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1 Extended Abstract

Distributed Reinforcement Learning (RL) frame-
works are essential for mapping RL workloads
to multiple computational resources, allowing for
faster generation of samples, estimation of values,
and policy improvement. These computational
paradigms require a seamless integration of train-
ing, serving, and simulation workloads. Existing
frameworks, such as Ray [22], are not manag-
ing this orchestration efficiently, especially in RL
tasks that demand intensive input/output and syn-
chronization between actors.

As such, we have optimized Lingua Franca, a
polyglot coordination language, for synchronized
parallel RL workloads. The development of our
proposed framework Lingua Franca for Rein-
forcement Learning (LFRL) represents several
significant contributions to the field: LFRL is a
distributed framework that integrates the critical
components of RL tasks (training, simulation, and
serving) into a single, cohesive system. LFRL is
built on top of the reactor model [16] and sup-
ports true parallelism in Python, thereby signifi-
cantly decreasing synchronization and I/O over-
head. LFRL also supports seamless distribution
of computation to GPUs when that computation
can benefit from it, further accelerating deep RL
workloads.

On average, LFRL outperformed Ray in generat-
ing samples from OpenAI Gym and Atari environ-
ments by 1.21x and 11.62x, reduced the average
training time of synchronized parallel Q-learning
by 31.2%, and accelerated Multi-Agent RL infer-
ence by 5.12x. LFRL represents a leap forward
in the field of distributed RL, particularly in bet-
ter satisfying the particular needs of deep rein-
forcement learning workloads. Its unique design
principles and innovative features position it as
a critical tool for researchers and practitioners in
the rapidly evolving landscape of RL.

2 Introduction and Related Work

The field of machine learning (ML) has witnessed
an exponential increase in computational require-
ments for training models, which tend to be in-
creasingly larger deep neural networks. This
complexity has necessitated the creation of new
frameworks focused on training these networks

and leveraging specialized hardware to reduce
training times. Examples include TensorFlow [1],
MXNet [7], PyTorch [26], and Deepspeed [28].
Beyond classical supervised learning, emerging
AI applications are increasingly required to op-
erate in dynamic environments and pursue long-
term goals, problems that reinforcement learning
(RL) are well suited for. RL involves learning
to behave in uncertain environments based on
feedback from interaction with the environment.
Optimal behavior can be specified via appropri-
ately chosen reward functions of the data. This
approach has already led to significant achieve-
ments such AlphaGo [35], and more recently, the
success of ChatGPT [23]. RL applications span
various domains, including traffic systems [6],
UAVs [13], large language models (LLMs) [23],
and dexterous manipulation [2].

Deep RL presents new additional challenges be-
yond traditional RL for distributed frameworks.
Deep RL, unlike its traditional counterparts, are
typically applied in continuous state space envi-
ronments, increasing the complexity of the task
and thus the computational burden. In fact, with
many system optimization problems the CPU
is heavily utilized by deep RL training work-
loads [3]. However, the scalability of deep RL,
particularly in learning complex state-action as-
sociations, hinges on efficiently leveraging both
CPUs and GPUs [12, 8]. The combination of
RL with deep neural networks necessitates a bal-
anced approach in computational resource allo-
cation. The processing speed, especially when
updating policies involving millions of parame-
ters, becomes a critical factor. The need to bal-
ance CPU and GPU resources, coupled with the
limitations of existing frameworks, highlights the
need for innovative approaches in developing ef-
ficient, scalable, and versatile systems capable of
supporting the dynamic and complex nature of
modern artificial intelligence and machine learn-
ing applications. This paper aims to delve into
these challenges and explore potential solutions,
paving the way for more efficient and effective
reinforcement learning systems.

To this end, we introduce an optimized version
of Lingua Franca (LF) [17]. Our optimized ver-
sion of LF, which we dub Lingua France for Re-
inforcement Learning (LFRL) is tailored to ad-
dress the unique challenges of RL applications.
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LFRL stands out in its ability to effectively handle
a diverse range of workloads, from lightweight,
stateless computations needed for simulation to
the more intensive, long-running computations
required for training.

Contributions:

1. In this paper, we draw the connection between
Lingua Franca and distributed RL, developing
a runtime implementation (LFRL) based on
LF for RL applications.

2. We demonstrate how the reactor-oriented
paradigm implemented in LFRL optimizes the
utilization of computational resources and ef-
ficiently parallelizes RL workloads.

3. We then describe the compilation process and
the mechanisms of LFRL runtime, illustrating
how it exploits parallelism and differs from
the actor-based framework, Ray.

4. Our investigation also reveals that multithread-
ing offers greater advantages than multipro-
cessing in distributed RL. To leverage these
advantages, we modified the Lingua Franca
compiler and introduced an optimized Reactor
C runtime with No GIL Python, enabling true
parallelism and abstracts away the burden of
coordinating worker threads for RL tasks.

5. We further present an extensive evaluation on
the generations of samples from Open AI Gym
and Atari Environments, synchronized paral-
lel Q-learning, and inference of Multi-Agent
RL. Our results demonstrate that LFRL out-
performs Ray in terms of training, inference,
and simulation for RL.

3 Distributed Reinforcement
Learning and Requirements

Reinforcement Learning (RL) algorithms aim to
enhance an agent’s policy performance within
a given environment, often represented through
a simulator. These algorithms alternate cycles
of data collection with the latest policy, value
estimation using the latest data (and possibly
data collected from previous policies), and pol-
icy improvement. Depending on the signal pro-
vided by the reward function on the collected
data and the efficiency of the algorithm itself,
the reinforcement learning process can vary in
the amount of data and computational resources
needed to run until satisfactory performance is
achieved. For most tasks of interest, these data
and compute requirements are large, motivating
distributed reinforcement learning frameworks
that can more efficiently leverage parallel compu-
tational paradigms.

Many aspects of the reinforcement learning prob-
lem can be parallelized [30]. Data collection can
be split across multiple worker threads, learn-
ing can be split across multiple worker threads
with each thread maintaining its own value func-
tion and policy parameters, updates to the neu-
ral networks can be performed in parallelized
fashions using popular deep learning frame-
works [1, 4, 25], and simulators can themselves
be parallelized, for example on accelerated com-
puting infrastructure [27, 37, 31, 34].

3.1 Variants in RL Algorithms

Single-Agent Training: The most fundamental
scenario in RL is training a single agent, which in-
volves repeatedly applying the steps of rollout, re-
play, and optimization. Synchronous algorithms
like A2C [19] and PPO [32] follow these steps
in sequence, whereas asynchronous variants (e.g.,
A3C [19], Ape-X [11], APPO [38], IMPALA [9])
overlap rollout and optimization steps to enhance
data throughput.

Multi-Agent Training: Multi-agent training in-
volves multiple agents interacting within the en-
vironment, either cooperatively or competitively.
While the dataflow structure resembles that of
single-agent training, complexities arise when
customizing training for individual agents. For in-
stance, if agents require optimization at different
frequencies or are trained with distinct algorithms,
the training dataflow must accommodate multiple
iterative loops with varying parameters.

Model-Based Algorithms: Model-based RL
algorithms aim to learn the transition dynam-
ics of the environment to increase training ef-
ficiency [21]. This adds a supervised training
component to standard distributed RL, involv-
ing training one or more dynamics models with
environment-generated data.

3.2 Challenges and Opportunities in
Framework Optimization:

Deep RL algorithms like Q-learning and SARSA
(State-Action-Reward-State-Action) traditionally
relied on sequential learning of a value table.
The advent of deep neural networks has enabled
these algorithms to approximate complex func-
tions without an explicit value table. The combi-
nation of RL with deep neural networks in deep
RL models necessitates a balanced approach in
computational resource allocation. The process-
ing speed, especially when updating policies in-
volving millions of parameters, becomes a critical
factor. Current popular algorithms, such as Deep
Q Networks (DQN) and Advantage Actor Critic
(A2C), often employ a hybrid approach using
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both CPUs and GPUs. This setup allows for the
efficient execution of different phases of the RL
process, with policy evaluation typically occur-
ring on the CPU and policy updates on the GPU.
The evolution of machine learning, especially in
the realm of RL, has ushered in a new era of
computational requirements and challenges.

Frameworks like Ray have made strides in
CPU/GPU orchestration for RL, but they face
efficiency challenges due to the actor model’s in-
herent communication overhead and synchroniza-
tion demands. Ideal frameworks for RL should
support heterogeneous computations, flexibility
in computational models, dynamic execution, and
large data handling, while integrating seamlessly
with deep learning libraries and simulation frame-
works.

We argue that distributed RL frameworks can bet-
ter handle millions of tasks per second by pro-
viding deterministic concurrency. Current frame-
works, on the other hand, fall short in efficiently
meeting the evolving demands of AI applications,
indicating a significant gap in the field.

This research aims to propose a novel system
architecture that addresses these comprehensive
requirements, bridging the gap in the current land-
scape and pushing the boundaries of what’s pos-
sible in distributed RL.

4 Introduction to Actor and Reactor
Model

4.1 Actor Model

The Actor model [10], a foundational concept in
concurrent computing, emerged in the 1970s as a
response to the increasing complexity and interac-
tivity in computer systems. It introduced a novel
way to handle concurrent operations by concep-
tualizing "actors" as the primary units of com-
putation. These actors are analogous to objects
in object-oriented programming (OOP) [29], but
they are designed specifically to address the chal-
lenges of concurrency. Each actor represents a
self-contained unit with its own local state, and ac-
tors interact with each other exclusively through
asynchronous message passing. This model con-
trasts with traditional approaches that often rely
on shared state and synchronization mechanisms
like locks, which can lead to issues like deadlocks
and race conditions.

Actors in the model operate independently and
concurrently, providing a natural framework for
distributed and parallel systems. When an actor
receives a message, it can perform several actions:
it can create more actors, send messages to other

actors, modify its own internal state, or decide
how to respond to the next message it receives.
This makes the model highly adaptable and scal-
able, suitable for applications ranging from sim-
ple concurrent programs to complex distributed
systems. The asynchronous nature of message
passing in the Actor model is key to its effective-
ness in dealing with concurrency. It allows actors
to send and receive messages without waiting for
a response, thereby preventing bottlenecks and
enabling continuous operation even when certain
components are busy or delayed.

Furthermore, the Actor model introduces a flexi-
ble approach to message processing, without en-
forcing any strict order in which messages must
be processed. This characteristic is particularly
beneficial in distributed systems where message
delivery times can vary unpredictably. Actors
can process incoming messages in different se-
quences, and the model does not guarantee that
messages will arrive in the order they were sent.
This flexibility allows for more efficient utiliza-
tion of resources and can lead to more robust
system designs that are tolerant of delays and
variable message delivery times. Overall, the Ac-
tor model’s emphasis on independent, concurrent
actors and asynchronous communication makes
it a powerful paradigm for building scalable and
resilient concurrent and distributed systems.

4.2 Reactor Model

The Reactor model [16] shows great potential as
an alternative to the actor model, enabling effi-
cient and deterministic concurrency. The newly
proposed Reactor model represents an advance-
ment in deterministic reactive systems, providing
a structured framework for creating complex, re-
active RL applications. Central to this model are
the concepts of "reactors" and "reactions." Reac-
tors can be interpreted as deterministic actors, but
instead of responding to messages, they react to
discrete events, each linked to a specific logical
time, denoted by a "tag." These events can trigger
reactions within a reactor, similar to message han-
dlers in actor systems, but with a key difference:
reactions in reactors are governed by a defined or-
der, ensuring determinism. Reactions share some
similarities with message handlers in traditional
actor models but differ in their triggering mecha-
nism. Instead of messages, they are activated by
discrete events, which can also be generated by re-
actions. Each event associates a value with a tag,
representing its logical release time within the
system. Reactions can access and modify state
shared with other reactions in the same reactor,
but interaction between different reactors is solely
through events. This design choice illustrates the
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model’s deterministic nature, as the order of reac-
tion executions is predictable and subject to strict
constraints, such as tag order and execution order
for reactions within the same reactor.

The Reactor model can be thought of as a
"sparse synchronous model." This means that
synchronous-reactive interactions at a particular
logical time may be confined to isolated parts of
the system. When a reaction executes, it exclu-
sively accesses the reactor’s state. Moreover, for
reactions triggered by the same event (or events
with the same tag), their execution order is pre-
defined, reinforcing deterministic behavior. Reac-
tors are composed of ports (inputs and outputs),
hierarchy, and actions. The term "reactors" not
only relate to actors in actor systems but also
aligns with the synchronous reactive program-
ming paradigm, prominent in languages like Es-
terel, Signal, and Lustre. Unlike traditional ac-
tors, reactors don’t directly reference their peers.
Instead, they use named and typed ports for inter-
connection, enabling a hierarchical design. This
hierarchy, besides facilitating deterministic behav-
ior, also serves as a scoping mechanism for ports
and imposes constraints on connection types.

Additionally, reactors feature actions, a variant
of ports used for scheduling future events within
the same reactor or as a synchronization mech-
anism between internal logic and asynchronous
external events. This design choice provides a
bridge between deterministic internal logic and
the nondeterministic external world, like sensor
data, environment states, or network messages.
The Reactor model also incorporates state vari-
ables within reactors. The shared resources, like
replay buffers, model parameters, environment
states in RL, are key motivators for grouping re-
actions in a single reactor. However, reactors
themselves do not share state, ensuring isolation
between reactors and allowing parallel execution
of reactions in different reactors, unless a connec-
tion necessitates sequential execution.

Connections between reactors establish explicit
communication channels. These connections re-
veal dependencies that are crucial for scheduling
decisions honoring data dependencies. The Reac-
tor model simplifies the declaration of these de-
pendencies by breaking down functionality into
reactions with well-defined lexical scopes, thus
eliminating dependencies out of scope. The Reac-
tor model’s execution is governed by a run time
environment, which adheres to a discrete-event
model to ensure determinacy. This environment is
responsible for maintaining a global event queue
and a reaction queue, managing logical time, and
executing reactions in a predetermined order. De-

tails regarding the scheduler are described in the
next section.

4.3 Ray

Ray [15, 22] is an open-source framework de-
signed for distributed computing and provides a
simple, universal API for building distributed ap-
plications. Ray utilizes the Actor model, which is
central to its architecture and operation, making
it highly effective for concurrent and distributed
computing tasks. The Actor model in Ray is
used to encapsulate state and behavior, with ac-
tors being distributed across a node or a cluster
and communicating through asynchronous mes-
sage passing. Actors can be used for performance
reasons (like caching soft state or ML models),
or they could be used for managing long living
connections to databases or to web sockets. They
can maintain state across multiple tasks, which
is particularly useful for applications that require
managing large, mutable states, such as machine
learning models or large datasets.

The local scheduler in Ray is a component of
a worker node called Raylet. Raylet manages
the worker processes and consists of two compo-
nents, a task scheduler and an object store. The
task scheduler takes care of scheduling and exe-
cuting work on a node. It addresses issues such
as a worker being busy, not having the proper
resources to run a task, or not having the values
it needs to run a given task. Expensive serial-
ization and deserialization as well as data copy-
ing are a common performance bottleneck in dis-
tributed computing. Shared memory, specifically
that which is managed directly by the operating
system kernel, emerges as a superior mechanism
compared to conventional approaches like socket
connections. This kind of memory management
boasts efficiency that transcends even memory-
mapped file-based sharing. The fundamental at-
tribute of distributed object store is that all objects
within the store are immutable and retained in
shared memory. The object store has its eviction
policy, removing objects from the store or trans-
ferring them to other nodes when the allocated
size limit is exceeded. This design choice ensures
optimal access speeds, particularly when multi-
ple workers on a singular node need to engage
with the data. It’s noteworthy that every node pos-
sesses an independent object store. Each node of
a Ray is equipped with an object store, within that
node’s Raylet, and all objects stored collectively
form the distributed object store of a cluster. The
object store manages a shared pool of memory
across workers on the same node. The object
store is implemented in Plasma, which belongs
to the Apache Arrow project. Functionally, the
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object store takes care of memory management
and ultimately makes sure workers have access
to the objects they need in Ray.

4.4 Lingua Franca

Lingua Franca (LF) [18, 33] is a polyglot coor-
dination language designed to facilitate the de-
velopment of concurrent systems by focusing on
deterministic interactions with their environment.
It operates on the reactor model, where reactors
are the fundamental units of composition, each
encapsulating reactions to external stimuli. LF’s
main feature is its deterministic nature, mean-
ing that given a set of inputs, a LF program
will always produce the same outputs, greatly
enhancing testability and efficiency. This deter-
minism is achieved by using a superdense model
of time (where events are ordered by time and
microstep), ensuring causality and the absence of
non-deterministic feedback loops in the reaction
network.

The architecture of LF includes a compiler (lfc).
The compiler process involves parsing and val-
idating the LF code, checking for syntax er-
rors, instantiation cycles, and cyclic dependencies
among reactions. Valid code can then be tran-
spiled into target code in languages like C, C++,
TypeScript, and Python, which is then combined
with a runtime system to manage the execution
of reactors. LF also allows for graphical program
representation, enhancing program structure un-
derstanding and error identification.

In LF, reactors can be defined with parameters
(immutable after initialization), ports (for data
input/output), actions (for scheduling internal
events), and timers (for periodic events). Reac-
tors can also declare state variables to maintain
state across logical time. Reactions in LF, which
contain the core logic, are defined with triggers
(conditions under which they execute), sources
(additional data inputs), and effects (outputs or
actions they can trigger). LF supports reaction
deadlines, where an alternative code block exe-
cutes if a reaction misses its specified deadline,
thus enforcing timing constraints.

LF allows for flexibility in connecting reactors
through multiports (ports handling multiple data
channels) and banks (multiple reactor instances).
Connections can be logical, implying synchro-
nization between ports, or physical, introducing
intentional non-determinism for scenarios where
strict event ordering is not required. LF’s syn-
tax permits the creation of complex interaction
patterns among reactors, offering a robust toolset
for constructing scalable and maintainable con-
current systems.

Figure 1: LFRL: compilation process

The formal semantics of LF are grounded in the
theory of discrete-event systems, utilizing a gen-
eralized ultrametric space for modeling the be-
havior of LF programs. This approach guarantees
that each LF program is deterministic and adheres
to causality, essential for reliability in concurrent
system design. LF’s semantic model is fully ab-
stract, providing both an operational perspective
(how the program executes) and a denotational
perspective (the meaning of program constructs),
ensuring consistency.

We propose LFRL (Lingua Franca for Reinforce-
ment Learning), a runtime implementation for
Lingua Franca. Fig. 1 depicts the compilation
process of the LFRL framework. This process
begins with the source code written in Lingua
Franca, with a .lf extension. The source code
is then processed by a modified lfc compiler,
tailored to work without Python’s Global Inter-
preter Lock (GIL). Additionally, the compilation
process involves various no-GIL versions of the
Python libraries such as NumPy, PyTorch, Gym,
etc.

This compiler generates C code for each reac-
tor, with files named R1.c, R2.c, and so on as
well as the compiled Lingua Franca library, Lin-
guaFranca.so, which can be imported and used
in Python scripts (*.py). The runtime implemen-
tation serves as a bridge between the high-level
coordination language and the underlying Python
environment without the GIL, enabling users to
write truly concurrent Python programs and ab-
stracts away the burden of coordinating worker
threads.

4.5 Representing Distributed RL As
Dataflow Graph

LFRL leverages the diagram synthesizer in LF,
and provides a streamlined process to represent
distributed RL as dataflow graphs [17]. By sim-
ply initializing reactors and setting their input
and output ports, LF can automatically generate
the corresponding dataflow graph. This diagram-
matic feature is seamlessly integrated with Visual
Studio extensions and Eclipse, offering a visual
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Figure 2: Generated Dataflow Graph for dis-
tributed RL

representation of the underlying RL processes.
The resulting diagram (Fig. 2) clearly displays
the reactors, ports, state variables, and their data
dependencies, simplifying the understanding of
the system’s structure and aiding in the debugging
of distributed RL systems. Users are therefore
better positioned to manage the parallelization
of RL processes. Detailed information about the
implementation is provided in the appendix.

RolloutReactor: This reactor is pivotal in inter-
acting with the environment. It gathers trajec-
tories by executing a policy and recording the
resulting states, rewards, and other pertinent out-
comes. It receives gradients from the LearnerRe-
actor for policy updates and sends experience (e.g.
trajectories) to the ReplayBufferReactor.

• EnvironmentState: The present state of the en-
vironment.

• PolicyState: The internal state of the policy,
significant for stateful policies such as those
using recurrent neural networks.

• ActionBuffer: A temporary repository for ac-
tions decided by the policy.

• RewardBuffer: Temporary storage for rewards
post-action.

• ObservationBuffer: Temporary storage for new
environmental observations post-action.

ReplayBufferReactor: Acting as a centralized
experience replay buffer, this reactor stores tra-
jectories from the RolloutReactor for subsequent
sampling. It provides sampled experience batches
to the LearnerReactor for policy updates.

• ExperienceData: An accumulation of experi-
ences (state, action, reward, subsequent state,
and termination info).

• SamplingPointer: Indices or pointers facilitat-
ing efficient experience sampling.

• PrioritizedInfo: For prioritized replay buffers,
additional data to manage experience priorities.

LearnerReactor: The LearnerReactor updates
policies based on sampled experiences from the
ReplayBufferReactor or directly from the Roll-
outReactor, and broadcast updated gradients to
the RolloutReactor.

• ModelParameter: The neural network parame-
ters, including weights and biases.

• OptimizerState: Elements related to the opti-
mization process, such as momentum and learn-
ing rates.

• LearningRate: The current learning rate, either
static or dynamically adjusted.

• TargetNetworkParameters: In algorithms like
DQN [20], these are slowly updated parameters
offering a stable learning target.

5 Optimizations for Distributed
Reinforcement Learning

5.1 Scheduling Algorithm

The execution process of programs in the original
LF involve a scheduler responsible for overseeing
all scheduled future events, managing the log-
ical time progression, and executing triggered
reactions in the order dictated by the dependency
graph. The scheduling mechanism in the origi-
nal LF model, depicted in Fig. 3, operates with
an event queue that strictly follows a tag order
for processing upcoming events. Upon adding an
event to the queue and processing it, the sched-
uler identifies triggered reactions, placing them
in a reaction queue. These reactions are subse-
quently moved to a ready queue and executed by
worker threads once all dependencies, as outlined
by the Action-Port Graph (APG), are satisfied.
Within this scheduling framework, the scheduler
ensures a sequential execution of reactions, con-
sidering dependencies and aiming to maximize
parallelism.

The scheduling mechanism is similar to Directed
Acyclic Graph (DAG)-based strategies but differs
by accommodating reactions within the Action-
Port Graph (APG) that may not always need exe-
cution. Since the scheduler cannot predict in ad-
vance which reactions will be triggered at a given
tag, it cannot precompute an optimal schedule. To
address this, the scheduler assigns a level to each
reaction, allowing reactions at the same level to
execute concurrently. This heuristic eliminates
the need for runtime APG analysis, streamlining
the process. The scheduler processes reactions in
a stepwise way, advancing to the next level only
after completing all reactions at the current level.
This approach substantially reduces synchroniza-
tion overhead and contention on shared resources,
contributing to its efficiency.

5.2 Scheduling Optimizations

The scheduling algorithm described in the above
section is relatively straightforward to implement,
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Figure 3: Scheduling mechanism in the LF run-
time [18]

but achieving competitive performance requires
additional optimizations. These optimizations,
implemented in the C runtime in our LFRL, are
detailed below.

Coordination of worker threads: Conceptually,
the scheduler and workers are distinct; however,
in practice, having a central scheduler with sepa-
rate worker threads can cause significant synchro-
nization overhead. To mitigate this, our imple-
mentation allows any worker thread to become
the scheduler, allowing it to move ready reactions
to the queue or advance to the logical time once
all reactions are processed. Additionally, LFRL
leverages the fact that we know the number of
parallel reactions to execute from the APG, and
thus can use a counting semaphore to regulate the
number of active workers.

Lock-free data structure: The three queues
(event, reaction, and ready queue) and other data
structures are shared across all workers. Mutex-
based synchronization would be inefficient due to
high contention over these shared resources. Ac-
cordingly, LFRL adopts lock-free data structures
wherever feasible. For example, the ready queue
is a fixed-size buffer with an atomic counter,
which corresponds to the maximum number of
parallel reactions defined by the APG level. Each
time a worker tries to execute a reaction it atom-
ically decrements the counter. If the counter is
negative, it indicates an empty queue, and the
worker should proceed accordingly. Otherwise,
the counter provides the index within the buffer
from which to read. This operation is safe with-
out additional synchronization, as all workers are
waiting for upcoming new reactions.

5.3 Enabling Multi-threading for
Reinforcement Learning

Parallel processing is a cornerstone in the field
of machine learning, enabling the handling of
computationally intensive tasks and large-scale
data. The parallel execution models, namely mul-
tithreading and multiprocessing, provide different
advantages. This section aims to dissect these
models to guide the selection of an appropriate
parallel execution strategy for RL.

Multithreading in RL:

1. Shared Memory Space: Multithreading in-
volves threads operating within the same mem-
ory space, which facilitates faster and more
efficient data sharing among threads compared
to multiprocessing.

2. Resource Efficiency: The creation and man-
agement of threads consume fewer resources
than processes. This efficiency stems from
the shared memory space and the absence of
a need for complex inter-process communica-
tion mechanisms.

3. I/O Bound Task Optimization: Multithreading
proves advantageous in I/O-bound operations,
where the ability to perform other tasks while
waiting for I/O operations enhances efficiency.

4. Context Switching: The shared process and
memory space of threads enable faster con-
text switching than multiprocessing, as less
information needs to be saved and restored.

Multiprocessing in RL

1. CPU Bound Task Optimization: Multiprocess-
ing is typically more suitable for CPU-bound
tasks, allowing for the distribution of tasks
across multiple CPU cores. However, most of
the CPU-bound tasks (e.g. gradient updates)
in RL should be offloaded to GPU instead.

2. Fault Tolerance and Stability: The isolated
nature of processes in multiprocessing ensures
that a crash in one process does not impact
others, thus enhancing application stability.
The scheduler in LFRL guarantees the safety
of threads and permits users to specify actions
in the event of a failure.

3. Bypassing the GIL in Python: In Python, the
Global Interpreter Lock (GIL) limits thread ex-
ecution, multiprocessing provides a viable al-
ternative for parallel CPU computations. This
has been resolved by leveraging the No GIL
version of Python.

4. Multi-Core Utilization: Multiprocessing en-
ables the full utilization of multi-core proces-
sors by running separate processes on each
core. However, it’s important to consider that
when sending excessively large objects, the
processor may spend a significant amount of
time on I/O overhead. LFRL, on the other
hand, is able to bring threads to its full utiliza-
tion

5.4 Optimizing Thread Allocations

The principle that running a task with multiple
threads can speed up the process is generally true,
as each thread can handle a portion of the work si-
multaneously. However, the scaling is not always
linear due to various factors like thread alloca-
tion and CPU architecture. In our benchmarks,
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the Intel CPU has a hybrid architecture, featur-
ing a combination of performance and efficiency
cores. Performance cores are designed for high-
speed and intensive tasks, while efficiency cores
are optimized for lower power consumption and
handling background tasks. The original LF run-
time randomly allocates threads for workers. As
a result, when synchronous tasks are distributed
across these cores, the overall speed is bounded
by the slower efficiency cores. To achieve linear
scaling, we have optimized the Reactor C runtime
to prioritize using the performance cores before
spawning threads.

6 Performance Comparison Between
LFRL and Ray

To demonstrate the improved performance of
LFRL over Ray for distributed RL workloads, we
run the following experiments. We believe these
experiments are comprehensive and adequate to
support our assertion that our optimized imple-
mentation of the reactor model for RL signifi-
cantly advances the state of the art for distributed
RL.

1. We demonstrate lower overhead of broadcast
and gather operations with LFRL than with
Ray, and show that the overhead difference
scales favorably for LFRL as we increase both
the number of actors/reactors and the commu-
nication object size. While not an RL bench-
mark, this toy workload resembles the compu-
tation done in RL, and is useful for highlight-
ing why exactly it is that LFRL outperforms
Ray (sections 6.2, 6.3).

2. In most distributed RL settings, the majority
of the parallelism that can be obtained in the
data collection phase of the algorithm. As
such, we extensively test parallel data collec-
tion in popular RL simulated environments
with both LFRL and Ray (sections 6.4, 6.5).

3. To demonstrate that LFRL integrates seam-
lessly with other forms of parallel compute
paradigms, namely GPU acceleration, and to
demonstrate the versatility LFRL provides to
implement various reinforcement learning al-
gorithms, we implement and evaluate synchro-
nized parallel Q-learning with deep neural net-
works (section 6.6).

4. Finally, we observe that multi-agent RL lends
itself very well to being parallelized, as each
agent can maintain its own learning and data
collection actors/reactors. We evaluate in such
a multi-agent RL (MARL) setting and observe
favorable results for LFRL (section 6.7).

6.1 Experimental Setup

We perform all our experiments on an AWS EC2
m5.8xlarge instance, equipped with an Intel®
Xeon® Platinum 8175M CPU @ 2.50GHz fea-
turing 32 vCPUs. This setup includes 128 GiB of
RAM and offers a 10 Gbps network bandwidth.
The system runs on Ubuntu 20.04 and use Python
3.9.10, with NumPy version 1.22.3 and gym ver-
sion 0.19.0. Benchmarks are available at this
GitHub repository.

6.2 Number of Actors

Figure 4: Mean Over-
head of Broadcast and
Gather 10MB Object
with Different Num-
ber of Actors using
Ray and LFRL.

Figure 5: Mean Over-
head of Broadcast and
Gather on 16 actors
with Different Object
Sizes using Ray and
LFRL.

Fig. 4 illustrates the mean overhead of broadcast-
ing and gathering a 10MB object across different
numbers of actors in a distributed RL setup. Two
frameworks are compared: Ray and LFRL. The x-
axis represents the number of actors, which are 2,
4, 8, and 16, while the y-axis shows the overhead
in milliseconds. Both frameworks exhibit an in-
crease in overhead as the number of actors grows,
but Ray consistently has a higher overhead than
LFRL. For instance, with 16 actors, Ray’s over-
head is close to 20 milliseconds, whereas LFRL’s
is just above 5 milliseconds.

6.3 Object Size

Fig. 5 presents a comparison of the mean over-
head for broadcasting and gathering operations
on objects of varying sizes using 16 actors, be-
tween Ray and LFRL frameworks, including a
99% confidence interval (CI). The x-axis displays
the object size in megabytes (MB), ranging from
0 to 500 MB, while the y-axis indicates the over-
head in milliseconds. From the graph, we can
observe that as the object size increases, the over-
head for both Ray and LFRL also increases. How-
ever, Ray’s overhead grows at a higher rate than
LFRL’s. For instance, with the largest object size
of 500 MB, Ray’s overhead approaches 800 mil-
liseconds, whereas LFRL’s overhead is about half
of that, around 400 milliseconds.
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Both Fig. 4 and Fig.5 support the hypothesis that
the reactor model employed by LFRL can outper-
form traditional actor models like Ray, particu-
larly in scenarios with a greater number of actors
and larger object size, due to optimizations such
as reduced synchronization work and efficient
multithreading with No GIL Python.

Figure 6: Simulation
Throughput of Ray
and LFRL in Various
Gym Environments.

Figure 7: Simulation
Throughput of Ray
and LFRL in Various
Atari Environments.

6.4 Open AI Gym Environments

In Fig. 6, we see that our proposed LFRL out-
performs Ray by 1.21x on average, with a partic-
ularly significant lead in the Blackjack environ-
ment. This suggests that LFRL is more efficient,
especially in situations where there is a lower
CPU demand for action updates within the envi-
ronment. Considering the CPU architecture in
m5x8.xlarge, which has a mix of 8 performance
cores and 16 efficiency cores, the observed per-
formance is not ideal due to the differing speeds
of the cores and potential thermal throttling. The
efficiency cores are slower and can bottleneck the
system as the benchmark is limited by the slowest
thread. Moreover, when multiple cores are active,
the CPU may not run at its highest frequency due
to thermal constraints. To optimize performance
and achieve linear scaling, it is recommended
to utilize only the 8 performance cores and dis-
abled. This can be done by setting CPU affinity
for performance cores, ensuring that CPU-bound
tasks, which require synchronization, do not get
restricted by the slower efficiency cores. By run-
ning tasks only on the performance cores, one
can avoid the inconsistencies that come with hy-
brid architectures and get a more linear scaling
with the number of actors or threads in use. It’s
important to note that vectorized environments
are asynchronous and do not parallelize inference
of policy. Therefore, it is not included in our
benchmarks.

6.5 Atari Environments

In Fig. 7, we compare the performance of Ray
and LFRL on Atari environments, specifically on
Pacman, Pong, and SpaceInvader. Here, LFRL
again significantly outperforms Ray in terms of

observations per second. On average, LFRL is
roughly 11.62x faster than Ray across these envi-
ronments. The substantial performance difference
can be attributed to LFRL’s efficiency in handling
high I/O (input/output) bound tasks. Atari envi-
ronments are more complex than the previously
mentioned OpenAI gym environments. They rep-
resent each state as an 80x80 numpy array, which
requires more computational resources to serial-
ize and deserialize, especially when data needs
to be sent over a network. Ray’s use of pickle5
for serialization does help to increase through-
put by efficiently serializing NumPy arrays, but it
still introduces overhead during network transmis-
sion and the serialization/deserialization process.
This overhead is particularly significant in envi-
ronments where state updates are frequent and
must be communicated quickly. LFRL’s ability
to handle the demands of complex simulation en-
vironments is thus a key advantage.

Figure 8: Dataflow Graph of Parallel Q-learning

Figure 9: Synchronized Parallel Q-learning with
Different Batch Sizes from a Replay Buffer

6.6 Synchronized Parallel Q-learning

Deep Q-Networks (DQNs) [20] are an advance-
ment in reinforcement learning that utilize deep
neural networks to estimate Q-values. The Q-
values are predictions of the expected discounted
returns after taking certain actions given partic-
ular states in an environment. DQNs extend the
capabilities of traditional Q-learning by handling
larger state and action spaces, which are common
in complex problems. These networks can scale
up effectively with more data or increased model
complexity; therefore, DQN usually utilizes GPU
for gradient updates. However, since AWS EC2
m5.8xlarge doesn’t include a GPU, benchmark-
ing was conducted on a workstation with an Intel
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i9-13950HX CPU @ 2.20GHz featuring 32 vC-
PUs, NVIDIA RTX4090, and 32 GiB of RAM.
The system also runs on Ubuntu 20.04 and uses
Python 3.9.10, with numpy 1.22.3, torch 1.9.0,
and gym 0.20.0.

DQN has been implemented in a synchronized
parallel Q-learning setup within a BlackJack en-
vironment [36]. The dataflow graph is shown in
Fig. 8. The network is trained to take a black-
jack hand as input and output scores for each
of the possible actions in the game, which rep-
resent the expected rewards of taking those ac-
tions. The computational tasks are distributed
with the rollout and replay buffer being executed
on a CPU, while the DQN Reactor uses a GPU.
This setup takes advantage of GPUs for complex
matrix operations and multicore CPUs for sequen-
tial decision-making simulations in Open AI Gym
environments.

The benchmark results, as seen in Fig. 9, demon-
strate performance improvements using LFRL
over Ray. In tests with a 500 sample batch
size from the replay buffer, the average train-
ing time decreased by 31.2%. The data also
shows that while Ray’s training time increases
with larger mini-batch sizes, LFRL’s performance
remains stable, indicating its ability to handle
larger batches efficiently without significantly in-
creasing resource utilization.

Figure 10:
TrafficJunction4-
v0 environment.
The goal is to
pass a four-way
junction without
any collisions.

Figure 11: Multi-
Agent Reinforcement
Learning

6.7 Multi-Agent RL Inference Comparison

In Multi-Agent RL (MARL), multiple agents op-
erate in a common environment, where each of
them tries to optimize its own return by interact-
ing with the environment and other agents [39]
(See Fig. 11). In centralized MARL, a central con-
troller aggregates information across the agents,
including joint actions, rewards, and observations,
and policies across different agents. In decentral-
ized MARL, which is more common in coopera-

tive situations, each agent makes decisions based
on its local observations [24].

We validate LFRL in a MARL setting with ma-
gym [14], a MARL library based on OpenAI
Gym [5]. We use the TrafficJunction4-v0 envi-
ronment, in which four agents are trying to pass a
crossroad without crashing (see Fig. 10). This is
a decentralized setting where each agent gets it’s
own local observation. See in Fig. 12, LFRL re-
quires significantly less inference time than Ray
(less than 1/2 the fitted line’s slope). It is also
noteworthy that as the number of agents increases
as shown in Fig. 13, LFRL’s inference time scales
better (again, less than 1/2 the rate of increase
than that of Ray). In TrafficJunction environ-
ments with 10 Agents, LFRL achieves a 5.12x
speed up compared to Ray.

Figure 12: Inference
Time Between Ray
and LFRL over
Episode Counts

Figure 13: Inference
Time Comparison be-
tween Ray and LFRL
across Various Num-
bers of Agents

7 Discussion

In this study, we optimized a coordination lan-
guage LF for RL applications. Our modifica-
tions, resulting in the so-called Lingua Franca
for Reinforcement Learning (LFRL), allow it to
outperform widely used frameworks like Ray in
handling training, serving, and simulation tasks in
RL. We achieve this by reducing the work needed
for synchronization using Reactor model and de-
creasing the I/O overhead through optimzing the
coordination of Python worker threads. Our em-
pirical evaluations demonstrate LFRL’s superior
performance: a 1.21x and 11.62x faster sample
generation in OpenAI Gym and Atari environ-
ments, a 31.2% reduction in average training time
for synchronized parallel Q-learning, and a 5.12x
acceleration in multi-agent RL inference. We aim
to incorporate the optimizations into LFRL’s fed-
erated execution, enabling efficient distributed
training and serving across nodes and clusters.
We also plan to delve deeper into the potential ap-
plications of our optimizations in deploying deep
RL on embedded systems, and will compare it
with frameworks such as the Robot Operations
System, a middleware commonly used in robotics.
With this work, we hope our important contribu-
tions allow for more efficient and scalable RL.
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8 Reactor Code Appendix

1 target Python {
2 threading: True
3 }
4

5 preamble {=
6 #Import packages
7 #e.g Torch , Gym , Numpy
8 =}
9

10 reactor RolloutReactor {
11 input [6] gradients
12 output [6] trajectories
13

14 state EnvironmentState
15 state PolicyState
16 state ActionBuffer
17 state RewardBuffer
18 state ObservationBuffer
19

20 reaction(startup) {=
21 #Initialize Environment
22 =}
23

24 reaction(gradients) ->
trajectories {=

25 #Perform rollouts for the
Environment

26 =}
27 }
28

29 reactor ReplayBufferReactor {
30 input [6] trajectories
31 output [6] dataset
32

33 state ExperienceData
34 state SamplingPointer
35 state PrioritizedInfo

36

37 reaction(startup) {=
38 #Initialize ReplayBuffer
39 =}
40

41 reaction(trajectories) ->
gradients {=

42 #Append Trajectories into
ReplayBuffer

43 =}
44 }
45

46 reactor LearnerReactor {
47 output [6] gradients
48 input [6] dataset
49

50 state ModelParameter
51 state OptimizerState
52 state LearningRate
53 state TargetNetworkParameters
54

55 reaction(startup) -> gradients
{=

56 # Initialize the policy
57 =}
58

59 reaction(dataset) -> gradients
{=

60 # Update the policy
61 =}
62 }
63

64 main reactor {
65 rollout = new[6] RolloutReactor

()
66 replay = new[6]

ReplayBufferReactor ()
67 learner = new[6] LearnerReactor

()
68

69 # Specifiy
70 (learner.gradients)+ -> rollout.

gradients
71 (rollout.trajectories)+ ->

replay.trajectories
72 (replay.dataset)+ -> learner.

dataset
73 }

13


	Abstract
	Introduction and Related Work
	Distributed Reinforcement Learning and Requirements
	Variants in RL Algorithms
	Challenges and Opportunities in Framework Optimization:

	Introduction to Actor and Reactor Model
	Actor Model
	Reactor Model
	Ray
	Lingua Franca
	Representing Distributed RL As Dataflow Graph

	Optimizations for Distributed Reinforcement Learning
	Scheduling Algorithm
	Scheduling Optimizations
	Enabling Multi-threading for Reinforcement Learning
	Optimizing Thread Allocations

	Performance Comparison Between LFRL and Ray
	Experimental Setup
	Number of Actors
	Object Size
	Open AI Gym Environments
	Atari Environments
	Synchronized Parallel Q-learning
	Multi-Agent RL Inference Comparison

	Discussion
	Reactor Code Appendix

