
SkyStore: Unified Storage Across Clouds

Shaopu Song
University of California, Berkeley

Junhao Hu
University of California, Berkeley

Abstract
Applications are frequently spanning across multiple regions
and cloud providers to reduce vendor lock-in, drive down
cost, and improve resource availabilities, as seen in use cases
like geo-distributed model serving, spot applications, and con-
tainer distribution. However, this multi-cloud, multi-region
approach introduces significant challenges in data manage-
ment, including latency issues, increased operational costs,
and the complexity of interfacing with diverse storage APIs
from various cloud vendors. To address these challenges, we
propose SkyStore, a cross-cloud unified object store built for
integrating data management across clouds with minimal ef-
fort. SkyStore simplifies user interaction with data, abstracting
away the complexities of the underlying storage infrastruc-
ture. It optimally manages data operations, including demand-
driven data placement, efficient data movement, and robust
consistency management. Our system demonstrates runtime
optimization and cost efficiencies compared to existing aca-
demic and commercial solutions, while also ensuring high
availability and fault tolerance on par with standard cloud
object stores.

1 Introduction

In the rapidly evolving landscape of cloud computing, the
world has become increasingly multi-region and multi-cloud.
Geo-distributed and multi-cloud technology stack are utilized
to reduce vendor lock-in, increase resource availability at
lower cost, and enhance the performance of applications. Ad-
ditionally, data sovereignty policies mandate organizations to
manage customer data in specific regions and clouds.

In this landscape, most of the workloads are data-centric.
These applications typically need to manage a variety of data
types such as models, containers, and satellite data. For in-
stance, model serving tiers often face the challenge of varying
availability of specific instance types across different regions.
As the required instance types for efficient training and serv-
ing can be readily available in different regions, the model

often needs to be trained in one region, and later on moved
to other regions for serving. Another example is container
sharing. In such scenarios, users are often located in different
geographical regions, pushing and pulling container images
from different places. In satellite-based systems, it is also
common to see large volumes of image data processed and
transmitted daily from various global positions for analysis.

The applications mentioned above are characterized by
their need to read and write from different regions and clouds.
Typically, a mix of data sizes is involved, from small contain-
ers to large objects like models and datasets. The workload
patterns are predominantly read-heavy, with high concurrency
in reads and fewer writes. From the user perspective, these
workloads often require fast, repeated reads, quick writes, and
a balance of read-after-write and eventual consistency.

To satisfy the workload requirements, organizations today
need to manually manage data placement and movement, and
reason about them across varied localized namespaces. This is
challenging as different cloud provider offers different APIs,
storage, and network options, and each has different perfor-
mance and cost trade-offs. Since different cloud providers
have their own APIs, to integrate multiple cloud providers
into a single system, a unified API layer that users can interact
with needs to be established. Besides, the under-level data
management system has to be aware of the multi-region and
multi-cloud object storage to make decisions on data storing
and fetching.

Another critical aspect is the substantial variability in
cloud pricing models, depending on the geographical loca-
tion of data storage and access patterns. For instance, the
cost of storing data in the azure:eastus2 region is notably
lower, approximately half, than storing data in the aws:sa-
east-1 region. On the other hand, performance indicators
like data access throughput and latency differ across differ-
ent cloud regions. For example, a user operating from the
azure:southcentralus region experiences a significantly faster
data access rate – up to 80 times quicker – when retriev-
ing data from azure:canadacentral as opposed to gcp:asia-
northeast3-a. Thus, optimally navigating this complex land-

1



scape requires an understanding of both the provider’s offer-
ings, as well as the application usage patterns.

Naive data management approaches can be costly and inef-
ficient. The simplest solution is to store data in a centralized
cloud region and read and write from it. In this case, only one
copy of the data is stored, so the storage cost is minimal. How-
ever, repeatedly moving data across regions incurs high egress
cost and increase read and write latency. On the other hand,
storing data in every region can bring down the data access
cost and latency; but it increases storage costs and complexity
in maintaining consistency between replicas. Furthermore, as
workloads evolve, manual management becomes increasingly
impractical.

In this work, we propose SkyStore, a system to address
the data management challenges in a multi-region, multi-
cloud setting. SkyStore proposes an easy-to-use, efficient,
reliable, and cost-effective solution for managing data in a
multi-region, multi-cloud context.

Usability: SkyStore offers an S3-compatible API, provid-
ing a unified namespace through virtual bucket and object
abstraction. This simplifies the user experience by offering a
consistent interface across different cloud environments.

Flexibile Data Management Policy: To cope with differ-
ent workload requirements, we integrate multiple write and
read polices to provide flexibility to the client side. This not
only ensures data availability and access performance but also
minimizes storage cost overheads.

Scalability, Availability, and Fault Tolerance: The ar-
chitecture of SkyStore is built with scalability in mind. It
separates control and data planes, allowing each layer to scale
independently based on demand. This separation also con-
tributes to the system’s fault tolerance, ensuring that data
availability and system operations are not compromised in
the event of partial failures.

2 Background

Effective management of data across diverse cloud providers
presents several challenges. These challenges are rooted in
the inherent heterogeneity of cloud services as well as the
variability of workloads.

Storage API Variability Each provider has its unique set
of semantics (e.g., put, get, multipart-upload, versioning) that
complicates the integration process. For example, for the put
operation, we can call put_object to achieve this in AWS S3,
but there is no put_object function in neither the Azure nor
the GCS. For the Azure, it uses put_block_blob to put the
object into the corresponding blob. For GCS, it uses upload_-
streamed_object to reach the same affect. Similarly, AWS S3
provides get_object to fetch the object from buckets. However,
in GCS, the get_object is used to fetch the object metadata.
We need to call download_stream_object to obtain the stream-

ing body of the object. The implementation details will be
discussed in Section 3.

Cost Heterogeneity Cloud data pricing consists of three
components: data storage, network usage, and request (oper-
ation) charges. [12]. Different cloud providers and regions
have different pricing models for each of these dimensions.
Storage cost refers to the expense incurred for the amount
of data stored in the cloud. Egress cost, often termed data
transfer cost, is the charge from cloud providers for moving
or transferring data from the cloud storage where it was up-
loaded [7]. Request cost represents the fees for operations
such as put, get, and delete requests made to the cloud storage
service.

The storage class (e.g., standard, infrequent access,
archival), the geographic region of the data center, the source
and destination of the data transfer, as well as the pricing
policies of the cloud provider will all influence the cost.

Bandwidth and Latency Heterogeneity Bandwidth vari-
ability highlights the difference in data transfer speeds across
different cloud regions and providers. This variability can
impact application performance, especially in data-intensive
operations.

3 SkyStore Architecture

This section provides a comprehensive overview of the Sky-
Store architecture, including its structural and operational
components. SkyStore integrates seamlessly with existing
cloud storage systems, including S3, GCS, and Azure Blob
Storage. It offers a familiar interface to both users and devel-
opers, ensuring compatibility and ease of use.

Figure 1: Metadata Architecture

2



3.1 Architecture Overview

SkyStore deploys as collection of VMs across multiple clouds,
a client libraries, and a set of DB deployed in each cloud. The
VM can be scaled horizontally to support variable load, DB is
partitioned by key (scale horizontally). In each region, multi-
ple metadata servers are deployed. Upon client initialization,
a metadata server is dynamically chosen(currently random se-
lection. However, alternative strategies exist, such as selecting
the server with the lowest workload to act as the primary.) as
the primary server from the available pool within the client’s
region. This primary server is responsible for overseeing and
managing the metadata associated with the client’s operations.
The client’s read and write requests pass through the data
proxy, which acts as a stub and initiates requests to the con-
trol plane, where the control plane represents the connected
metadata server. The control plane, guided by the user-defined
policy, selects an appropriate cloud provider’s cluster, and re-
lays the outcome back to the data proxy. Subsequently, the
data proxy then performs the actual read or write request to
the respective cloud provider. The reason for not directly redi-
recting requests from the control plane to the machines of
the corresponding cloud provider is to avoid introducing ad-
ditional communication overhead between the control plane
and the client during the process of reading or writing large
data. Therefore, current approach mitigates the overhead on
the control plane server.

3.2 API: Virtual Bucket / Object Abstraction

SkyStore utilizes an S3-compatible API, ensuring compatibil-
ity with standard operations typical in cloud storage environ-
ments. This compatibility extends to a range of operations,
divided into object operations and bucket operations.

The system supports a range of object and bucket oper-
ations that are compatible with S3 API, including put, get,
head, list, copy, and delete objects, and create, delete, list, and
change version status on buckets. Multipart upload of large
objects (e.g., create, list, upload part copy, complete, abort) is
also supported.

3.3 Control Plane: SkyStore Server

The control plane of SkyStore, SkyStore server, serves as the
central management hub responsible for handling and routing
requests in a multi-region, multi-cloud environment.

Server Configuration and Database Integration The
server of SkyStore is developed using FastAPI (integrate with
Uvicorn) and validates requests with Pydantic schemas. It
uses SQLAlchemy for database communication, following a
typical Python web application structure. For database man-
agement, SkyStore supports SQLite and Postgres. It is imple-
mented in 3.5K lines of code.

Concurrency Optimization For small workload with few
concurrency, SQLite will be a better choice because of its
easy deployment; for high-concurrency environments with
numerous readers and writers, we employ Postgres for its
strong performance. The SkyStore will automatically manage
the setup and truncation of the database each time we start
the system. Besides, we use connection pool provided by the
sqlalchemy to improve the throughput. Based on our tests, the
connection pool can bring 100M+ throughput increment to
the system.

The SkyStore also support starting multiple workers (pro-
cesses) of uvicorn to cope with high-concurrency environ-
ment. However, this optimization can bring concurrency bugs
without careful management. We have several choices to solve
the concurrency issues of multi-processes, including file-lock,
shared-memory, message queue, or storing the variables into
our metadata DB. We choose shared-memory methods to
solve this problem finally because of its higher speed com-
pared to other methods that including disk operations.

We used UltraDict [15], which wraps the shared mem-
ory mechanism, to solve the concurrency issues in both the
database initialization and write/read policy loading when
multiple uvicorn workers are used. When initializing the
database, the 1st worker that trying to perform this task will
allocate a memory region in shared memory to store the log
file. By using the same shared memory name(key) of the 1st
worker, the next coming workers can attach themselves to
the same memory region. Then the 1st worker will exclu-
sively lock the memory handler, write to the log and initialize
the database. Other processes will never try to initialize the
database again since they will find the log is already written.

The same operation is performed at the policy side, Sky-
Store will store the policy name set by users in the shared
memory so that all the workers can observe the changes.

Logical and Physical Abstraction The control plane effec-
tively manages both logical and physical representations of
buckets and objects, as shown in Fig 1, a distinction that is
central to SkyStore’s architecture.

• DBLogicalBucket: Represents the user’s perspective of a
storage bucket. This class includes attributes like bucket
name, prefix, and status. Each logical bucket is associ-
ated with multiple physical bucket locators (DBPhysi-
calBucketLocator).

• DBPhysicalBucketLocator: Details the actual location
of bucket data, specifying cloud provider, region, and
bucket information. This class reflects the physical pres-
ence of a bucket and its data in different clouds. It also
includes attributes of the buckets like those in the actual
object store.

• DBLogicalObject: corresponds to a logical view of an
object stored in the cloud. This class captures essential

3



Figure 2: Metadata Server Architecture

metadata like size, modification time, etag, and status. It
includes relationships to physical object locators (DB-
PhysicalObjectLocator), linking logical objects to their
actual physical locations.

• DBPhysicalObjectLocator: Stores the precise location
of objects, including cloud provider, region, and specific
bucket and key details. It stores a comprehensive view
of an object’s physical state in the actual object store.

Additional Abstraction

• DBMetrics: Identifier of each PUT/GET operation
passed to the control plane, containing latency of op-
erations, < key,size > of the objects processed, and the
operation type together with request region and issued
region. This information will sent by the clients side
asynchronously to the control plane side by calling cor-
responding metrics recording FastAPI method, and col-
lected into DB.

Multi-versioning Support SkyStore supports multi-version
in compatible with S3 semantics. In the control plane side,
we leverage the primary id of the logical object as its ver-
sion number, and record the physical version_id in its cor-
responding physical object locators, which is generated by
the under-level object storage. The control plane will behave
based on the user input of version setting transferred from the
data plane side, which includes three types, SUSPENDED(S),
ENABLED(E), and NULL(N). System behavior varies when
the version setting is different.

When the version status is N, only one logical object
with the same {DBLogical_bucket,key,region} identifier is

allowed to exist in the system. Any attempt of uploading an
object with the same identifier will be rejected. After enabling
the version, users are allowed to perform the same PUT with-
out upper bound, and each time a new logical object linked
with the newly created physical objects of different version
numbers will be built. To DELETE an object, user need to
explicitly give the version number that ought to be deleted,
otherwise a delete_marker will be added to the metadata
server each time, which makes the DELETE operation per-
forms the same as the PUT. We can suspend the version into
S after enabling the multi-version setting. This will cause the
metadata to be overwritten when a PUT/DELETE operation
is attempted with the same identifiers.

There are several advantages of enabling multi-version.
First, this allows SkyStore to change consistency level, which
will be discussed in Section 5. Second, system can have higher
throughput than a single version object storage, since we do
not need to exclusively lock the database when the control
plane are told by the data plane to try to create logical objects
with the same identifiers at the same time.

Functionalities SkyStore Server maintains data catalog
through the logical to physical object mappings. All object
store requests are first routed to the control plane, which in
terms manages policies that dictate how data is moved and
stored. SkyStore Server will make decisions about which data
should be placed in which cloud region and where to read
data from based on the client region, and other factors like
cost and performance.

3.4 Data Plane: S3-Proxy
The data plane within SkyStore is a S3-Proxy, a fully com-
patible web server that adeptly communicates using the S3

4



protocol with various cloud storage providers such as Azure
Blob, AWS S3, and Google Cloud Storage (GCS). This com-
ponent allows for seamless integration and interaction across
different cloud environments.

Design One of the defining characteristics of the S3-Proxy
in the SkyStore architecture is its stateless design. The proxy
does not retain any internal state between different requests.
This architecture allows the data plane to scale horizontally
with ease.

The S3-Proxy in the SkyStore architecture handles a vari-
ety of operations as detailed in Section 3.2. These operations
encompass reading, writing, listing, creating, and deleting
objects and buckets in the cloud storage environment. The
implementation of these functionalities within S3-Proxy fol-
lows a streamlined process. Upon receiving a request, the
S3-Proxy consults the SkyStore Server for relevant policies.
Based on the guidance received, it then performs the required
actions using a client interface specific to each cloud provider.
This approach ensures that operations like reading and writing
data are executed in accordance with the location and policy
directives provided by the server.

Implementation Overview S3-Proxy is implemented in 9K
lines of code. It relies heavily on the s3s framework, a Rust-
based tool that excels in performance, safety, and distribution.
This framework takes Amazon’s official S3 API schema and
generates the entire suite of data types, error codes, and end-
points. Such an approach simplifies the development process,
allowing developers to focus on application-specific logic
without being bogged down by the intricacies of Amazon’s
XML outputs.

A key aspect of our implementation is the handling of the
complexities inherent in global, distributed object stores. Mod-
ern object store APIs are multifaceted, featuring advanced
capabilities such as versioning and multipart uploads. We
have developed a client interface for each provider that is
capable of interacting with their respective S3-compatible
APIs. This interface allows for seamless integration with the
varied and complex functionalities offered by contemporary
cloud storage services. By managing these complexities, the
S3-Proxy facilitates efficient and policy-compliant data oper-
ations across multiple cloud environments.

Multipart Upload Support SkyStore unified the multipart
upload operation in AWS, Azure and GCS. To accelerate the
uploading process, clients are allowed to perform parallel
part uploading in SkyStore. Besides normal APIs used to
perform multipart upload, SkyStore integrates upload_part_-
copy provided by S3 to improve the speed of data migration
by uploading parts from another source bucket rather than
uploading from local storage.

When the uploading process is about to finish, user should
notify the SkyStore to stop the uploading process. This signal

will let object storage integrate the small parts into a large
single object. AWS S3 allows composing up to 1,000 parts
one time. However, the GCS only supports up to 32 parts
being composed together per time. To solve this challenge,
when performing multipart upload in GCS buckets, we iterate
the composing process by composing 32 parts a time until
the total number of objects (either existing before composing
or the new large parts generated because of our iteration) is
less than 32, and then delete the small parts remained in the
bucket.

Multi-versioning Support SkyStore allows users change
version setting directly in the proxy side. Like the cloud
providers, the version number field will be set and returned
back to the client side when versioning is enabled. We expose
the logical object version id to the client rather than the real
physical version ids. The version setting (E,S,N) will be sent
to the control plane and record the setting in the database.
Still, different behavior on cloud providers have to be coped
with.

4 Fault Tolerance

The cost of abstracting away location details of data placement
is to have another layer of indirection keeping track of the
logical to physical location mappings. The metadata layer
needs to be consulted for every single access (read, write).

4.1 Metadata Implementation

In a system where a single machine serves as the control
plane, handling all metadata operations, any disruption or
crash of this machine would result in a complete service out-
age for SkyStore. To enhance reliability and system perfor-
mance, it becomes imperative to introduce multiple machines
to manage metadata. Distributing metadata shards for differ-
ent clients across distinct machines ensures that the system
remains resilient, even in the event of a failure. This architec-
tural approach not only bolsters reliability but also contributes
to improved overall system performance.

Dynamo [9] utilizes consistent hashing to partition and
replicate data, achieving scalability and availability. However,
consistent hashing is not conducive to data locality, as clients
may need to connect to machines that are very distant from
their current location. Therefore, maintaining a server config-
uration list and selecting one server as the primary based on
the client’s current region is a more favorable approach. And
adopting the primary-backup method for fault tolerance.

5



Figure 3: Metadata Backup

Primary-secondary approach is a popular paradigm imple-
mented by various distributed systems like HDFS [14] to
ensure fault tolerance and availability. With this approach, the
primary server handles all operations, while the secondary
server is either updated periodically or always in full sync
with the primary server.

The straightforward approach is to update both primary and
the secondary server for every operation, making both servers
fully synchronized. Although this might not be optimal and
affect the overall performance of the system, the benefit is
the secondary server is always consistent with the primary. In
case the primary server becomes unavailable, the system can
switch to secondary right away and there is no data loss.

A different approach when the secondary server is periodi-
cally updated from the primary. While this reduces overload
on the system, the main drawback is that in case of primary
server failure, the secondary will have state based on the last
sync and even with data recovery, still may result in some
data loss. To address the fault tolerance of the metadata server
in SkyStore, we decided to follow the hybrid version of the
primary-secondary approach as follows. SkyStore will ini-
tiate a primary metadata server P1 and a backup metadata
server B1 in the same cloud region. In addition, SkyStore
will initiate another metadata backup server B2, in a differ-
ent region. Metadata servers P1 and B1 will be in full sync
inside a single region and thus maintain strong consistency
between them. Every client’s request to the primary metadata
server P1, will be synchronously forwarded from P1 to the
backup metadata server B1 in the same region. Moreover, all
bucket operations, like create or register bucket, will be syn-
chronously forwarded from B1 server into another region with
B2 server. Once metadata servers fully process the requests,
the primary metadata server will generate a response to the
user. This ensures that if the primary metadata server is down,
has network issues or other faults, SkyStore will continue to
operate without disturbance by accessing secondary metadata
server B1 located in the same region.

This solution however does not cover the case when the
entire cloud region is down and both primary and backup
metadata servers located in that region become not available.

To address this issue, SkyStore also keeps another metadata
server B2 in a different region that is updated by B1 server.
As opposed to P1 and B1 that are updated synchronously for
all operations, the B2 server is updated asynchronously for
metadata related operations. The overall flow would be as
shown in Fig. 4.

In case the entire cloud region is down and both P1 and B1
are not available, SkyStore will continue to operate by access-
ing the B2 metadata server located in the different region.

4.2 Security
In the contemporary landscape, data privacy is of paramount
importance, especially concerning the training data used in the
context of machine learning training. Users have the option to
convey their passwords to SkyProxy, wherein the client-side
encryption takes place. Given that user-supplied passwords
often exhibit a short length and low entropy, rendering them
susceptible to dictionary attacks, it becomes imperative to
employ a robust Key Derivation Function (KDF) [10] for the
generation of a secure key.

Figure 4: Metadata Backup

The data breach encountered by LinkedIn in 2012, wherein
6.5 million user passwords were compromised, serves as
a poignant reminder of the vulnerabilities associated with
storing unsalted passwords using SHA-1 [11]. This practice
exposes them to offline password guessing attacks. Conse-
quently, SkyProxy adopts a stringent security approach by ran-
domly generating a numerical salt and employing PBKDF2
for encryption. PBKDF2, characterized as a slow hash func-
tion, significantly elevates the complexity of executing brute
force attacks utilizing rainbow tables. The incorporation of
a slow hash mechanism serves to augment the overall secu-
rity of the system. However, this enhancement comes at the
cost of increased system latency. Empirical results from lo-
cal testing reveal that, contingent on the number of iterations
employed in the slow hash process, there is a consequential
impact on the processing time of client requests. For instance,
with an iteration count set at 600,000, the introduction of each
byte results in an additional latency of 2001ms. Conversely,
for a limited number of iterations, each byte contributes an

6



increased latency of 0.0147168ms.
In the practice of encrypting data using block ciphers, CBC

is widely used in commercial applications. However, CTR
mode encryption and decryption can be parallelized, leading
to higher performance. Additionally, CTR mode provides
a crucial feature – the inclusion of a counter enables the
encryption or decryption of an arbitrary point in the message
without the need to start from the beginning.

we employ RSA [13] signatures to guarantee both integrity
and authentication. Despite the computational cost associated
with signatures, they offer distinct advantages over HMAC,
particularly in data-sharing contexts. Unlike HMAC, which
necessitates the sharing of the HMAC key through a secure
channel, the verification key for a signature is public, elimi-
nating the need for a secure key-sharing process.

5 SkyStore Policies

In this section, we delve into the specific policies implemented
by SkyStore to effectively navigate the challenges of data
management in multi-region, multi-cloud environments.

5.1 Write Policy
Currently, we integrate several polices into SkyStore.

• Single-Region: User should set a specific region to write
into.

• Write-Local: Write to the region that client are currently
located at.

• Push: User will provide a list of regions to SkyStore, all
of the regions provided should be in the set of initializa-
tion regions.

• Replicate-All: Each time every object will be propagated
to every region in the initialization region list.

• Copy-on-Read: For the first time of GET operation, if the
object is located in a remote region, SkyStore will fetch
and cache the object in the region the client is currently
located at.

5.1.1 First write: write local

SkyStore adopts a write-local policy for initial data storage.
Upon a write request, data is primarily stored in the request
originating region. This approach significantly reduces la-
tency and egress costs associated with the write operation
while ensuring immediate availability of data where it’s first
needed. Each of the write operation generates an object with
an updated version. SkyStore tracks versions for each write
operation to maintain records of all changes, ensuring data
integrity and version control.

5.1.2 Cache: Copy-on-Read

Complementing its write-local strategy, SkyStore employs a
reactive copy-on-read approach to optimize data management
across multiple regions. This method comes into play when a
read operation is initiated from a region different from where
the data is initially stored. Upon such a request, SkyStore
creates a copy of the data in the object store of the requesting
region, enhancing read performance for future operations and
reducing the costs associated with cross-region data access.

When the copy-on-read policy is used, the behavior of
multi-versioning support will change: Instead of creating a
new logical object for the copy-on-read request, SkyStore will
link a new physical object locator to the old logical object.

This demand-based caching strategy is particularly effec-
tive in lowering data transfer cost when repeated reads are
often. It is different from the preemptive replication strategy
of systems like SPANStore, which push data to predicted
region of access upon write. When workloads vary unpre-
dictably, such replication model can lead to significant egress
and unnecessary storage charges, depending on how good the
prediction model is.

5.2 Read Policy
Currently, three read policies are supported in SkyStore.

• Direct Transfer: Transfer data from region A to region
B directly.

• Cheapest: Select the node with cheapest transfer cost
from the region lists that currently hold the data.

• Closest: Read from the region with least latency.

SkyStore’s read policy is designed to balance cost-
efficiency with service level objectives (SLOs). The system
dynamically selects sources to fetch data from based on cost,
performance, and consistency requirements. The cost and la-
tency is calculated through a simulation graph established
during the 1st call to initialize the policy based on user re-
quirement. For each edge in this graph, it contains the latency
(ms) and cost ($/GB) attributes.

Building this graph with more than 80 regions of different
cloud providers information is extremely time costing. To
reduce this overhead, we attach a singleton class instance
that initializing the graph, so that the overhead will only be
charged for the 1st time.

Under this policy, network failures do not impede data
access within a region, promoting high availability. The policy
fundamentally operates on two principles: Read-My-Write
Versioning and Eventual Consistency.

5.2.1 Read-My-Write Version

For read operations, SkyStore prioritizes accessing the most
recent version of the data. Users can choose to read from

7



either the most cost-effective or the fastest region available.
The policy ensures that any write operation invalidates other
cached copies of the data in different regions, triggering a
re-read to maintain version consistency. This approach guar-
antees that users always interact with the latest data, crucial
for applications where data freshness is an important criteria.

5.2.2 Eventual Consistency Version

In scenarios where immediate data recency is less critical,
SkyStore offers an eventual consistency model. This model
allows reading from local copies, even if they are not the latest
version, thus prioritizing access speed and cost over data fresh-
ness. The system updates these local copies in subsequent
accesses, aligning them with the most current version over
time. This bounded staleness approach is particularly effec-
tive in scenarios where frequent, cross-region synchronization
is not feasible or necessary, providing a balanced trade-off
between data currency, access speed, and operational cost.

6 Evaluation

We use several benchmarks to evaluate the performance of
the system. Generated traces are used to mimic the real-world
workload. The evaluation contains comparison with real ob-
ject storage, scalability examination, and different policy com-
parisons. We aim to get small overhead (e.g. 10%) on both
the control plane and data plane compared to the under-level
object storage. Specifically, for the control plane side, we will
prove the high-concurrency support of our optimization de-
sign. As for the data management by different polices, we
prove the efficiency of fast-write and cache policy, especially
on large workload (e.g. 1GB). By simulating on the traces
mimic the real-world workload, we compare SkyStore to the
naive data management methods and current geo-distributed
systems, like SPANStore, to show the cost & latency perfor-
mance of our system.

6.1 Object Store: Operations
We reference JuiceFS [1] benchmark to measure SkyStore
system overhead compared to naively using the provider’s
tool. We run the performance test on object store and com-
pare the latency for operation with and without SkyStore. The
benchmark consists of put, get, list, head, and delete 100 ob-
jects of size 128 KiB and measure the average latency per
object. The result in Fig. 5 shows that the overhead of using
SkyStore compared to using cloud provider’s API is mini-
mal: for put and get operation, the overhead is less than 10%.
Furthermore, SkyStore can even speedup the list and head
operations by up to 5×. The overhead of store server origi-
nates from two aspects: first, the control plane side code is

currently written in Python, which is comparably slow than
C/C++/Rust. Second, the database query takes time to finish.
To reduce this overhead, we try to maximize the performance
of Postgres, and deploy it on m5d.8xlarge VM machine of
AWS, which attaches NVMe SSDs. Also, the database queries
together with the hyper-parameters of the database are highly
optimized to reduce overhead at the server side.

put get list head delete0

10

20

30

40

50

Ti
m

e 
(s

)

AWS
SkyStore (Store Server)
SkyStore (S3-Proxy)

Figure 5: Object store performance: with and without
Skyproxy on region aws:us-west-1

The PUT operation generally has a 2× overhead on store
server side than the GET operation, since the PUT needs to
perform two DB transactions (start_upload and complete_up-
load). The DELETE operation is not optimized as the PUT
and GET, since currently we are deleting objects once a time
without parallezing this process. The LIST and HEAD oper-
ation is extremely fast since the store server is hosted at the
same region of the client, and these operation can query the
DB directly without fetching information from the real object
storage buckets.

6.2 Object Store: Scalability

0 5 10 15 20 25 30
Number of Threads

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (M

B/
s)

No SkyProxy
With SkyProxy

Figure 6: Throughput on Download: aws:us-west-1 region,
running s3 benchmark

8



To test the scalability of the SkyStore, we use S3-benchmark
[2] to plot the relationship between thread count and per-
formance. The object size is set to 16MB, testing from 8
threads to 32 threads on AWS m5d.8xlarge EC2 machine, this
large machine strong performance allows bench-marking the
throughput of the system without worrying about the upper
bound of the network bandwidth or disk I/O bandwidth. As
shown in Fig. 6, the scalability of SkyStore is quite close
to the performance of S3, both of which can reach about
1100MB+ on 32 threads. Since the data plane side is designed
as stateless, this result shows the high-concurrency support at
the control plane side.

6.3 Policy Efficiency on large objects
To illustrate the affect of using fast-write and Cache on large
objects, we compare these two policies against replicate_all
policy and single_region policy respectively.

0 10 20 30 40 50 60 70 80 90 100
Iteration

0

20

40

60

80

100

Ti
m

e 
(s

)

Write_Local: 0.1g
Write_Local: 1g
Replicate_All: 0.1g
Replicate_All: 1g

Figure 7: Write_Local & Replicate_All

To evaluate the performance of fast write, we generate two
files of 0.1GB and 1GB respectively. the client is located
at region aws:us-west-1. The write_local policy will always
write to the aws:us-west-1 region. On the other hand, the
replicate_all policy will write to both the aws:us-west-1 and
aws:us-east-1. The result is shown in Fig 7. For objects with
smaller sizes, the advantage of using fast write is not obvious,
while for those large writes (e.g. 1GB), this can allow users
to finish the PUT operation as soon as possible. The improve-
ment compared to naive data management depends on several
other factors, such as the region numbers and distances, and
object sizes.

In Fig 8, the user located at aws:us-west-1 with single_-
region policy will try to write to the aws:us-east-1. And For
the copy_on_read policy, the GET request will perform an
additional PUT operation that caches the objects fetching
from aws:us-east-1 into aws:us-west-1, that reasons the time
cost of the 1st time is much higher than the next requests.

As the object sizes we dealt with are becoming larger, the
performance effectiveness of fast write and Cache become
more obvious than the small sizes cases. This allows SkyStore
to take advantage of its flexible write polices to get better

performance on higher workloads.

0 10 20 30 40 50 60 70 80 90 100
Iteration

0

5

10

15

20

25

30

Ti
m

e 
(s

)

Copy_on_Read: 0.1g
Copy_on_Read: 1g
Single_Region: 0.1g
Single_Region: 1g

Figure 8: Copy_on_Read & Single_Region (Remote)

6.4 Large-Scale System Comparisons
To comprehensively examine Object Storage behavior on real-
world workload, we generated traces based on the Storage
Networking Industry Association’s (SNIA) I/O Traces, Tools,
and Analysis (IOTTA) repository [3].

Each row in the trace represents a REST access with the
following columns: <TIMESTEMP> the time elapsed in mil-
liseconds from the beginning of the week. <OP> the operation
type (GET, PUT, HEAD, DELETE, COPY). <OBJ_KEY> an
anonymized Object key. <SIZE> the Object Size. <ISSUE-
REGION> represents the requests that is performed at.

Read Write0

100

200

La
te

nc
y 

(m
s)

SPANStore
SkyStore

SPANStore SkyStore0.0

0.1

0.2

0.3

0.4

Co
st

 ($
)

Transfer Cost
Storage Cost
Request Cost

Figure 9: SkyStore latency & cost performance against
SPANStore

To simulate the workload of real world, where read-heavy
access pattern will take place as we have mentioned in section
1, SkyStore is initialized on three regions (aws:me-south-
1, aws:eu-south-1, aws:us-east-1), with 1700+ requests in
traces, with a GET/PUT ratio of 3.25. Object sizes we use
range from 416 Bytes to 400MB. We first compare SkyStore
against SPANStore. From Fig 9, the SPANStore policy, which
will query and predict every 1h based on historical workload
measurements for the follow-up behavior of the requests, add
extra cost on moving objects around regions and buckets.
For SkyStore, it uses the cache (copy-on-read) policy here
to solve the challenge of read-heavy, this helps the system
reaches read/write latency similar to the single storage case,
while keeping the aggregated costs lower than SPANStore.

9



Write
_lo

cal

Cop
y_o

n_r
ea

d

Sin
gle

_re
gio

n

Pu
sh|

Che
ap

est

Re
plic

ate
_al

l|C
he

ap
est

0

50

100

150

200

250

La
te

nc
y 

(m
s) Read Latency

Write Latency

Write
_lo

cal

Cop
y_o

n_r
ea

d

Sin
gle

_re
gio

n

Pu
sh|

Che
ap

est

Re
plic

ate
_al

l|C
he

ap
est

0.00

0.01

0.02

0.03

0.04

0.05

Co
st

 ($
)

Transfer Cost
Storage Cost
Request Cost

Figure 10: SkyStore latency & cost performance on different
policies

To evaluate the performance of our system more thoroughly,
we generate another trace, which contains 100 requests with a
GET/PUT ratio of 7:3. The object sizes is smaller compared
with the last one, for 1MB average. The 100 requests are dis-
tributed across 22 regions, including Asia, America, Europe,
etc. For the push policy used here, we let the SkyStore to
push to three regions, including aws:us-west-2, aws:us-east-
1, aws:us-west-1, which can be regarded as a replicate-all
operation with smaller overhead.

As in Fig 10, the write-local policy takes the smallest write
latency. When replicating objects to all the regions, as ex-
pected, it helps reach a small read latency while bringing high
transfer cost and storage cost. This will be useful when activat-
ing global client collaboration and users will perform read and
write from all locations frequently. Storing all objects in a sin-
gle region (including write-local) leads to a high read latency,
since for repeated reads we always need to read remotely, but
that helps on reducing storage cost. For copy-on-read policy,
it avoids the high read latency by replicating to the local client
region, while the write latency is basically the same since we
perform this COPY operation asynchronously.

The cost of write-local, copy-on-read and single-region
is similar, since they are all performed write operation to a
specific region per time. And since the number of requests
and the size of the objects is comparably small, the transfer
costs of them do not have too much difference.

7 Related Works

Multi-Region Buckets Amazon S3 Multi-Region Access
Points [5] enable applications to access data from S3 buckets
located across multiple AWS Regions through a single global
endpoint. These access points use AWS Global Accelerator,
which automatically routes application requests to the closest
S3 bucket, optimizing for the shortest distance and offering
built-in network resilience.

In Google Cloud, multi-region buckets [8] are designed
to store data across multiple geographic regions, allowing
users to access the data from various locations. This setup can
enhance data redundancy and availability, ensuring that data
remains accessible even in the event of a regional outage or
failure.

Geo-distributed Storage SPANStore [16] is the first sys-
tem of its kind that combines object storage across multiple

public cloud providers to deliver cost-effective and efficient
data access for geo-distributed applications. These applica-
tions span a variety of areas, including shared web services,
social networking platforms, and collaborative editing tools.
The primary aim of this project is to streamline the process
of data replication to offer a cost-optimal application services
present a unified and consistent view of global storage ser-
vices.

Volley [4] is one of the earliest works we identified that
optimizes data placement in geo-distributed applications. It
focuses on the problem of migrating fine-grained data items
across multiple data centers to minimize clients’ access la-
tency. The workload it considers is end-user web applications,
specifically Microsoft Live Mesh (a predecessor to OneDrive),
Microsoft Live Messenger, and Facebook NewsFeed.

Nomad [6] is a geo-distributed, demand-based, replicated
key-value store embodying the concept of “distributed
storage overlays”. The distributed storage overlays are an
abstraction that represents data as stacked layers in different
places.

8 Conclusion

There are many multi-regions and multi-cloud solutions to-
day, such as the multi-region buckets provided by the cloud
providers and geo-distributed storage system like SPANStore
[16]. For the multi-region buckets, it only supports users to
perform operations inside one specific cloud providers. Sky-
Store provides unified interface based on S3 semantics to
support multiple cloud providers simultaneously. And the
under-level control plane will make decisions based on the
read/write policies automatically.

For the previous geo-distributed systems, they only pro-
vides few APIs (e.g. PUT/GET). It is difficult for those sys-
tems to cope with complex scenarios which requires multiple
operations to be engaged in. Also, SkyStore reaches a smaller
latency and lower cost compared to the commercial object
storage and academic geo-distributed systems. Although in-
tegrating the data plane and control plane, it controls the
maximum overhead of GET/PUT under 10%, and obtain bet-
ter performance on metadata fetching operations like LIST/-
HEAD.

Faced with high-concurrency scenarios, SkyStore optimize
its performance by providing highly-optimized control plane,
which enables SkyStore’s high throughput. The control plane
is optimized not only for high-concurrency support, low la-
tency queries, but also fault tolerance in case of single ma-
chine/region failures.

For the security insurance, we pass the user’s password
through PBKDF2 to derive the hash-derived key. This key
is then utilized for CTR encryption, and the user’s private
signing key is employed for digital signatures, ensuring a
robust combination of data integrity and confidentiality.

10



9 Future Work

Currently, SkyStore provides several polices to replicate the
data, including copy-on-read, push and replicate-all/ How-
ever, these approaches also bring other challenges regarding
storage expenses. In scenarios where the replicated data has
low subsequent access, the system may accumulate multiple
underutilized copies and increase overheads in maintaining
consistency across cached copies. To solve this problem, we
need to design eviction policies to optimize the storage cost
and query latency.

Besides, the system needs more thorough support on the
APIs it integrated. For example, the Azure Rust SDK has not
added the feature of changing current version setting. Since
our system relies heavily on the SDKs provided by the cloud
providers, SkyStore does not support change version setting
at Azure side.

Third, the data plane and control plane can be further op-
timized. This includes changing the store server side code
from Python to C/C++/Rust, and support parallel deletion
operations in the S3-proxy side.

In the event of a client-initiated region change, the pre-
existing metadata remains housed in the original metadata
server. As a result, the client is still required to establish
a connection with the metadata server of the initial region,
leading to higher latency in user operations. Hence, there is
a need to implement a data movement mechanism to handle
such situations.

We require a more efficient mechanism for data recovery.
Utilizing periodic checkpoints, in the event of a primary node
failure, the backup can promptly transmit the checkpoint to
the newly initiated node. Subsequently, during periods of
low workload, the data following the checkpoint can be asyn-
chronously sent to the recovery node. The implementation of
the checkpoint mechanism serves to optimize the backup’s
load during the data recovery process.

References

[1] https://juicefs.com/en/.

[2] https://github.com/dvassallo/s3-benchmark.

[3] SNIA: IOTTA repository. http://iotta.snia.org
/traces/key-value/36305, 2023.

[4] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan
Saroiu, Alec Wolman, and Habinder Bhogan. Volley:
Automated data placement for geo-distributed cloud ser-
vices. In NSDI, 2010.

[5] Amazon s3 multi-region access points. https://aws.
amazon.com/s3/features/multi-region-acces
s-points/. Accessed on 12/15/2022.

[6] Ignatius De Villiers. Nomad: a pithos based P2P dis-
tributed storage network implementation. PhD thesis,
Stellenbosch: Stellenbosch University, 2021.

[7] Egress Fee. https://www.cloudflare.com/learn
ing/cloud/what-are-data-egress-fees/.

[8] Gcp multi-region bucket. https://cloud.google
.com/storage/docs/locations#location-mr.
Accessed on 12/15/2022.

[9] Madan Jampani Gunavardhan Kakulapati Avinash Lak-
shman Alex Pilchin Swaminathan Sivasubramanian Pe-
ter Vosshall Giuseppe DeCandia, Deniz Hastorun and
Werner Vogels. Dynamo: Amazon’s highly available
key-value store. 2007.

[10] H Krawczyk. Cryptographic extraction and key deriva-
tion: The hkdf scheme cryptology eprint archive report
2010/264 (2010). 2010.

[11] Simon Marechal. Advances in password cracking. jour-
nal in computer virology 4, 1 (2008), 73–81. 2008.

[12] Google Cloud Storage Price. https://cloud.google
.com/storage/pricing.

[13] L. Adleman R. L. Rivest, A. Shamir. A method for ob-
taining digital signatures and public key cryptosystems
r. l. rivest, a. shamir, and l. adleman. communications of
the acm, vol. 21, no. 2, february 1978. 1978.

[14] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10, 2010.

[15] UltraDict. https://github.com/ronny-rentner/U
ltraDict.

[16] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V. Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning multi-
ple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, page 292–308, New York, NY, USA,
2013. Association for Computing Machinery.

11

https://juicefs.com/en/
https://github.com/dvassallo/s3-benchmark
http://iotta.snia.org/traces/key-value/36305
http://iotta.snia.org/traces/key-value/36305
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://www.cloudflare.com/learning/cloud/what-are-data-egress-fees/
https://www.cloudflare.com/learning/cloud/what-are-data-egress-fees/
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/pricing
https://github.com/ronny-rentner/UltraDict
https://github.com/ronny-rentner/UltraDict

	Introduction
	Background
	SkyStore Architecture
	Architecture Overview
	API: Virtual Bucket / Object Abstraction
	Control Plane: SkyStore Server
	Data Plane: S3-Proxy

	Fault Tolerance
	Metadata Implementation
	Security

	SkyStore Policies
	Write Policy
	First write: write local
	Cache: Copy-on-Read

	Read Policy
	Read-My-Write Version
	Eventual Consistency Version


	Evaluation
	Object Store: Operations
	Object Store: Scalability
	Policy Efficiency on large objects 
	Large-Scale System Comparisons

	Related Works
	Conclusion
	Future Work

