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Model compression in large neural networks is used to reduce the computing power, memory,
and time required to run those networks while still maintaining comparable performance. However,
not much research has been done into the performance of model compression methods when used
for reinforcement learning - probably because most traditional reinforcement learning methods
don’t rely on extremely large neural networks. Despite this, we hypothesized that compression
will still improve run-time, working set size, and CPU usage during inference while causing
acceptable reductions in performance. We tested two types of baseline models, training them
with policy gradients and double Q-learning respectively. We trained and evaluated these agents
on OpenAI Gym environments, with policy gradients used for the Half-Cheetah environment
while double Q-learning was used for LunarLander. We compressed the models using low-rank
approximation, weight magnitude pruning, and quantization. We also tested fine-tuning methods
that take advantage of the two network structure of double Q-learning in order to further mitigate
the performance losses caused by compression.

Our fine-tuning methods for pruning and low-rank approximation for double Q-learning involved
compressing the primary Q network at regular intervals during training but maintaining the
target Q network at full size. Evaluation was performed using the compressed primary Q network.
We found that compression improved our efficiency metrics (CPU usage, RAM usage, inference
time), with pruning having a larger effect than low rank approximation. We also showed that
fine-tuning is able to significantly improve the performance of compressed models compared to
their naive counterparts, notably at a higher sample efficiency than simply training a smaller
model from scratch.
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1 introduction

1.1 Problem Statement

Our research addresses the challenge of handling in-
creasingly large RL models, which can be computa-
tionally demanding and memory-intensive. These net-
works may not be suitable for deployment on resource-
constrained devices, such as embedded systems, IoT
devices, or other edge devices. In order to tackle
this problem, we aim to identify model compression
techniques that reduce the computational and mem-
ory requirements of these models while maintaining
acceptable performance.

Furthermore, some devices lack the necessary hard-
ware support to perform the required operations for
reinforcement learning, especially bare-metal com-
puters which lack specifically Floating Point Units
(FPUs). This limitation extends to basic operations
like floating-point division. To make neural networks
compatible with such devices, we explore quantization,
which converts model weights and biases from floats
to smaller integers that satisfy bit width constraints,
while maintaining performance.

1.2 Literature Review

In our exploration of related work, we delved into
two primary aspects of this project: compression tech-
niques applicable to machine learning models in a
broader context, and model compression specifically
tailored to reinforcement learning.

In the realm of compression techniques for machine
learning models, we encountered a rich body of prior
research that encompasses a wide spectrum of method-
ologies. These encompass techniques such as pruning,
low-rank approximation, quantization, distillation,
and binarization, among others. A comprehensive
survey of these methods can be found in Neill’s work
[Neill2020], which offers an extensive overview of the
field.

Turning our attention to model compression within
the domain of reinforcement learning, we observed
that the existing body of literature is comparatively
narrower. This is likely attributed to the charac-
teristic use of compact neural networks in RL al-
gorithms, which inherently require less compression.
Nonetheless, our search did yield a handful of papers
that address this specific subject matter, with no-
table examples being Krishnan et al.’s investigation
[Krishnan2022] and García-Ramírez et al.’s explo-
ration [GarciaRamirez2022]. However, it is worth

noting that these aforementioned papers primarily
emphasize the performance evaluation of compressed
RL models in terms of their achieved returns. Our
focus, in contrast, extends towards a more profound
examination of the computational intensity aspect of
model compression in the context of RL.

1.3 Paper Organization

The structure of our paper is organized as follows.
We begin by discussing the methods employed in our
research, including data measurement and model com-
pression techniques. Next, we present the results of
our experiments, followed by a detailed discussion
of the findings. Finally, we conclude our paper with
limitations of our work, suggest directions for future
research and a summary of our contributions.

2 methods

2.1 Data Measurement

In our experimentation, we employed a Ryzen 7 2700x
CPU and an Nvidia 1660 Ti GPU as our hardware
foundation. To facilitate the training and evaluation
of our reinforcement learning models, we developed
a wrapper software that concurrently gauged system
resource consumption.

With a focus on constrained compute and special-
ized devices, we took the approach of isolating a single
core on our CPU, ensuring that all training and eval-
uation scripts ran exclusively on this core. This de-
liberate isolation streamlined our CPU measurement
statistics. Additionally, we integrated process statistic
software into our measurement script, enabling fre-
quent polling of CPU and RAM usage statistics. We
designed certain computations to be GPU-bound and
utilized the Nvidia management library to measure
power usage and utilization rates for the GPU.

Notably, our GPU power measurements initially
raised suspicions, as we struggled to see any
trends. However, we attribute this anomaly to non-
differentiated GPU usage in our original compression
methods, as we were able to generally validate the
precision and accuracy of our measurement meth-
ods. To do this, we applied them to tasks of known
computational complexity levels, such as matrix mul-
tiplication and statistical analyses on the resulting
matrices. Through this process, we found tractable
correlations between task complexity and resource
usage for every tracked statistic.
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We ran these measurements on both training/fine-
tuning and evaluation. We trained and fine-tuned the
models for 300000 steps. We evaluated the models
across 100 episodes, which consist of the model con-
trolling the agent until either failure or success. We
measured average CPU, GPU, and RAM usage, GPU
power draw, total time, episode length, and agent
performance across the 100 episodes. We calculated
the time it took for each model to perform inference
(eval time) by dividing the total time measurement by
the total episode length (the number of actions taken
in each episode summed across all 100 episodes).

2.2 Baseline Models

The majority of our experiments were performed on an
agent trained using double Q-learning for the OpenAI
LunarLander environment. The LunarLander task is
a discrete environment in which a shuttle’s thrust en-
gines have to be appropriately controlled to land the
ship between two flags on a surface. Q-learning is a
form of reinforcement learning where a neural network
is trained to predict the reward associated with each
action an agent can take. Double Q-learning expands
on this by introducing a second network (the target
network) in order to produce more accurate predic-
tions of reward and reduce variance. The networks
we tested our methods on had two hidden layers, each
with size 64. We also trained agents with hidden layer
sizes of 32 and 16 in order to be able to compare
the effects of post-training compression with reducing
the size of the model before training (ie. pre-training
compression).

Figure 1: LunarLander and Half-Cheetah

We also ran a smaller subset of experiments on the
Half-Cheetah task, which is a continuous environment
in which the policy has to control a 2-dimensional
figure with one front leg and one back leg. We experi-
mented with policy gradient, which is a reinforcement
learning scheme in which gradient descent is directly
applied to the reward function of the decision-making
policy. Specifically, we evaluated the performance of
quantizing the mean_net and logits_net of the actor.

2.3 Model Compression

The three forms of model compression we implemented
for our experiments were pruning (sparsification), low
rank approximation, and quantization.

Pruning (Sparsification): Pruning a neural net-
work involves removing some of the connections be-
tween layers by changing the corresponding weights
to zero or entirely removing nodes. This aims to re-
duce model size and inference time by reducing the
number of weights that a given model needs to store
and use for inference. For example, a prune level of
0.4 means that 40% of the weights in the model were
zero, with the remaining weights being the ones of
highest magnitude in the original model. We imple-
mented pruning of weights by changing the ones with
the smallest magnitudes to zero using the PyTorch
prune utilities.

Low Rank Approximation: Matrices typically
take up a quadratic amount of space in their dimen-
sion. An N by N matrix is populated by N2 entries.
Taking the singular value decomposition of a matrix
is a form of Fourier transform in which the under-
lying dyad matrices can be revealed. These dyad
matrices can be ranked by how much of an effect they
have on the composition of the original matrix (in a
number called the singular value), and can also be
represented as the product of two N-length vectors.
LRA is an approximation technique that disregards
the composing matrices with the lowest singular val-
ues and re-composes with the remaining ones. The
long-term space required to store would now grow as
2N ∗ P , where P is the number of composing matrices
you keep. We implemented this using the PyTorch
SVD module to select the dyads corresponding to the
largest singular values and replace the weight matrices
in place. We tested two forms of low-rank approxima-
tion: one where we only compressed the hidden layers
of the network and one where we compressed every
layer (including the input and output layers). We
chose to analyze the results of only performing low-
ran approximation on the hidden layers of the network
because the initial rank of the input/output layers was
already so small that any amount of rank reduction
made it nearly impossible for them to perform at a
reasonable level while also leading to enough decreases
in memory and CPU usage that they drowned out
any other signals.

Quantization: Quantization fundamentally works
by mapping continuous floats to discrete integers (we
focused on 32-bit floats to 8-bit ints), and we explored
two main methods of this: Quantization Aware Train-
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ing (QAT) and Post Training Quantization (PTQ).
QAT involves training the model while simulating the
effects of quantization through quantization and de-
quantization nodes. PTQ, on the other hand, applies
quantization after the model is alreadry trainedWe
implemented these approaches using Pytorch’s quan-
tization library (both in ’eager mode’ and ’fx mode’).
Our results, however, focus on the impact of QAT on
our benchmarks, as we were interested in retaining
the performance of the uncompressed model.

We also attempted binarization as an extreme form
of quantization, but faced challenges in implement-
ing it effectively for our application. Its experiments,
therefore, have not been included.

2.4 Fine-Tuning

We implemented post-training fine-tuning with the
goal of compensating for the decrease in return caused
by compression while maintaining the benefits in effi-
ciency. Fine-tuning generally involves starting with a
model that has been trained on one task or dataset
and further training it for a different setting, po-
tentially freezing some weights and using a different
learning rate to allow the model to remember its ear-
lier training while still being able to adapt to the new
scenario.

Our method focused on taking advantage of the
two network structure of double Q-learning to help
the agent cope with the loss of expressivity caused
by compression. We ran two sets of fine-tuning ex-
periments. In one, we trained the primary Q-network
normally while compressing the target Q-network at
regular intervals. In the other, we ensured that we
transferred an uncompressed version of the primary
Q-network to the target network before compressing
the primary Q-network at regular intervals. Our in-
tention with the first experiment was to see if a fully
expressive primary network with a compressed target
network would be able to eventually learn a represen-
tation that would compress well (motivated by the
targets provided by the compressed target network),
improving performance after fine-tuning. The goal
of the second experiment was to see if a compressed
primary network would still be able to learn to predict
the more accurate targets being provided to it by the
uncompressed target network.

3 results

3.1 Graphs

Figure 2: Training curves for fine-tuning models after com-
pression, as well as smaller models from scratch

Figure 3: Return achieved by naive compression as a func-
tion of pruning amount (sparsification)

Figure 4: Return achieved by naive compression as a func-
tion of low-rank approximation amount (derank)
when only reducing rank of hidden layers
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Figure 5: Average memory used as a function of low-rank
approximation amount (derank)

Figure 6: Average RAM used by naive compression as a
function of low-rank approximation amount (de-
rank) when also reducing rank of input/output
layers

Figure 7: Return achieved as a function of time to per-
form 100 transitions (Eval Time) for naively com-
pressed and fine-tuned models

Figure 8: Return achieved as a function of average CPU us-
age during 100 transitions for naively compressed
and fine-tuned models

Figure 9: Return achieved as a function of average RAM
usage (Average MEM Usage (%)) during 100
transitions for naively compressed and fine-tuned
models

Figure 10: Average RAM used by naive compression as a
function of amount pruned from the network
(sparsification proportion)

3.2 Analysis

Figure 2 shows training curves for agents pre-trained
with double Q-learning with hidden layer size 64 in
the LunarLander environment that are then com-
pressed and fine-tuned. In this graph, we examine
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the training curves of some specific compression levels
to highlight how long they take to recover from the
effects of compression as we fine-tune them. All of
the compressed models show a distinct drop in per-
formance at 20000 steps because until this point, the
uncompressed model was being used to collect data
for fine-tuning. At 20,000, performance drops to the
level it would be at for naive compression and further
steps are used to recover. We also include the train-
ing curves for smaller hidden layer sizes (32, 16) to
compare the amount of training required to fine tun-
ing a compressed model instead of training a smaller
model from scratch. We can see that hidden layer
size 32 (the brown curve) is able to eventually reach
the performance of our compressed and fine-tuned
models, but it takes almost 300,000 training steps
to do so. In comparison, ’low’ compression amounts
(pruning and deranking under 0.5) are able to recreate
their initially rich performance within 75,000 training
steps. Finally, we see that a hidden layer size of 16
is unable to reach performance near 200, plateauing
early around a return of -150, similar in performance
to a simultaneous deranking and pruning of 0.8. In
cases where a pre-trained model already exists but is
too large for a specific use case, it takes less training
to compress and fine-tune the existing model than
attempt to train a smaller model from scratch. In
reinforcement learning use cases where a system may
have to adapt on the fly and learning time is vital,
we suggest that compression techniques as used on
prior trained models may be more efficient than using
smaller models to begin with.

Figures 3 and 4 were evaluations of LRA and prun-
ing techniques in various degrees on agents trained
with DQL for LunarLander. As we can see from fig-
ure 3, the sparsification had a highly tractable and
negative effect on performance of the actor. This
was noticeable in all levels of deranking, from 0 to
90%, although derank amounts under and including
50% were generally in a higher class of performance
which approximately reproduced the performance of
the unaltered base model in its reactivity to sparsi-
fication. Figure 4 supports this conclusion, with the
higher-performing models (those with lower pruning
amounts) staying relatively stable around their start-
ing return values until reaching 50% deranking, at
which point they dropped dramatically. We can see
from these two graphs that weight pruning has more
tractable effects on return than deranking. We also
paradoxically noticed that, for low derank models,
going from 0% to 5% or even 10% weight pruning was
able to generally improve performance of the model.

We attribute this to possibly being due to some form
of overfitting mitigation. On the other hand, when p

Figures 17 through 9 display performance over CPU
resource statistics and evaluation time, all in the case
of solely inference (decision making). The red points
represent the final performance of compressed models
after repeated fine tuning and re-compression. The
general trend of red nearing the top of the graphs
with corresponding blue points directly underneath
indicates that, for similar levels of CPU usage and
MEM (RAM) usage, fine tuning is able to achieve bet-
ter return, e.g. make better use of resources. Within
the naively compressed models, we can generally see
positive relationships between resource usage and per-
formance. As our power utilization statistics were
stable across our experimentation, we can also view
evaluation time as a proxy for energy expended during
inference.

Figure 9 validates the actual utility of our com-
pression techniques, as we see a negative correlation
between sparsification and RAM usage in our CPU.
Lower degrees of weight pruning failed to show this
relationship, but it is evident at higher proportions.

We tested two forms of low-rank approximation,
one where only the hidden layers of the network were
compressed and one where every layer in the network
was compressed. Figures 5 and 9 show the results
when using LRA only on the hidden layers while fig-
ure 6 shows the impact of deranking all layers of the
network. We can see that compressing the input and
output layers has a drastic effect on the model, as
evidenced by the sudden drop off at 0.3 sparsifica-
tion, whereas 5 remains relatively stable. Changing
the rank of the initially low-rank input and outputs
significantly damages expressivity of the model.

3.3 Quantization analysis

In most of our experiments, we did not notice a sig-
nificant difference in average cpu utilization, RAM
utilization or other performance benchmarks after
compressing the model with in-training quantization.
We hypothesize that this could be due to several rea-
sons:

1) The addition of quantize nodes in the computa-
tion graph, adding additional computational steps for
each weight and bias, which can be seen by figure 11.
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Figure 11: Computation graph for Quantization

2) The PyTorch quantization library we employed is
encapsulated within a black-box framework and may
be primarily optimized for optimizing return perfor-
mance, possibly at the expense of other performance
benchmarks we were assessing.

However, we did notice an expected decrease in
stored size of the model weights, from 0.3MB to
0.1MB. Additionally, we noticed a trend in training
time when compared to no compression and pruning,
as seen in figure 12.

Figure 12: Training times

4 conclusion

4.1 Limitations

Our project’s scope was influenced by the utilization of
an existing quantization library, which constrained us
to the implementation and analysis of a specific quan-
tization level, specifically, the 32-bit to 8-bit quanti-
zation. Ideally, we would have preferred to explore
various quantization levels and assess their impact
on model performance, as well as resource utilization
metrics.

It’s important to note that despite our rigorous
sanity-checking efforts, we encountered challenges in
discerning notable trends in GPU power consump-
tion. This limitation stemmed from relatively low

GPU utilization levels, consistently below 10 percent,
throughout the majority of our experimentation. This
discrepancy may be attributed to the fact that we av-
eraged these values across the entirety of the training
and evaluation loops, rather than focusing solely on
the backpropagation and inference segments, which
could have yielded more insightful GPU power statis-
tics.

Additionally, our non-quantization compression
methods employed abstracted proportions represented
as arbitrary decimals. However, it’s essential to rec-
ognize that beneath the abstraction, the removal of
weights and singular values necessitated the handling
of integer quantities, introducing a level of complexity
that warrants consideration.

4.2 Future Work

In the realm of future developments, one promising
avenue is the implementation of a custom interface
designed for the storage of a model’s weights and bi-
ases, along with the execution of pertinent operations
on them. This tailored interface has the potential
to unlock the full spectrum of performance benefits
that model compression techniques can offer. These
enhancements could include the introduction of vector-
ized dynamic bit widths and memory defragmentation
strategies, among others, to further optimize resource
utilization.

Furthermore, our experiments primarily adhered to
a fixed set of hyperparameters during the fine-tuning
process. In subsequent research endeavors, the ex-
ploration of varying hyperparameter configurations,
such as learning rates, presents an opportunity to
fine-tune compression methods to achieve even better
results. Of particular interest is the investigation into
the effects of altering the frequencies at which model
compression and copying to the target network occur,
potentially unveiling novel optimization strategies.

To refine the precision of our results, a more sensi-
tive and granular approach to measuring power con-
sumption across specific segments of the training and
inference processes could be adopted. Additionally,
parameterization in more suitable units may lead to
more precise and informative outcomes in terms of
resource utilization and performance evaluation.

4.3 Final Thoughts

For reinforcement learning trained models, as ex-
pected by our hypothesis, increases in compression
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degree reduced both performance and resource utiliza-
tion. Within naively compressed models, we observed
positive correlations between CPU/time resource uti-
lization and performance. Fine-tuning of compressed
models with compression built into the training loop
proved to be an effective way to recover good perfor-
mance with compressed models without increasing
inference resource usage, especially as compared with
simple matrix shrinking.

5 contribution

There was a lot of collaboration on all aspects of
the project, and Kunal was responsible primarily for
implementing quantization, Nidhir focused on inte-
grating low-rank approximation and weight pruning
techniques, Andrew prioritized developing the mea-
surement utilities, and Gaurav handled environment
setup, management, and data analysis.
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