiency of an arbitrary
concurrent program

 and an equivalent sequential one cannot be determ
ined from

 these num
bers

alone; the intent is sim
ply to provide an indication of the relative costs of various local

constructs.

Storage costs fall naturally into data and program
 storage (both of w

hich reside in sw
appable

virtual m
em

ory unless otherw
ise indicated). T

he m
inim

um
 cost for the existence of a M

esa
m

odule is 8 bytes of data and 2 bytes of code. C
hanging the m

odule to a m
onitor adds 2 bytes of

data and 2 bytes of code. T
he prim

e com
ponent of a m

odule is a set of procedures, each of w
hich

E
xperience w

ith P
rocesses and M

onitors in M
esa

17

requires a m
inim

um
 of an 8-byte activation record and 2 bytes of code. C

hanging a norm
al

procedure to a m
onitor entry procedure leaves the size of the activation record unchanged, and

adds 8 bytes of code. A
ll of these costs are sm

all com
pared w

ith the program
 and data storage

actually needed by typical m
odules and procedures. T

he other cost specific to m
onitors is space

for condition variables; each condition variable occupies 4 bytes of data storage, w
hile W

A
IT and

N
O

T
IFY

 require 12 bytes and 3 bytes of code, respectively.

T
he data storage overhead for a process is 10 bytes of resident storage for its P

rocessState, plus
the sw

appable storage for its stack of procedure activation records. T
he process itself contains no

extra code, but the code for the FO
R

K
 and JO

IN
 w

hich create and delete it together occupy 13
bytes, as com

pared w
ith 3 bytes for a norm

al procedure call and return. T
he FO

R
K

/JO
IN

 sequence
also uses 2 data bytes to store the process value. In sum

m
ary:

Space
(bytes)

C
onstruct

data
code

m
odule

8
2

procedure
8

2
call +

 return
-

3
m

onitor
10

4
entry procedure

8
10

FO
R

K
+

JO
IN

2
13

process
10

0
condition variable

4
W

A
IT

-
12

N
O

T
IFY

-
3

For m
easuring execution tim

es w
e define a unit called a tick:the tim

e required to execute a
sim

ple instruction (for exam
ple, on a “one M

IP” m
achine, one tick w

ould be one m
icrosecond).

A
 tick is arbitrarily set at one-fourth of the tim

e needed to execute the sim
ple statem

ent “a
�b

+
c”

(that is, tw
o loads, an add, and a store). O

ne interesting num
ber against w

hich to com
pare the

concurrency facilities is the cost of a norm
al procedure call (and its associated return), w

hich
takes 30 ticks if there are no argum

ents or results.

T
he cost of calling and returning from

 a m
onitor entry procedure is 50 ticks, about 70 percent

m
ore than an ordinary call and return. In practice, the percentage increase is som

ew
hat low

er,
since typical procedures pass argum

ents and return results, at a cost of 24 ticks per item
. A

process sw
itch takes 60 ticks; this includes the queue m

anipulations and all the state saving and
restoring. T

he speed of W
A

IT and N
O

T
IFY

 depends som
ew

hat on the num
ber and priorities of the

processes involved, but representative figures are 15 ticks for a W
A

IT and 6 ticks for a N
O

T
IFY

.
Finally, the m

inim
um

 cost of a FO
R

K
/

JO
IN

 pair is 1,100 ticks, or about 38 tim
es that of a

procedure call. T
o sum

m
arize:

E
xperience w

ith P
rocesses and M

onitors in M
esa

18

C
onstruct

T
im

e (ticks)

sim
ple instruction

1
call +

 return
30

m
onitor call +

 return
50

process sw
itch

60
W

A
IT

15
N

O
T

IFY
, no one w

aiting
4

N
O

T
IFY

, process w
aiting

9
FO

R
K

+
JO

IN
1,100

O
n the basis of these perform

ance figures, w
e feel that our im

plem
entation has m

et our efficiency
goals, w

ith the possible exception of FO
R

K
 and JO

IN
. T

he decision to im
plem

ent these tw
o

language constructs in softw
are rather than in the underlying m

achine is the m
ain reason for their

som
ew

hat lackluster perform
ance. N

evertheless, w
e still regard this decision as a sound one,

since these tw
o facilities are considerably m

ore com
plex than the basic synchronization

m
echanism

, and are used m
uch less frequently (especially JO

IN
, since the detached processes

discussed in Section 2 have turned out to be quite popular).

6.
A

pplications

In this section w
e describe the w

ay in w
hich processes and m

onitors are used by three substantial
M

esa program
s: an operating system

, a calendar system
 using replicated databases, and an

internetw
ork gatew

ay.

6.1
P

ilot: A
 general-purpose operating system

Pilot is a M
esa-based operating system

 [18] w
hich runs on a large personal com

puter. It w
as

designed jointly w
ith the new

 language features and m
akes heavy use of them

. Pilot has several
autonom

ous processes of its ow
n, and can be called by any num

ber of client processes of any
priority, in a fully asynchronous m

anner. E
xploiting this potential concurrency requires extensive

use of m
onitors w

ithin Pilot; the roughly 75 program
 m

odules contain nearly 40 separate
m

onitors.

T
he Pilot im

plem
entation includes about 15 dedicated processes (the exact num

ber depends on
the hardw

are configuration); m
ost of these are event handlers for three classes of events:

I/O
 interrupts.N

aked notifies as discussed in Section 4.2.

P
rocess faults.Page faults and other such events, signaled via fault queues as discussed in

Section 5.1. B
oth client code and the higher levels of Pilot, including som

e of the dedicated
processes, can cause such faults.

Internal exceptions.M
issing entries in resident databases, for exam

ple, cause an appropriate high
level “helper” process to w

ake up and retrieve the needed data from
 secondary storage.

T
here are also a few

 “daem
on” processes, w

hich aw
aken periodically and perform

 housekeeping
chores (for exam

ple, sw
ap out unreferenced pages). E

ssentially all of Pilot’s internal processes

E
xperience w

ith P
rocesses and M

onitors in M
esa

19

and m
onitors are created at system

 initialization tim
e (in particular, a suitable com

plem
ent of

interrupt handler processes is created to m
atch the actual hardw

are configuration, w
hich is deter-

m
ined by interrogating the hardw

are). T
he running system

 m
akes no use of dynam

ic process and
m

onitor creation, largely because m
uch of Pilot is involved in im

plem
enting facilities such as

virtual m
em

ory w
hich are them

selves used by the dynam
ic creation softw

are.

T
he internal structure of P

ilot is fairly com
plicated, but careful placem

ent of m
onitors and

dedicated processes succeeded in lim
iting the num

ber of bugs w
hich caused deadlock; over the

life of the system
, som

ew
here betw

een one and tw
o dozen distinct deadlocks have been

discovered, all of w
hich have been fixed relatively easily w

ithout any global disruption of the
system

’s structure.

A
t least tw

o areas have caused annoying problem
s in the developm

ent of Pilot:

1.
T

he lack of m
utual exclusion in the handling of interrupts.A

s in m
ore conventional interrupt

system
s, subtle bugs have occurred due to tim

ing races betw
een I/O

 devices and their
handlers. T

o som
e extent, the illusion of m

utual exclusion provided by the casting of
interrupt code as a m

onitor m
ay have contributed to this, although w

e feel that the resultant
econom

y of m
echanism

 still justifies this choice.

2.
T

he interaction of the concurrency and exception facilities.A
side from

 the general problem
s

of exception handling in a concurrent environm
ent, w

e have experienced som
e difficulties

due to the specific interactions of M
esa signals w

ith processes and m
onitors (see Sections 3.1

and 3.4). In particular, the reasonable and consistent handling of signals (including U
N

W
IN

D
S)

in entry procedures represents a considerable increase in the m
ental overhead involved in

designing a new
 m

onitor or understanding an existing one.

6.2
V

iolet: A
 distributed calendar system

T
he V

iolet system
 [6, 7] is a distributed database m

anager w
hich supports replicated data files,

and provides a display interface to a distributed calendar system
. It is constructed according to

the hierarchy of abstractions show
n in Figure 2. E

ach level builds on the next low
er one by

calling procedures supplied by it. In addition, tw
o of the levels explicitly deal w

ith m
ore than one

process. O
f course, as any level w

ith m
ultiple processes calls low

er levels, it is possible for
m

ultiple processes to be executing procedures in those levels as w
ell.

T
he user interface level has three processes: D

isplay, K
eyboard, and

D
ataC

hanges.T
he

D
isplay

process is responsible for keeping the display of the database consistent w
ith the view

s specified
by the user and w

ith changes occurring in the database itself. T
he other processes notify it w

hen
changes occur, and it calls on low

er levels to read inform
ation for updating the display. D

isplay
never calls update operations in any low

er level. T
he other tw

o processes respond to changes
initiated either by the user (K

eyboard)
or by the database (D

ataC
hanges).T

he latter process is
FO

R
K

ed from
 the T

ransactions
m

odule w
hen data being looked at by V

iolet changes, and
disappears w

hen it has reported the changes to D
isplay.

E
xperience w

ith P
rocesses and M

onitors in M
esa

20

U
ser interface

F
igure 2: T

he internal structure of V
iolet

V
iew

s

B
uffers

File suites

T
ransactions

N
etw

orks

Stable files

C
ontainers

C
alendar nam

es

V
olatile files

Process table

4

L
evel

3210

A
 m

ore com
plex constellation of processes exists in F

ileSuites, w
hich constructs a single

replicated file from
 a set of representative files, each containing data from

 som
e version of the

replicated file. T
he representatives are stored in a transactional file system

 [11], so that each one
is updated atom

ically, and each carries a version num
ber. For each F

ileSuite being accessed,
there is a m

onitor that keeps track of the know
n representatives and their version num

bers. T
he

replicated file is considered to be updated w
hen all the representatives in a w

rite quorum
 have

been updated; the latest version can be found by exam
ining a read quorum

.Provided the sum
 of

the read quorum
 and the w

rite quorum
 is as large as the total set of representatives, the replicated

file behaves like a conventional file.

W
hen the file suite is created, it FO

R
K

s and detaches an inquiry
process for each representative.

T
his process tries to read the representative’s version num

ber, and if successful, reports the
num

ber to the m
onitor associated w

ith the file suite and notifies the condition C
row

dL
arger.A

ny
process trying to read from

 the suite m
ust collect a read quorum

. If there are not enough repre-
sentatives present yet, it w

aits on C
row

dL
arger.T

he inquiry processes expire after their w
ork is

done.

E
xperience w

ith P
rocesses and M

onitors in M
esa

21

W
hen the client w

ants to update the F
ileSuite, it m

ust collect a w
rite quorum

 of representatives
containing the current version, again w

aiting on C
row

dL
arger

if one is not yet present. It then
FO

R
K

S an update
process for each representative in the quorum

, and each tries to w
rite its file.

A
fter

FO
R

K
ing the update processes, the client JO

IN
S each one in turn, and hence does not proceed

until all have com
pleted. B

ecause all processes run w
ithin the sam

e transaction, the underlying
transactional file system

 guarantees that either all the representatives in the quorum
 w

ill be
w

ritten, or none of them
.

It is possible that a w
rite quorum

 is not currently accessible, but a read quorum
 is. In this case the

w
riting client FO

R
K

s a copy
process for each representative w

hich is accessible but is not up to
date. T

his process copies the current file suite contents (obtained from
 the read quorum

) into the
representative, w

hich is now
 eligible to join the w

rite quorum
.

T
hus as m

any as three processes m
ay be created for each representative in each replicated file. In

the norm
al situation w

hen the state of enough representatives is know
n, how

ever, all these
processes have done their w

ork and vanished; only one m
onitor call is required to collect a

quorum
. T

his potentially com
plex structure is held together by a single m

onitor containing an
array of representative states and a single condition variable.

6.3
G

atew
ay: A

n internetw
ork forw

arder

A
nother substantial application program

 that has been im
plem

ented in M
esa using the process

and m
onitor facilities is an internetw

ork gatew
ay for packet netw

orks [2]. T
he gatew

ay is
attached to tw

o or m
ore netw

orks and serves as the connection point betw
een them

, passing
packets across netw

ork boundaries as required. T
o perform

 this task efficiently requires rather
heavy use of concurrency.

A
t the low

est level, the gatew
ay contains a set of device drivers, one per device, typically

consisting of a high priority interrupt process, and a m
onitor for synchronizing w

ith the device
and w

ith non-interrupt-level softw
are. A

side from
 the drivers for standard devices (disk,

keyboard, etc.) a gatew
ay contains tw

o or m
ore drivers for E

thernet local broadcast netw
orks

[16] and/or com
m

on carrier lines. E
ach E

thernet driver has tw
o processes, an interrupt process

and a background process for autonom
ous handling of tim

eouts and other infrequent events. T
he

driver for com
m

on carrier lines is sim
ilar, but has a third process w

hich m
akes a collection of

lines resem
ble a single E

thernet by iteratively sim
ulating a broadcast. T

he other netw
ork drivers

have m
uch the sam

e structure; all drivers provide the sam
e standard netw

ork interface to higher
level softw

are.

T
he next level of softw

are provides packet routing and dispatching functions. T
he dispatcher

consists of a m
onitor and a dedicated process. T

he m
onitor synchronizes interactions betw

een the
drivers and the dispatcher process. T

he dispatcher process is norm
ally w

aiting for the com
pletion

of a packet transfer (input or output); w
hen one occurs, the interrupt process handles the inter-

rupt, notifies the dispatcher, and im
m

ediately returns to aw
ait the next interrupt. For exam

ple, on
input the interrupt process notifies the dispatcher, w

hich dispatches the new
ly arrived packet to

the appropriate socket for further processing by invoking a procedure associated w
ith the socket.

T
he

router
contains a m

onitor that keeps a routing
table m

apping netw
ork nam

es to addresses of
other gatew

ay m
achines. T

his defines the next “hop” in the path to each accessible rem
ote

E
xperience w

ith P
rocesses and M

onitors in M
esa

22

netw
ork. T

he router also contains a dedicated housekeeping process that m
aintains the table by

exchanging special packets w
ith other gatew

ays. A
 packet is transm

itted rather differently than it
is received. T

he process w
ishing to transm

it to a rem
ote socket calls into the router m

onitor to
consult the routing table, and then the sam

e process calls directly into the appropriate netw
ork

driver m
onitor to initiate the output operation. Such asym

m
etry betw

een input and output is
particularly characteristic of packet com

m
unication, but is also typical of m

uch other I/O
softw

are.

T
he prim

ary operation of the gatew
ay is now

 easy to describe: W
hen the arrival of a packet has

been processed up through the level of the dispatcher, and it is discovered that the packet is
addressed to a rem

ote socket, the dispatcher forw
ards it by doing a norm

al transm
ission; that is,

consulting the routing table and calling back dow
n to the driver to initiate output. T

hus, although
the gatew

ay contains a substantial num
ber of asynchronous processes, the m

ost critical path
(forw

arding a m
essage) involves only a single sw

itch betw
een a pair of processes.

C
onclusion

T
he integration of processes and m

onitors into the M
esa language w

as a som
ew

hat m
ore

substantial task than one m
ight have anticipated, given the flexibility of M

esa’s control structures
and the am

ount of published w
ork on m

onitors. T
his w

as largely because M
esa is designed for

the construction of large, serious program
s, and processes and m

onitors had to be refined
sufficiently to fit into this context. T

he task has been accom
plished, how

ever, yielding a set of
language features of sufficient pow

er that they serve as the only softw
are concurrency

m
echanism

 on our personal com
puter, handling situations ranging from

 input/output interrupts to
cooperative resource sharing am

ong unrelated application program
s.

R
eceived June 1979; accepted Septem

ber 1979: revised N
ovem

ber 1979

R
eferences

1.
A

m
erican N

ational Standard P
rogram

m
ing L

anguage P
L

/1.X
3.53,A

m
erican N

at. Standards
Inst., N

ew
 Y

ork, 1976.

2.
B

oggs, D
.R

. et al. P
up: A

n internetw
ork architecture. IE

E
E

 T
rans. on C

om
m

unications
28, 4

(A
pril 1980).

3.
B

rinch H
ansen, P. O

perating System
 P

rinciples. Prentice-H
all, July 1973.

4.
B

rinch H
ansen. P. T

he program
m

ing language C
oncurrent Pascal. IE

E
E

 T
rans. on Softw

are
E

ngineering
1,2 (June 1975), 199-207.

5.
D

ijkstra, E
.W

. H
ierarchical ordering of sequential processes. In O

perating System
s

T
echniques, A

cadem
ic Press, 1972.

6.
G

ifford, D
.K

. W
eighted voting for replicated data. O

perating System
s R

eview
 13, 5

(D
ec.1979), l50-l62.

E
xperience w

ith P
rocesses and M

onitors in M
esa

23

7.
G

ifford. D
.K

. V
iolet, an experim

ental decentralized system
. Integrated O

ffice S
ystem

s
W

orkshop, IR
IA

, R
ocquencourt, France, N

ov. 1979 (also available as C
SL

 report 79-12,
X

erox R
esearch C

enter, Palo A
lto, C

alif.).

8.
H

oare, C
.A

.R
. M

onitors: A
n operating system

 structuring concept. C
om

m
. A

C
M

17, 10
(O

ct.1974), 549-557.

9.
H

oare, C
.A

.R
. C

om
m

unicating sequential processes. C
om

m
. A

C
M

21, 8 (A
ug.1978), 666-

677.

10.H
ow

ard, J.H
. Signaling in m

onitors. Second Int. C
onf. on Softw

are E
ngineering, San

Francisco, O
ct.1976, 47-52.

11.Israel, J.E
., M

itchell, J.G
., and Sturgis, H

.E
. Separating data from

 function in a distributed
file system

. Second Int. Sym
posium

 on O
perating System

s, IR
IA

, R
ocquencourt, France, O

ct.
1978.

12.K
eedy, J.J. O

n structuring operating system
s w

ith m
onitors. A

ustralian C
om

puter J.10, 1
(Feb.1978), 23-27 (reprinted in O

perating System
s R

eview
13, 1 (Jan.1979), 5-9).

13.L
am

pson, B
.W

., M
itchell, J.G

., and Satterthw
aite, E

.H
. O

n the transfer of control betw
een

contexts. L
ecture N

otes in C
om

puter Science 19, Springer, 1974, 181-203.

14.L
auer. H

.E
., and N

eedham
. R

.M
. O

n the duality of operating system
 structures. Second Int.

Sym
posium

 on O
perating System

s, IR
IA

, R
ocquencourt, France, O

ct. 1978 (reprinted in
O

perating System
s R

eview
 13,2

(A
pril 1979), 3-19).

15.L
ister, A

M
., and M

aynard. K
.J. A

n im
plem

entation of m
onitors. Softw

are—
P

ractice and
E

xperience 6,3 (July 1976), 377-386.

16.M
etcalfe. R

.M
., and B

oggs, D
.G

. E
thernet: Packet sw

itching for local com
puter netw

orks.
C

om
m

. A
C

M
 19, 7 (July 1976), 395-403.

17.M
itchell. J.G

., M
aybury. W

., and Sw
eet, R

. M
esa L

anguage M
anual. X

erox R
esearch C

enter,
Palo A

lto, C
alif., 1979.

18.R
edell, D

., et al. Pilot: A
n operating system

 for a personal com
puter. C

om
m

. A
C

M
 23,2

(Feb.1980).

19.Saltzer, J.H
. T

raffic C
ontrol in a M

ultiplexed C
om

puter System
. M

A
C

-T
R

-30, M
IT

, July
1966.

20.Saxena, A
.R

., and B
redt, T

.H
. A

 structured specification of a hierarchical operating system
.

SIG
P

L
A

N
 N

otices
10, 6

(June 1975), 310-318.

21.W
irth, N

. M
odula: A

 language for m
odular m

ulti-program
m

ing. Softw
are—

P
ractice and

E
xperience 7, 1 (Jan.1977), 3-36.

