Implementing constant-bandwidth servers upon
multiprocessor platforms

Sanjoy Baruah*

Abstract

In constant-bandwidth server (CBS) systems, sev-
eral different applications are executed upon a shared com-
puting platform in such a manner that each application
seems to be executing on a slower dedicated processor. CBS
systems have thus far only been implemented upon unipro-
cessors; here, a multiprocessor extension, which can be im-
plemented upon computing platforms comprised of several
identical preemptable processors, is proposed and proven
correct.

1. Introduction and Motivation

Conventional real-time scheduling theory has tended
to focus upon the worst-case analysis of very sim-
ple systems that are restricted to execute in strictly-
controlled environments. Such systems are typically
modelled as finite collections of simple, highly repeti-
tive tasks, each of which generates jobs in a very pre-
dictable manner. These jobs have upper bounds upon
their worst-case execution requirements, and associ-
ated deadlines. Real-time scheduling theory has tra-
ditionally focused upon the development of algorithms
for feasibility analysis (determining whether all jobs
can complete execution by their deadlines) and run-
time scheduling (generating schedules at run-time for
systems that are deemed to be feasible) of such sys-
tems.

This traditional perspective of real-time schedul-
ing theory has served the safety-critical embedded sys-
tems community well. Since the consequences of fail-
ure in safety-critical systems are typically unaccept-
ably high, it makes sense that such systems be care-
fully crafted, and exhaustively analyzed. However over
the last decade or so, the field of real-time systems has
been turning its attention to applications that are not
all safety-critical, but that nevertheless have significant

*Contact author (email: baruah@cs.unc.edu). Supported in
part by the National Science Foundation (Grant Nos. CCR-
9972105, CCR-9988327, and 1TR-0082866).

Joél Goossens

Giuseppe Lipari

real-time constraints. Such applications include tele-
conferencing; displaying continuous media (CM) such
as audio and video on general-purpose workstations;
collaborative tools that permit multiple, distributed
users to collaborate in a synchronized, concurrent man-
ner; etc. Such applications have considerably broad-
ened the focus of the discipline of real-time computing:
the restricted perspective of real-time systems as small,
safety-critical systems that must be subjected to worst-
case analysis is proving increasingly inadequate. The
new perspective is towards being able to provide signif-
icant real-time support within the context of general-
purpose multi-tasking operating systems, with the un-
derstanding that not all applications need the same
“degree” of real-time support — not all applications are
equally important, or have deadlines that are equally
“hard,” or of the same time-scale. This paradigm has
been somewhat formalized in the concept of open real-
time environments [2].

In an open real-time environment, developers of
each application that has real-time constraints can de-
velop the application independently, and validate the
schedulability of the application independently of other
applications that may run together with it. Each such
application is characterized by a few timing (and other)
parameters, which characterize its real-time and re-
source requirements. Any real-time application may
request to begin execution at run-time. The open sys-
tem has a simple but accurate acceptance test that
does not rely on a global schedulability analysis; rather,
it treats each multi-threaded real-time application as
a “black box” that is completely characterized by its
specified parameters. Upon receiving a request to start
a new real-time application, the open system subjects
the application to the admission test and accepts the
application only if the application passes the test. Once
the system accepts a real-time application, it schedules
the application according to the algorithm chosen by
its developers, and guarantees the schedulability of the
application regardless of the behavior of other applica-
tions in the system.

Most open real-time environments that have

been implemented are based upon two-level schedul-
ing schemes, commonly known as bandwidth
servers [12, 1, 2]. In bandwidth server systems, there
is a scheduling entity called a server associated with
each application, and a single scheduling entity called
the resource scheduler that arbitrates access to the
shared CPU. Each server is characterized by certain
parameters which specify exactly its performance ex-
pectations. The goal of the resource scheduler is to
schedule run-time resources in such a manner that each
server is guaranteed a certain (quantifiable) level of
service, with the exact guarantee depending upon the
server parameters. That is, a server’s parameters repre-
sent its contract with the system, and the global sched-
uler is obliged to fulfil its part of the contract by pro-
viding the level of service contracted for. However, it is
incumbent upon each server, and not the global sched-
uler, to ensure that the individual jobs that comprise
the application being modelled by this server perform
as expected.

The resource scheduler determines at each instant
in time which application should be permitted to exe-
cute: for the application that is selected for execution,
the associated server scheduler determines which job of
that application is to execute. Such bandwidth servers
typically base the resource scheduler upon the earliest
deadline first scheduling algorithm (EDF) [8, 3], but
permit each application to choose the kind of server
scheduler that is most appropriate to its needs. Each
application is characterized by a parameter known as
its required utilization, which denotes the fraction
of the shared CPU’s capacity that is needed by this ap-
plication. (In some servers, notably CBS [1] each ap-
plication is characterized by an additional parameter
— a timeliness parameter — indicating the granu-
larity of time from the application’s perspective: the
smaller the value of this parameter, the finer the no-
tion of time for the application and the less tolerant
the application is to delays. E.g., an audio playback
application would choose its timeliness parameter to
be smaller than an MPEG player, since the human ear
is more sensitive to temporal jitter than the human eye.
It is incumbent upon the CBS scheduling algorithm to
ensure that these timeliness constraints are met.) Ad-
mission control is then a simple utilization-based test:
a new application is accepted by an open real-time en-
vironment if its desired utilization, when summed with
the cumulative utilization of all previously-admitted
applications, does not exceed the total capacity of the
CPU. Of course, such an admission control test cru-
cially depends upon the fact that the global scheduler
is EDF-based, and the optimality of EDF in unipro-
cessor systems —since EDF is not optimal in multipro-
cessor environments, such an approach does not extend
directly to multiprocessor open real-time environments.

Multiprocessor scheduling theory. Over the past
few decades, real-time scheduling theory has made dra-
matic advances. However, many of the new results are
applicable only to uniprocessor real-time systems. As
real-time application software requirements in open en-
vironments have grown increasingly more complex, it
is rapidly becoming unreasonable to expect to imple-
ment them as uniprocessor systems. Even when such
uniprocessor implementations are technically feasible
(i-e., devices of sufficient computing capacity do exist),
they are often not cost-effective: in general, it typically
costs far less to purchase k processors of a specified ca-
pacity than it does to purchase one processor that is k
times as fast. Recently, therefore, there have been sig-
nificant efforts to extend real-time scheduling theory to
make it applicable to multiprocessor systems as well.

This research. Thus far, research in the two fields
of designing open real-time environments and multipro-
cessor scheduling theory has proceeded independently
of each other — open real-time environments that have
been designed are uniprocessor systems, while most
multiprocessor real-time research has focused upon de-
veloping feasibility-analysis and run-time scheduling
algorithms for very simple system models (e.g., of sys-
tems comprised entirely of periodic tasks [8]) that ex-
ecute in strictly-controlled environments. As stated
above, however, the kinds of applications that have mo-
tivated the design of open real-time environments are
typically very computation-intensive: in implementing
open real-time environments upon uniprocessor plat-
forms one very soon runs up against a utilization
bottleneck in that few such applications can simul-
taneously coexist upon a single processor. The obvi-
ous solution to this bottleneck would be to implement
such open real-time environments upon multiprocessor
platforms; however, the current theory underlying the
design of open environments does not seem to gener-
alize to multiprocessor platforms. The goal of the re-
search described here is to develop the scheduling theory
necessary to be able to implement open real-time envi-
ronments upon multiprocessor platforms. To this end,
we apply recent results that have been obtained con-
cerning the scheduling of periodic task systems upon
multiprocessor platforms (see, e.g., [4, 13]) to design
(and prove correct) Algorithm M-CBS, a scheduling
algorithm for open multiprocessor platforms which pro-
vides service guarantees to individual servers as well as
ensure inter-server isolation.

Organization. The remainder of this paper is orga-
nized as follows. In Section 2, we present the abstract
model we use to represent a multi-server real-time sys-
tem, and state some of our assumptions. In Section 3,
we provide a detailed description of Algorithm M-CBS;

in Section 4, we prove that Algorithm M-CBS meets
its design goals of providing per-application guaran-
teed percormance and inter-application isolation.

2. System Model

In this paper, we consider a real-time system com-
prised of n servers S1,952,...,5,, that is to be imple-
mented upon a platform comprised of m identical mul-
tiprocessors — without loss of generality, each proces-
sor is assumed to have unit processing capacity. We
assume that the scheduling model allows for processor
preemption and interprocessor migration — a job ex-
ecuting upon a processor may be interrupted at any in-
stant, and its execution resumed later upon the same or
a different processor, with no additional cost or penalty.

In our model, each server S; = (U;, P;) is character-
ized by two parameters — a processor share U;, and
a period P;. The processor share U; is required to be
< 1, and denotes the fraction of the capacity of one
processor that is to be devoted to the application be-
ing modelled by S; (loosely speaking, it should seem
to server S; as though its jobs are executing on a ded-
icated “virtual” processor, which is of speed U; times
the speed of the actual processors). The period P; is an
indication of the “granularity” of time from server S;’s
perspective — while this will be elaborated upon later,
it suffices for the moment to assume that the smaller
the value of P;, the more fine-grained the notion of real
time for S;.

Each server S; generates a sequence of jobs
J},J2,J%, ..., with job J! becoming ready for execu-
tion (“arriving”) at time a} (a < af"'l for all ¢,), and
having an execution requirement equal to e] time units.
Within each server, we assume that these jobs must be
executed in FCFS order — i.e, J] must complete before
J?*1 can begin execution.

Below, we will describe the properties we desire of
our global scheduler. But first, a definition.

Definition 1 (Fixed-priority algorithms.) A
scheduling algorithm is said to be fixed-priority if and
only if it satisfies the condition that for every pair of
jobs J; and Jj, if J; has higher priority than J; at some
instant in time, then J; always has higher priority than
Jj.

(Note that fixed-priority algorithms are distinct from
static-priority algorithms, which are defined for peri-
odic task systems and require that all the jobs gen-
erated by a particular periodic task have the same
priority. All static-priority algorithms defined for pe-
riodic task systems are fixed-priority algorithms, but
not all fixed-priority algorithms defined for periodic

tasks are static-priority — the earliest deadline first al-
gorithm is an example of a fixed-priority algorithm that
is not static-priority. Liu [9] refers to fixed-priority al-
gorithms as job-level fized priority algorithm.)

From an implementation perspective, there are sig-
nificant advantages to using fixed-priority algorithms in
real-time systems. While it is beyond the scope of this
document to describe in detail all these advantages,
some of the more important ones are: (i) very effi-
cient implementations of fixed-priority scheduling al-
gorithms have been designed (see, e.g., [10]); (ii) it can
be shown that when a set of jobs is scheduled using a
fixed-priority algorithm then the total number of pre-
emptions is bounded from above by the number of jobs
in the set (and consequently, the total number of con-
text switches is bounded at twice the number of jobs);
similarly, (iii) it can be shown that the total number
of interprocessor migrations is bounded from above by
the number of jobs.

As with constant-bandwidth servers [1], we make the
following requirements of the global scheduling disci-
pline:

e We desire that our global scheduler satisfy the
property of being fixed-priority!. Note that this
requirement rules out the use of scheduling strate-
gies based upon “fair” processor-sharing, such as
GPS [11] and its variants.

e The arrival times of the jobs (the a!’s) are not a
priori known, but are only revealed on line during
system execution. Hence, our scheduling strategy
cannot require knowledge of future arrival times.

® The exact execution requirements e] are also not
known beforehand: they can only be determined
by actually executing J? to completion. Nor do
we require an a priori upper bound (a “worst-case

execution time”) on the value of eJ.

Performance Guarantee. Recall that our goal
with respect to designing the global scheduler is to be
able to provide complete isolation among the servers,
and to guarantee a certain degree of service to each in-
dividual server. As stated above, the processor share
U; of server S; is a measure of the fraction of a pro-
cessor that should be devoted to executing (jobs of)
server S;. The performance guarantee that is made by
Algorithm M-CBS is as follows (this will be formally
proved in Section 4):

'In the uniprocessor case, CBS [1] uses EDF as its global
scheduling algorithm. For our purposes, it is overly restrictive
to require the use of EDF, and it can be shown that most of the
benefits of using EDF in CBS are a direct consequence of EDF
being fixed-priority; hence, we do not lose out on these benefits
by using some fixed-priority algorithm other than EDF.

Suppose that job Jf would begin execution at
time-instant Af , if all jobs of server S; were
executed on a dedicated processor of capacity
Ui;. In such a dedicated processor, J; would
complete at time-instant F? = Al 4 (el US),
where ef denotes the execution requirement of
Jf f Jf completes execution by time-instant
ff when Algorithm M-CBS is used, then it is
guaranteed that

< Al+ [(—e%—q—)] P, m

From the above inequality, it directly follows that
f] < F! + P,. This is what we mean when we refer
to the period F; of a server S; as a measure of the
“granularity” of time from the perspective of server S;
— jobs of S; complete under Algorithm M-CBS within
a margin of P; of the time they complete on a dedicated
Processor.

3. Algorithm M-CBS

Let 7 = {5,85s,...,5,} denote a collection of
servers with S; = (U, P;), 1 < 1 < n, that is to
be scheduled on m unit-capacity processors, and let
U(r) ¥ >_s.e- Ui denote the utilization of the collec-
tion of servers r. Without loss of generality, we assume
that servers are indezed according to non-increasing
utilization; i.e., U; > U4y for alli, 1 <i < n. (Recall
that we require that U; < 1 for all 4, 1 < i < n; thus,
it follows that U; < 1.) We introduce the notation 7(
to refer to the collection of servers comprised of the
(n — i + 1) minimum-utilization servers in 7:

™ =8, 81, S}
(According to this notation, 7 = (1))
3.1 Acceptance test

The collection of servers 7 is accepted by Algo-
rithm M-CBS if and only if it satisfies the following

test: *+1)
m 2 i {9+ 2 (@)

Suppose that Inequality 2 is satisfied, and let k(1) de-
note the smallest value of k that causes Inequality 2 to
be satisfied, i.e.,

U(T(n{f)+l))'D

(m > (k(r)-1)+ [R (3)

N

(Vk:15k<n(‘r):m<(k—l)+[L‘}%‘?f:}l])

Servers S1,82,...,8x(r)-1 are denoted high-
priority servers by Algorithm M-CBS, and servers
Sk(r)s---»Sn are denoted deadline-based servers.
During run-time, Algorithm M-CBS assigns highest pri-
ority to jobs of the high-priority servers, and schedules
jobs of the deadline-based servers according to dead-
lines that are assigned to these jobs.

This admission-control algorithm is closely based
upon an algorithm presented in [13] for scheduling sys-
tems of periodic tasks upon identical multiprocessor
platforms. It was shown in {13] that the algorithm pre-
sented there successfully schedules any periodic task
system with utilization no more than m? /(2m—1) upon
m processors; furthermore, no fixed-priority scheduling
algorithm can successfully schedule all periodic task
systems with utilization greater than (m + 1)/2. Very
similar techngiques can be used to prove that Con-
dition 2 above is satisfied by any system of servers T

satisfying (U (1) £ 225), and that no fixed-priority
algorithm can guarantee both reserved capacity and
inter-application isolation for systems of servers 7 with
(U(r) > ™£1); we omit the proofs due to space con-
siderations. As m — oo, note that these upper and
lower bounds coincide; hence from the perspective of
utilization bounds, Algorithm M-CBS is an asymptot-
ically optimal fixed-priority algorithm.

Run-time complexity. It is not difficult to see that
Condition 2 can be verified for a given 7 in O(n) time
(where n denotes the number of servers in 7), if the
servers are given to us in non-increasing order of uti-
lizations; else, the servers must be sorted in O(nlogn)
time to be in non-increasing order of utilization and
Condition 2 then verified in O(n) time (for a total run-
time complexity of O(nlogn)). In our opinion, this
is a reasonable run-time complexity for admission con-
trol. For on-line admission control — i.e., for deciding
whether to admit a new server during run-time, while
some servers are already in the system — simple suf-
ficient (but not necessary) tests that run in O(1) time
can be designed; we omit the details here.

3.2 Run-time behaviour
In this section, we provide a detailed description of

the working of Algorithm M-CBS once a decision has
been reached that real-time system 7 be accepted.

§3.2.1: Server States. Three server states
are defined by Algorithm M-CBS: inactive,

activeContend, and activeNonContend. High-priority
servers (i.e., servers Sy,...,S,(;)~1) are always in one
of the two states inactive or activeContend; deadline-
based servers may be in any of these three states.
The initial state of each server is inactive. Intuitively
at time t, a server is in the activeContend state if it
has some jobs awaiting execution at that time; in the
activeNonContend state if it has completed all jobs
that arrived prior to t,, but in doing so has used up
its “share” of the processor until beyond t,; and in
the inactive state if it has no jobs awaiting execution
at time ¢,, and it has not used up its processor share
beyond t,.

§3.2.2: Algorithm Variables. For each server S;
in the system, Algorithm M-CBS maintains a variable
called a deadline D;; for each deadline-based server S;,
it maintains an additional variable called the wvirtual
time V;.

e Intuitively, the value of D; at each instant is a mea-
sure of the priority that Algorithm M-CBS accords
server S; at that instant — Algorithm M-CBS
will essentially be performing earliest deadline first
(EDF) scheduling based upon these D; values.
The value of D; for an active high-priority server
is set always equal to (—o0); for deadline-based
servers, D; is updated in a manner that is ex-
plained later in this section.

e The value of V; at any time is a measure of how
much of server S;’s “reserved” service has been
consumed by that time. We will see that Algo-
rithm M-CBS updates the value of V; in such a
manner that, at each instant in time, server S; has
received the same amount of service that it would
have received by time V; if ezecuting on a dedicated
processor of computing capacity equal to Uj;.

Algorithm M-CBS is responsible for updating the val-
ues of these variables, and will make use of these vari-
ables in order to determine which job to execute at
each instant in time.

At each instant in time, Algorithm M-CBS chooses
for execution (at most) m servers that are in the
activeContend state — from among all the servers that
are in their activeContend state, Algorithm M-CBS
chooses for execution (the next job needing execution
of) the servers with smallest deadline parameters, with
ties broken arbitrarily. (If there are fewer than m
activeContend servers, then some processors are idled.)

When the first job of a deadline-based server S; ar-
rives, V; is set equal to this arrival time. While (a job
of) S; is executing, its virtual time V; increases; while

S; is not executing V; does not change

iV; a=«j Ul.ﬁ if S; is executing

dt 0, otherwise “)

—intuitively, executing S; for one time unit is equiva-
lent to executing it for 1/U; time units on a dedicated
processor of capacity U;, and we are updating V; ac-
cordingly.

The treatment accorded the deadline parameter D;
is different for the high-priority and the deadline-based
servers. D; for each activeContend high-priority server
is always equal to —co (thus, such servers are always
selected for execution). For the remaining servers (the
deadline-based ones), if at any time the virtual time
of becomes equal to the deadline (V; == D;), then
the deadline parameter is incremented by P; (D; «
D; + P;). Notice that this may cause S; to no longer be
one of the m earliest-deadline active servers, in which
case it may surrender control of its processor to an
earlier-deadline server.

The following lemma establishes a relationship that
will be useful in the discussion that follows.

Lemma 1 At all times and for all deadline-based
servers S; during run-time, the values of the variables
Vi and D; maintained by Algorithm M-CBS satisfy the
following inequalities

Vi<Di<Vi+ P (5)

Proof: Follows immediately from the preceding dis-
cussion.

§3.2.3: State Transitions. As stated above, each
high-priority server is always in one of two states: if it
has a job awaiting execution, then it is activeContend;
else, it is inactive. Thus if the server is in the inactive
state and a job arrives, the server transits to the
activeContend state. If it is in the activeContend state
and its last waiting job completes execution, then it
transits to the inactive state.

The state-transition relationship for a deadline-
based server is somewhat more complicated (see Fig-
ure 3.2):

1. If the server S; is in the inactive state and a job
J} arrives (at time-instant al), then the following
code is executed

Vi «~
D; «—

G+ B
and server S; enters the activeContend state.

2. When a job J? of S; completes (at time-instant ff)
— notice that S; must then be in its activeContend

2(c)

2(b)

activeNonContend

Figure 1. State transition diagram. The labels on the nodes and edges denote the name by which the
respective states and transitions are referred to in this paper.

state — the action taken depends upon whether
the next job J' of S; has already arrived.

(a) If so, then the deadline parameter D; is up-
dated as follows:

D; — V;+ P

the server remains in the activeContend state.

(b) If there is no job of S; awaiting execution and
V; > fi (i.e., the current value of V; is greater
than the current time) then server S; changes

state, and enters the activeNonContend state.

(c) If there is no job of S; awaiting execution
and V; < ff (i.e., the current value of V; is
no larger than the current time) then, too,
server S; changes state and enters the inactive
state.

3. For server S; to be in the activeNonContend state
at any instant t, it is required that V; > t. When
this ceases to be true, because time has elapsed
since S; entered the activeNonContend state but
V; does not change for servers in this state, then
the server enters the inactive state.

. If a new job Jf arrives while server S; is in the
activeNonContend state, then the deadline param-
eter D; is updated as follows:

D i V; + R 1
and server S; returns to the activeContend state.

There is one additional possible state change —
if all m processors are ever idle at the same in-
stant, then all servers in the system return to their
inactive state.

For each server S; € 7 and each integer j > 1, let
A? and F/ denote the instants that job J; would begin

and complete execution respectively, if server S; were
executing on a dedicated processor of capacity U;. The
following expressions for A7 and F] are easily seen to
hold:

Al = 4!
1
1 _ a1y &
P‘! - Al + U,'
Al = ma.x(.F?_',af),forj:a-l
F! = A§+Ei,forj>1 (6)

The following lemma will be used later 111 this paper.

Lemma 2 Let S; be any deadline-based sﬁirver. At the
instant that job J] is first considered for scheduling by
Algorithm M-CBS, V; = A].

Proof: If S;is in the inactive state when job J/ arrives
and is considered, then Algorithm M-CBS immediately
sets V; to a} (which is in turn equal to A7), and the
result is seen to hold. [

If S; is in either the activeContend or
activeNonContend state at the instant when J! is
first considered, then by definition of virtual time
Vi, server S; has by that instant received the same
amount of service that it would have received by time
V; if executing on a dedicated processor of capacity
U;. But that is exactly the value of A7. B|

4. Formal Analysis of Algorithm M-CBS

In this section, we prove that Algorithm M-CBS does
indeed make the formal performance guarantee for all
jobs J7:

fI<F +P, (7

where f denotes the time job J; completes execution
under Algorithm M-CBS, and F] denotes the time it

completes execution if all jobs of server S; were exe-
cuting (in a FCFS manner) on a dedicated processor
of computing capacity U;.

During any particular run, the servers S, 5,,...,S,
will generate a specific collection of jobs, and our proof
obligation is to prove that the completion time of each
job J! in this collection satisfies Equation 7. There-
fore, we will consider an arbitrary collection of jobs

n
7%\

i=1 \j>1 ,
the open real-time system 7.

representing an arbitrary run of

o We will first prove (Section 4.1) that all jobs in J
that were generated by the high-priority servers do
indeed complete in a timely manner as required by
Equation 7.

e We will next (Section 4.2) consider the jobs in
J that were generated by the deadline-driven
servers. Notice that Algorithm M-CBS assigns
strictly higher priority to jobs of the high-priority
servers than to jobs of the deadline-driven servers.
There are (k(7) —1) high-priority servers, which at
each instant of time consume at most x(7) —1 pro-
cessors; hence, m— (x(7)—1) processors are always
available for the scheduling of the deadline-driven
servers’ jobs. We will therefore study the schedul-
ing of only the jobs generated by the deadline-
driven servers, upon m — (k(7) — 1) processors; for
this problem — scheduling the jobs in 7 that were
generated by servers in 7(*(")) upon (m — k(7)+1)
processors — we will prove that Algorithm M-CBS
again completes all jobs in a timely manner, in
accordance with Equation 7.

e Finally (Section 4.3), we will integrate the sepa-
rate results concerning the jobs in 7 generated
by high-priority and deadline-based servers, to be
able to conclude that all jobs in 7 complete within
the time-bounds required by Equation 7.

4.1 High-priority servers

Theorem 1 For each high-priority server S; (i.e., for
alli, 1< < k(1))

fI<Fl+P

Proof: From the definition of k() (Equation 3), it
follows that (k(7) — 1) < m; i.e., there are at most
m high-priority servers (where m denotes the number
of processors). Since (i) each high-priority server in
the activeContend state always sets its deadline param-
eter equal to (—o0), (ii) servers are selected for execu-
tion by Algorithm M-CBS in order of smallest deadline

parameters, and (iii) there are no more high-priority
servers than there are processors, it follows that each
activeContend-state high-priority server is always as-
signed a processor. It is therefore the case that, for all
i < k(1)

o= a+el ®
ff max {ag, ff_l} + e‘:, forallj >1 (9)

Thus, we see that each high-priority server S; executing
under Algortithm M-CBS experiences behaviour iden-
tical to the behaviour it would experience if it were ex-
ecuting on a dedicated processor of computing capacity
one; since U; < 1 for each server S;, it follows that the
completion time of each job of each such server S; is
no later than its completion time if all jobs of S; were
executing on a dedicated server of computing capacity
equal to U;. The theorem follows.

4.2 Deadline-driven servers

Next, we consider the jobs in J that were gen-
erated by the collection of servers servers r(*(7) =
{7x(r)» Tw(r)+1s -+ ->Tn}, comprised of all the deadline-
based servers in 7.

First, some notation: recall that Jf is the j’th job
generated by server S;, and that it has an execution
requirement e] (the value of €] is not known prior to

completing the execution of J?). Let t = [e;’ /R]
We will consider J? as t separate “subjobs” Ji (1),
J1(2),. oy J? (); these subjobs have execution require-
ments e] (1), el(2),..., e(t), respectively, where

e el(l)=U;-P,for1 <<t and

el (o)

M1

o el(t)=¢l -

i i
£

1

The deadlines of these jobs are set equal to df (1),
d!(2),..., dl(t), respectively, where

e dl(f)=A+2.-P, for1 <<t

That is, we break J7 into equal-sized subjobs, each of
execution-requirement U; - P; and deadlines P; units
apart (except that the last subjob may have an execu-
tion requirement e!(t) < U; - P;).

Now when J7 is first considered for scheduling by
Algorithm M-CBS, it follows from Lemma 2 that V; at
this instant is equal to A7. Consequently, the value as-
signed to D; by Algorithm M-CBS at this instant (by
executing the statement: “D; « V; + P;”") is exactly

d(1), and the subsequent values assigned D; during
the scheduling of Jf (“D; «+ D; + P;”) are exactly
the values d?(2),d?(3),.... That is, Algorithm M-CBS
considers J’JF to be a sequence of t jobs with execu-
tion requirements el 1(1), el (2) , €l(t), respectively
and deadlines d?(1), & (2),. d’(t) respectively, with
the first subjob arriving at time-instant A’ and each
subsequent subjob Jf (&) arriving when subjob J;" (£-1)
completes ezecution. Furthermore, the following rela-
tionship will hold:

di(t) < FI + P, , (10)

where F/ denotes the time-instant at which J? would
complete execution of all jobs of server S; were to exe-
cute upon a dedicated processor of computing capacity
U;.

Although our interest is the scheduling of 7 upon
identical multiprocessor platforms — multiprocessor
machines in which all the processors are identical—
we find it useful to reason in terms of a more general
model of multiprocessor machines — the uniform mul-
tiprocessor platform.

Definition 2 (Uniform multiprocessors.) 4 uni-
form multiprocessor platform is comprised of several
processors. FEach processor P is characterized by a
single parameter — a speed (or computing capac-
ity) speed(P), with the interpretation that a job that
ezecutes on processor P for t time units completes
speed(P) x t units of ezecution.

Let w denote a uniform multiprocessor platform. We
introduce the following notation:

si(r) = max{speed(P)}

> speed(P

Pemr

S(m) =4

That is, s1(w) denotes the computing capacity of the
fastest processor in w, and S(w) the total computing
capacity of all the processors in w. |

Theorem 2 There is a uniform maultiprocessor plat-
form 7 upon which 7(*(")) can be executed (by a clair-
voyant scheduler) such that each subjob J? (£) completes
at or before time-instant d’(£), which satisfies the fol-
lowing two properties:

e The fastest processor in w has computing capac-
ity equal to the largest utilization of any server in
r(s(T)) Recalling that servers are indezed accord-
ing to non-increasing utilization, this is equivalent

to
31 ("'T) = Ug(r (11)

e The cumulative computing capacity of m is equal
to the sum of the utilizations of all the servers in
r(x(r). ie.,

S(m) = U(r*) (12)

Proof Sketch: Observe that in the schedule obtained
by executing server S; on a dedicated server of capacity
Ui, each subjob of J? will execute such that subjobs
Ji(1), Ji(2),.. J’(t —1) all complete exactly at their
deadlines df(l), df(2), ..., d(t — 1), and subjob JA(t)
completes at or before its deadline d?(t).

Consequently, the uniform multiprocessor platform
m obtained by dedicating a server of computing capac-
ity U; to each server S; is an example platform that
satisfies the conditions of this theorem. I}

The following theorem, from [4], relates feasibility
of a collection of jobs upon a particular uniform multi-
processor platform 7 to the ability of EDF to success-
fully schedule this collection of jobs upon some identi-
cal multiprocessor platform.

Theorem 3 (from [4], Theorem 3) Let m denote
a uniform multiprocessor platform with cumulative
processor-capacity S(m), and in which the fastest pro-
cessor has computing capacity s,(n), s, < 1. Let I
denote a collection of jobs, each of which is charac-
terized by an arrival time, an ezecution requirement,
and a deadline, that can be scheduled (by a clairvoyant
scheduler) on m such that each job completes at or be-
fore its deadline. Let 1 denote any positive integer. If
the following condition is satisfied:

S(m) = 81(m)

N>
m= 1— g4(m)

13)

then all jobs in I will complete at or before their dead-
lines when scheduled using the EDF algorithm ezecut-
ing on m identical unit-capacity processors.

We now apply Theorem 3 above to the scheduling
of 7*(")) by Algorithm M-CBS.

Theorem 4 If 7(*(™) is scheduled using Algo-
rithm M-CBS on (m — k(1) + 1) processors, then each
job J} will complete at or before F! + P;.

Proof: As stated previously, Algorithm M-CBS con-
siders each job J’ of each deadline-driven server S; to
be a sequence of t jobs with execution requirements
(1), (2), el (t), respectively and deadlines di(1),
&2),...,d (t) respectively, with the first subjob ar-
riving at time—insta.nt Al and each subsequent subjob

J(€) arriving when the J/(f = 1} complétes execu-

tion. Furthermore, in the absence of any high-priovity
servers, Algorithm M-CBS reduces to the earliest-
deadline first scheduling algorithm (Algorithm EDF),
executed upon m — k{7) + 1 processors. By Theorem 2,
all these subjobs in |7 that are generated by servers in
7147 can be scheduled (by a clairvoyant scheduler)
upon a uniform multiprocessor platform 7 satisfving
Conditions 11 and 12 of Theorem 2 above), such that
each subjob completes at or before its deadline.

By Theorem 3, this implies that all the subjobs in
J that are generated by servers in 7571 will meet all
deadlines if scheduled using Algorithm EDF upon

"-‘?Ibf.‘l'} =1 f?-",l-‘
1 —s(m)

O (A=) — i
= Uiy

{_F(.r-:-ttﬂ-l-ll]
e

— Meie)
= m-—g(r)+1

processors. As argued above, Algorithm M-CBS re-
duces to Algorithm EDF in the absence of any high-
priority servers; hence, all the subjobs in 7 that are
generated by servers in 7(*(7)) will meet all deadlines
if scheduled using Algorithm EDF upon m — &(7) + 1
processors. The theorem follows. Il

4.3 Putting the pieces together

In Section 4.1 above, we saw that all jobs gener-
ated by all high-priority servers satisfy the performance
guarantee (Inequality 7) claimed by Algorithm M-CBS:

fl<F +P

Similarly in Section 4.2, we saw that all jobs gener-
ated by all remaining (i.e., deadline-driven) servers also
satisfy the performance guarantee of Inequality 7, if
scheduled by Algorithm M-CBS upon (m — &(7) + 1)
processors. We now integrate these results and prove
that all jobs of all servers in 7 satisfy the performance
guarantee of Inequality 7. In order to do so, we will
use some ideas from Ha and Liu [7]:

Definition 3 (Predictability) Let A denote a
scheduling algorithm, and I any set of jobs. Consider
any set I' of jobs obtained from I as follows: for each
job J € I, there is a job J' € I' such that the ezecution
requirement of J' is < the execution requirement of J,
and all other parameters of J' and J — their arrival
times, their deadlines (if defined in the model) —
are identical. Scheduling algorithm A is said to be

predictable if and only if for any set of jobs I and
for any such I' obtained from I, it is the case that
for each J € I and coresponding J' € I', the time
at which J' completes ezecution when I' is scheduled
by Algorithm A is no later than the time at which J
completes execution when I is scheduled by Algorithm
A

|

Informally, Definition 3 recognizes the fact that the
specified execution-requirement parameters of jobs are
typically only upper bounds on the actual execution-
requirements during run-time, rather than the exact
values. For a predictable scheduling algorithm, one
may determine an upper bound on the completion-
times of jobs by analyzing the situation under the as-
sumption that each job executes for an amount equal
to the upper bound on its execution requirement; it is
guaranteed that the actual completion time of jobs is
no later than this determined value.

The result from the work of Ha and Liu [6, 7, 5] that
we will be using can be stated as follows.

Theorem 5 (Ha and Liu) Any preemptive fixed-
priority? scheduling algorithm is predictable.

Since Algorithm M-CBS meets the conditions of Def-
inition 1, it is a fixed-priority algorithm. Theorem 6
follows.

Theorem 6 Algorithm M-CBS is predictable.

Notice that Algorithm M-CBS always schedules jobs
of high-priority servers, if these servers have any jobs
awaiting execution. Let us now consider the collection
of jobs 7, obtained by adding jobs to J such that
each high-priority server S; always has a job awaiting
execution. This will require us to add, for each high-
priority server S; (i.e., for each ¢, 1 < i < k(1) — 1),
a job which arrives at each time-instant at which S;
would enter the inactive state if executing .7, with an
execution requirement exactly equal to the length of
the interval during which S; is in the inactive state.

Consider the scheduling of J upon m processors by
Algorithm M-CBS. Since the high-priority servers al-
ways have a job awaiting execution, these servers each
completely consume a processor. There are x(7) —
1 high-priority processors; hence, all the remaining
servers (which are exactly the ones in 7(*("))) must be
scheduled exclusively upon the remaining m — k(1) + 1
processors. By Theorem 4, Algorithm M-CBS executes
all jobs of 7(*(") such that they complete according

2Defined above: Definition 1 in Section 2.

to the performance guarantee of Equation 1. We may
therefore conclude that, if 7 is scheduled using Al-
gorithm M-CBS, then all jobs in J C 7 complete in
accordance with the performance guarantee of Equa-
tion 1.

Finally, consider the scheduling of J upon m pro-
cessors by Algorithm M-CBS, where 7 is obtained from
J’ by reducing the execution requirement of each job in
J\J to zero. By the result of Ha and Liu (Theorem 6),
the completion time of each job when J is scheduled
using Algorithm M-CBS is no later than the comple-
tion time of each job when J is scheduled using Algo-
rithm M-CBS. The correctness of Algorithm M-CBS
now follows from the observations that (i) it there-
fore follows that all all jobs in J C J complete in
accordance with the performance gnarantee of Equa-
tion 1 when J is scheduled using Algorithm M-CBS,
and (ii) the non-degenerate jobs of J are exactly the
jobsin J.

We have thus shown that Algorithm M-CBS does
indeed make the formal performance guarantee for all
jobs J:

fi<Fl+P,

where f] denotes the time job Jij completes execution
under Algorithm M-CBS, and F! denotes the time it
completes execution if all jobs of server S; were exe-
cuting (in a FCFS manner) on a dedicated processor
of computing capacity Uj.

5. Conclusions

The constant-bandwidth server abstraction has
proved very useful in designing, implementing, and rea-
soning about applications that do not fit the tradi-
tional definitions of “safety-critical” and “hard” real-
time, but that nevertheless expect significant real-time
support within the context of general-purpose multi-
tasking operating systems. In this paper, we have pro-
posed Algorithm M-CBS, a global scheduling algorithm
for use in preemptive multiprocessor systems in which
several different time-sensitive applications are to exe-
cute simultaneously, such that each application is as-
sured certain performance guarantees — the illusion
of executing on a dedicated processor — and isolation
from any ill-effects of other misbehaving applications.
Algorithm M-CBS requires that each application be
characterized by a pair of parameters, indicating the
amount of execution that is to be reserved for the ap-
plication and the time granularity by which this execu-
tion is to be made available to the application; based
upon these specifications, Algorithm M-CBS guaran-
tees each application its share of execution within the
specified timeliness bounds.

References

(1]

(2]

(3]

[4]

5]

(6]

(7

(8]

(9]

[10]

(11]

(12]

[13]

Luca Abeni and Giorgio Buttazzo. Integrating multi-
media applications in hard real-time systems. In Pro-
ceedings of the Real-Time Systems Symposium, pages
3-13, Madrid, Spain, December 1998. IEEE Computer
Society Press.

Z. Deng and J. Liu. Scheduling real-time applications
in an Open environment. In Proceedings of the Eigh-
teenth Real-Time Systems Symposium, pages 308-319,
San Francisco, CA, December 1997. IEEE Computer
Society Press.

M. Dertouzos. Control robotics : the procedural con-
trol of physical processors. In Proceedings of the IFIP
Congress, pages 807-813, 1974.

Joel Goossens, Shelby Funk, and Sanjoy Baruah.
Priority-driven scheduling of periodic task systems on
uniform multiprocessors. Real Time Systems. To ap-
pear.

Rhan Ha. Validating timing constraints in multipro-
cessor and distributed systems. PhD thesis, Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign, 1995. Available as Technical Re-
port No. UIUCDCS-R-95-1907.

Rhan Ha and Jane W. S. Liu. Validating timing con-
straints in multiprocessor and distributed real-time
systems. Technical Report UIUCDCS-R-93-1833, De-
partment of Computer Science, University of Illinois
at Urbana-Champaign, October 1993.

Rhan Ha and Jane W. S. Liu. Validating timing con-
straints in multiprocessor and distributed real-time
systems. In Proceedings of the 14th IEEE International
Conference on Distributed Computing Systems, Los
Alamitos, June 1994. IEEE Computer Society Press.

C. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Jour-
nal of the ACM, 20(1):46-61, 1973.

Jane W. S. Liu. Real-Time Systems. Prentice-Hall,
Inc., Upper Saddle River, New Jersey 07458, 2000.

A. Mok. Task management techniques for enforcing
ED scheduling on a periodic task set. In Proc. 5th
IEEE Workshop on Real-Time Software and Operating
Systems, pages 42-46, Washington D.C., May 1988.

Abhay K. Parekh and Robert G. Gallager. A gener-
alized processor sharing approach to flow control in
integrated services networks: the single node case.
IEEE/ACM Transactions on Networking, 1(3):344-
357, June 1993.

Marco Spuri and Giorgio Buttazzo. Efficient aperiodic
service under earliest deadline scheduling. In Proceed-
ings of the Real-Time Systerns Symposium, pages 228-
237, San Juan, Puerto Rico, 1994. IEEE Computer
Society Press.

Anand Srinivasan and Sanjoy Baruah. Deadline-based
scheduling of periodic task systems on multiprocessors.
Information Processing Letters. To appear.

