
Faster Distributed LLM Inference with Dynamic Partitioning
Isaac Ong, Woosuk Kwon

Introduction
Recent advances in machine learning have enabled an exponential increase in
model size of large language models, from BERT with 340 million parameters
to GPT-2 with 1.5 billion parameters, and GPT-3 with 175 billion parameters. The
emergence of these large language models (LLMs) have led to myriad new use
cases such as chatbots like ChatGPT and coding assistants like GitHub Copilot.
However, the size of these LLMs poses challenges for serving them as they
exceed the memory limits of modern processors. Therefore, model inference
has to be parallelized across GPUs. The performance characteristics of
distributed LLM inference are highly dependent on the input length, which can
vary from 1 token to tens of thousands of tokens. Moreover, the optimal
partitioning scheme for tensor parallelism may also differ based on the input
length. However, existing LLM inference engines do not account for this and
apply a static partitioning scheme regardless of input size. Therefore, we
propose dynamic partitioning, an approach to tensor parallelism for distributed
LLM inference that dynamically switches between different optimal partitioning
schemes based on the input size.

Partitioning Scheme Search
To facilitate the identification of alternative optimal partitioning schemes, we developed a
program that exhaustively searches all viable distributed partitioning schemes for LLM
architectures to determine the Pareto frontier for partitioning schemes based on FLOPs,
communication overhead, and weights memory.

We formalize the state of parallelized tensors into 4 types:
1. Replicated tensor (XR): Fully replicated across all GPUs
2. Column-sliced tensor (XCS): Sliced along the column dimension across GPUs
3. Row-sliced tensor (XRS): Sliced along the row dimension across GPUs
4. Local tensor (XL): Same size as the full tensor, but does not contain the full values

Next, we formalize the following rules for operations on such tensors:

Using the above axioms, we can run the search across an entire transformer layer and identify
the Pareto frontier for partitioning schemes, as well as the symbolic FLOPs, communication
overhead, and weights memory for each partitioning scheme.

Design & Implementation
With the identified partitioning schemes, it is possible to dynamically switch
between them at inference time because they share the same weight layout.
Therefore, we can load the model weights at initialization time regardless of
the chosen partitioning scheme at inference time.

To determine the threshold for which to switch between different partitioning
schemes, we calculate the theoretical prompt length at which each scheme
becomes optimal, taking into account both the communication overhead and
FLOPs of each scheme. However, the theoretical threshold is an overestimate
as it does not account for GPU characteristics as well as the fact that certain
schemes, such as weight-gathered MLP, can more easily overlap computation
and communication on the GPU.

We developed a LLM inference library using PyTorch in Python that supports
Llama-based models and added support for dynamic partitioning using the
identified partitioning schemes. Moreover, we took advantage of torch.compile
to accelerate inference speed by JIT compiling the PyTorch code into custom
CUDA kernels.

Background
LLMs are based on the autoregressive transformer architecture, which
generates new tokens one at a time based on the input prompt tokens and the
previously-generated output tokens. Figure 1 shows a diagram of the
transformer architecture. A
transformer layer consists of a self-
attention block, followed by a two-
layer multi-layer perceptron (MLP) as
shown in the figure.

There are two main approaches to
model parallelism:
1. Pipeline parallelism performs operations
on one GPU before the outputs of these
operations are passed onto the next GPU
where a new set of operations are
performed, and so on.
2. Tensor parallelism, which is the focus of
this work, partitions tensor operations
across multiple GPUs so as to either
increase the speed of computation or to
reduce the amount of memory required on
each GPU.

The current state of the art approach
to tensor parallelism is Megatron-LM:
● Self attention block is

partitioned across attention heads in a
column parallel manner so that the matrix operations corresponding to
every attention head are done locally. The output projection linear layer is
partitioned in a row parallel manner so that it takes the output of the
attention operation directly. Finally, an all-reduce is required to synchronize
the tensors before moving to the MLP layer.

● For the MLP layer, the first matrix operation is partitioned in a column
parallel manner while the second matrix operation is partitioned in a row
parallel manner so that it can take the output of the first matrix operation
without any synchronization operation. Finally, an all-reduce is again
required to synchronize the resulting tensors.

Pareto Optimal Partitioning Schemes
Based on the search above, we identified 3 viable Pareto optimal partitioning schemes for
distributed LLM inference. Each of these partitioning schemes have different characteristics
depending on the model and input length.

1. Megatron Attention / Megatron MLP: This is the same partitioning scheme used in
Megatron-LM. It requires the least FLOPs out of the identified partitioning schemes, and is
therefore optimal for small sequence lengths when compute, and not communication
overhead, is the bottleneck.

2. Output Projection Replicated Attention / Megatron MLP: In output projection replicated
attention, an all-gather operation is performed after the self attention operation to obtain the
full tensor, and the output projection linear layer is fully replicated. An all-reduce is no longer
required after the attention block, reducing the communication overhead. This partitioning
scheme is more optimal than the first scheme when communication is the bottleneck. This is
often the case in the prefill phase of LLM generation, when the entire list of input prompt
tokens have to be processed at once.

3. Megatron Attention / Weight-gathered MLP: In weight-gathered MLP, the weights in the
MLP layer are gathered before each matrix operation, and discarded after. This makes the
communication overhead for the MLP layer independent of the sequence length, unlike the
first two schemes. Therefore, this partitioning scheme is optimal when communication
overhead is the bottleneck, and when the sequence length is long enough such that the
communication overhead of other schemes exceeds the communication overhead of this
scheme.

Evaluation

Using dynamic partitioning, we observe reductions of 10% - 40% in the time to
first token for varying prompt lengths as compared to the scheme used by
Megatron-LM in the inference library we developed. These benchmarks were
executed on 4 L4 GPUs using the Llama-7b and Llama-13b models. This
indicates marked improvements in the speed of distributed LLM inference
using dynamic partitioning as compared to a static partitioning scheme.

1. ACS @ BRS = ABL
2. AR @ BCS = ABCS
3. ARS @ BR = ABRS
4. AR @ BR = ABR

5. AllGather(ACS or ARS) = AR
6. ReduceScatter(AL) = ACS or ARS
7. Split(AR) = ACS or ARS

8. From 5 and 6: AllReduce(AL) = AR

Figure 1. Transformer Architecture

