
Choosing neural network compression methods for
reinforcement learning

Nidhir Guggilla, Kaushik Kunal Singh, Andrew Kim, Gaurav Bhatnagar
CS 262A Fall 2023

Introduction
Improvements in neural networks have

led to increased usage and performance in
reinforcement learning, but have often
incurred significant storage, memory, and
compute costs prohibitive to real-time use.
This has led to an interest in developing
model compression methods.

While a number of neural network model
compression methods have been proposed
and are in use today, there has not been an
analysis of tradeoffs between compression
methods for reinforcement learning.

We analyze compression methods like
low-rank approximation (LRA),
sparsification (pruning), and quantization
for a two tasks to provide richer insights of
the tradeoffs between compression
methods.

Methods

We test agents trained with Policy
Gradients (PG) and Double Deep
Q-Learning (DDQNs) on the
HalfCheetah-v2 and LunarLander-v2 tasks
of Gymnasium respectively. LunarLander is
a discrete control environment, while
HalfCheetah is a continuous one.

We train on a single machine with a
1660Ti GPU and an isolated processor for
reproducible behavior and availability
constraints.

Results
Sparsification (Pruning) and Low Rank Approximation (LRA)

● All compression lowers performance, but pruning has more of an effect than rank reduction
(Fig. 3, 6)

● On the other hand, rank reduction has a much more significant effect on working memory
(RAM), CPU utilization, and evaluation time (Fig. 5, 7, 9)

● As a byproduct of this, we observed a positive relationship between performance and
evaluation time (Fig. 4). The evaluation time here was standardized to 100 runs, so models
that took longer to perform a forward pass, i.e. runs that were computationally expensive in
decision-making for our lunar lander game, were able to produce better results. Across most
pruning levels there was a sharp fall in evaluation time around 30% rank reduction(Fig. 5).

● Fine-tuning causes lower deviation between performance for a given eval time (Fig. 4), but
higher deviation for a given RAM usage (Fig. 10)

● Occasionally, we saw performance rise with minor compression amounts (in the range of
<20%). This may be due to a reduction in overfitting. Performance had an elastic relationship
with evaluation time at low eval time for naive compression (Fig. 4).

Quantization (32 bit → 8 bit)

We did not notice a significant difference in average cpu utilization or RAM utilization after
compressing the model with in-training quantization. This is likely due to the addition of quantize
and dequantize nodes in the computation graph, as shown below -

However, we did notice benefits in the memory required to store the model weights, from 0.3MB
to 0.1MB (compared to the 0.075MB theoretical storage required).

Conclusion
We show the performance achieved for

compressed models on reinforcement
learning tasks, as well as the CPU, MEM,
and time saved by compression. We also
show the impacts of fine-tuning using
compressed target networks.

Interestingly, fine-tuned compression did
not give significant gains as opposed to
naive compression, while taking
significantly more resources to further train
the RL agent. This suggests that
practitioners can try “naive” compression
methods first for RL models.

Future directions of research involve
choosing continuous environments instead
of discrete environments, testing methods
such as knowledge distillation, and
exploring more efficient model storage
methods. We hope to improve our
fine-tuning methods to achieve better
performance than their naive counterparts.

A future improvement in methodology is
to mitigate the steeper drop-off in
performance from higher levels of rank
reduction than pruning - a potential
improvement would be to set minimum
ranks for input/output network layers.

References
J. O. Neill, “An Overview of Neural Network
Compression.” arXiv, Aug. 01, 2020.

G. Brockman et al., “OpenAI Gym.” arXiv,
Jun. 05, 2016.

Fig 1: LunarLander Fig 2: HalfCheetah

Fig 3: % pruned vs return Fig 4: % eval time vs return Fig 5: % rank reduced vs eval time Fig 6: % pruned and % rank
reduced vs return

Fig 7: % rank reduced vs %RAM Fig 8: % pruned and % rank
reduced vs CPU% Fig 9: % rank reduced vs CPU% Fig 10: %RAM vs return

