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Introduction
Improvements in neural networks have 

led to increased usage and performance in 
reinforcement learning, but have often 
incurred significant storage, memory, and 
compute costs prohibitive to real-time use. 
This has led to an interest in developing 
model compression methods. 

While a number of neural network model 
compression methods have been proposed 
and are in use today, there has not been an 
analysis of tradeoffs between compression 
methods for reinforcement learning.

We analyze compression methods like 
low-rank approximation (LRA),  
sparsification (pruning), and quantization 
for a two tasks to provide richer insights of 
the tradeoffs between compression 
methods.

Methods

We test agents trained with Policy 
Gradients (PG) and Double Deep 
Q-Learning (DDQNs) on the  
HalfCheetah-v2 and LunarLander-v2 tasks 
of Gymnasium respectively. LunarLander is 
a discrete control environment, while 
HalfCheetah is a continuous one. 

We train on a single machine with a 
1660Ti GPU and an isolated processor for 
reproducible behavior and availability 
constraints.

Results
Sparsification (Pruning) and Low Rank Approximation (LRA)

● All compression lowers performance, but pruning has more of an effect than rank reduction 
(Fig. 3, 6)

● On the other hand, rank reduction has a much more significant effect on working memory 
(RAM), CPU utilization, and evaluation time (Fig. 5, 7, 9)

● As a byproduct of this, we observed a positive relationship between performance and 
evaluation time (Fig. 4). The evaluation time here was standardized to 100 runs, so models 
that took longer to perform a forward pass, i.e. runs that were computationally expensive in 
decision-making for our lunar lander game, were able to produce better results. Across most 
pruning levels there was a sharp fall in evaluation time around 30% rank reduction(Fig. 5).

● Fine-tuning causes lower deviation between performance for a given eval time (Fig. 4), but 
higher deviation for a given RAM usage (Fig. 10)

● Occasionally, we saw performance rise with minor compression amounts (in the range of 
<20%). This may be due to a reduction in overfitting. Performance had an elastic relationship 
with evaluation time at low eval time for naive compression (Fig. 4). 

Quantization (32 bit → 8 bit)

We did not notice a significant difference in average cpu utilization or RAM utilization after 
compressing the model with in-training quantization. This is likely due to the addition of quantize 
and dequantize nodes in the computation graph, as shown below -

However, we did notice benefits in the memory required to store the model weights, from 0.3MB 
to 0.1MB (compared to the 0.075MB theoretical storage required).

Conclusion
We show the performance achieved for 

compressed models on reinforcement 
learning tasks, as well as the CPU, MEM, 
and time saved by compression. We also 
show the impacts of fine-tuning using 
compressed target networks.

Interestingly, fine-tuned compression did 
not give significant gains as opposed to 
naive compression, while taking 
significantly more resources to further train 
the RL agent. This suggests that 
practitioners can try “naive” compression 
methods first for RL models.

Future directions of research involve 
choosing continuous environments instead 
of discrete environments, testing methods 
such as knowledge distillation, and 
exploring more efficient model storage 
methods. We hope to improve our 
fine-tuning methods to achieve better 
performance than their naive counterparts.

A future improvement in methodology is 
to mitigate the steeper drop-off in 
performance from higher levels of rank 
reduction than pruning - a potential 
improvement would be to set minimum 
ranks for input/output network layers.
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