
Faster Distributed LLM Inference with Dynamic Partitioning
(CS 262A)

Isaac Ong with Woosuk Kwon
University of California, Berkeley

Abstract
In light of the rapidly increasing size of large language models
(LLMs), this work addresses the challenge of serving these
LLMs efficiently given the limitations of modern GPU memory.
We observe that the inference of LLMs is unique as compared
to other models due to the wide variation in input lengths, a
factor not adequately addressed by existing works. Current
inference engines typically employ a static partitioning strat-
egy, which is sub-optimal given the variability in input lengths
and the diversity of GPU specifications. To overcome these
challenges, we propose a dynamic partitioning strategy for dis-
tributed LLM inference which dynamically switches between
different partitioning strategies at inference time, optimizing
for both GPU characteristics and input length. We systemat-
ically search for all Pareto optimal partitioning strategies for
distributed LLM inference, focusing on their computational re-
quirements, communication overhead, and memory demands.
Based on this search,we identify three Pareto optimal strategies
that cater to different scenarios and implement an inference
engine for dynamic partitioning. Our evaluation, conducted
on NVIDIA L4 and A100 GPUs using the Llama 2 family of
models, demonstrates significant improvements over existing
approaches. We illustrate reductions in the time to the first
token of up to 40% and reductions in latency of up to 18%,
underlining the effectiveness of dynamic partitioning. Our
findings pave the way for more efficient utilization of GPU
resources in distributed LLM inference, accommodating the
evolving landscape of model sizes and architectures.

1 Introduction
Recent advances in machine learning have enabled an

exponential increase in model size of large language models
(LLMs), from BERT [1] with 340 million parameters to
GPT-2 [2] with 1.5 billion parameters, and GPT-3 [3] with 175
billion parameters. The emergence of these large language
models have led to myriad new use cases such as chatbots like
ChatGPT [4] and coding assistants like GitHub Copilot [5].

However, the size of these large language models poses
challenges for serving them as they exceed the memory

limits of modern processors. For instance, with 175 billion
parameters, the weights for GPT-3 [3] require over 300GB of
GPU memory to store, while the latest NVIDIA H100 GPUs
only contain 80GB of memory, meaning that at least four
of these GPUs are required to serve GPT-3. Moreover, this
only accounts for the model weights and not the additional
memory required the store the model activations and inference
code. This rapid increase in model size shows no sign of
stopping [6]. Therefore, model inference must be parallelized
across multiple GPUs to be feasible.

Model parallelism techniques can be mainly classified into
two main types: pipeline parallelism and tensor parallelism.
Tensor parallelism, which is the focus of this work, partitions
tensor operations across multiple GPUs so as to increase the
speed of computation or reduce the amount of memory used
on each GPU. Such techniques have been well-studied in the
literature. Currently, LLM inference engines such as vLLM [7],
HuggingFace’s TGI [8], and NVIDIA’s TensorRT-LLM [9]
make use of the approach introduced by Megatron-LM [10],
which describes a specific model partitioning strategy to
distribute tensor computation across GPUs.

Our key observation is that inference with LLMs is uniquely
different from other machine learning models because of
the wide variation in input lengths, a difference that is not
covered by existing work. We note this is the case specifically
for inference and not training because of the wide-ranging
applications for LLMs, from chatbot conversations to use cases
like retrieval-augmented generation [11], where documents
containing tens of thousands of tokens are fed into a LLM for
summarization and information retrieval. To this end, there
has also been a trend of increasing context length supported
by LLMs, from 1024 supported by GPT-2 [2] to over 100,000
tokens supported by Claude [12], a trend which is likely to
continue into the future.

We note that partitioning strategies can differ greatly in
terms of FLOPs, communication overhead and memory
requirements, all of which vary based on the input length.
Therefore, the input length should be considered to determine
an optimal partitioning strategy. At the same time, the perfor-

1



mance of different partitioning strategies can also vary a lot
based on the type of GPU used, an issue which is exacerbated
by the heterogeneity in GPUs today. Currently, major com-
panies such as NVIDIA, Google, and AMD offer GPUs that
have a broad range of specifications. For example, the memory
bandwidth for NVIDIA GPUs can range from 200GB/s with
A2 Tensor Core GPUs to 2TB/s with H100 Tensor Core GPUs.
On the other hand, the L4 GPU achieves 36 TFLOPs on half-
precision floating point numbers while the H100 GPU achieves
1512 TFLOPs, a difference of over 40 times. These wide
disparities in GPU characteristics have to be considered when
deciding the optimal partitioning strategy for LLM inference.

Existing works in LLM inference do not account for this and
apply a static partitioning scheme for all input lengths and mod-
els. Therefore, in this work, we propose using a dynamic par-
titioning strategy for distributed LLM inference that switches
between partitioning strategies at inference time based on the
model, GPU characteristics and input length with the goal of
minimizing the time to first token and latency. We conduct an
exhaustive search over all partitioning strategies for distributed
LLM inference considering their performance with respect to
FLOPs, communication overhead, and memory requirements.
We then identify three Pareto optimal partitioning strategies
for LLM inference that perform most efficiently in different
scenarios. Based on these partitioning strategies, we develop
a inference engine that is capable of dynamically switching
between these partitioning strategies at inference time.

We evaluate dynamic partitioning on both L4 and A100
NVIDIA GPUs using the Llama 2 7B, 13B, and 70B
models [13]. Our evaluation results show that as compared to
using the static partitioning strategy from Megatron-LM [10],
using a dynamic partitioning strategy achieves a reduction of
up to 40% in the time to first token and a reduction of up to
18% in overall latency.

To summarize, we make the following contributions:

• We formalize the problem of identifying alternative
partitioning strategies for distributed LLM inference
while ensuring the correctness of these strategies by
defining tensor states and operations on these tensors.

• We conduct an exhaustive search over all feasible
partitioning strategies for distributed LLM inference
and identify the Pareto frontier of partitioning strategies
based on weight FLOPs, communication volume, and
weights memory.

• We implement an LLM inference library that implements
dynamic partitioning, switching between different
partitioning schemes at inference time based on the
GPU, model architecture, and input length. We show
that dynamic partitioning achieves superior performance
in terms of overall latency and time to first token as
compared to the existing state-of-the-art approach to
tensor parallelism.

2 Background
This section explains the existing Transformer architecture

used in LLMs today, as well as techniques used to parallelize
these models.
2.1 Transformer Architecture

Figure 1: The architecture for a single Transformer layer

LLMs are based on the auto-regressive Transformer
architecture [14], show in a simplified manner in Figure 1.
A single Transformer layer consists of a self-attention block,
followed by a two-layer multi-layer perceptron (MLP), as
shown in the figure. These layers are replicated multiple times
to form the full Transformer model. Transformer models are
auto-regressive, meaning that they generate new tokens one
at a time based on the input prompt tokens and the previously-
generated output tokens. Specifically, the process of inference
in Transformer models can be broken down into two phases.

Prefill phase The prefill phase takes the entire user prompt
and computes the first output token. As part of this process, the
Transformer also generates the key and values vectors for all the
prompt tokens, which are stored for future use. Therefore, for
this phase, the size of the input is the length of the entire prompt.

Generation phase The auto-regressive generation phase
generates the remaining tokens one at a time. Specifically,
at each iteration, the Transformer model takes in the last

2



generated output token and computes the next token in the
sequence using all the previously-generated key and value
vectors. This process of generation continues until either the
sequence reaches a maximum length (as specified by the user
or the LLM) or when an end-of-sequence token is returned.
For this phase, the size of the input is always one at each
iteration, since only the last output token generated is used.
2.2 Model Parallelism

In general, there are two main approaches to model
parallelism: pipeline parallelism and tensor parallelism.

Pipeline parallelism In pipeline model parallelism, the
layers of the model are split between different GPUs. Each
GPU performs operations for its assigned portion of the model
before the outputs of these operations are passed onto the next
GPU, where a new set of operations are performed, just as in
a pipeline.

Tensor parallelism Tensor parallelism is an orthogonal
approach to pipeline parallelism whereby tensor computation
is partitioned across GPUs to either speed up computation or
the reduce the memory usage on each GPU.
2.2.1 Transformer Model Parallelism

Figure 2: The partitioning strategy used by Megatron-LM for
2 GPUs

For Transformer models specifically, Megatron-LM [10]
introduced a model parallelism strategy for both the
self-attention blocks and MLP blocks, as shown in Figure 2.

Self-attention Block For the self-attention block, Megatron-
LM partitions the multi-headed attention operation in a column-

Figure 3: The valid states for a given tensor A when distributed
across GPUs

parallel manner such that the matrix operations corresponding
to each attention head are done locally on each GPU, allowing
the attention operation to be parallelized across GPUs. Next,
the output linear layer is partitioned in a row-parallel manner
such that it takes the output of the attention operation directly.
The resulting tensor after the linear layer is the same size as the
full tensor, but only contains partial values for each element.
Therefore, an all-reduce operation is performed to synchronize
the tensors so that the full tensor is now present on each GPU.

MLP Block For the MLP block, the first linear layer is par-
titioned in a column-parallel manner while the second linear
layer is partitioned in a row-parallel manner, allowing it to take
the output of the first linear layer directly without any synchro-
nization. Finally, the resulting tensor again only contains partial
values for each element, so an all-reduce operation is required
after the MLP block to obtain the full tensor on each GPU.

By partitioning the computation across multiple GPUs, the
Megatron-LM [10] partitioning strategy reduces the FLOPs
required on each GPU at the expense of increased communi-
cation volume, which comes from the all-reduce operations
performed after the self-attention block and the MLP block.

3 Formulation
We formalize the problem of identifying valid partitioning

strategy given a model architecture by creating rules that
specify the state of tensors when distributed across GPUs and
the set of operations that can be performed on them.

Tensor States We extend the tensor layout described in Co-
CoNet [15] such that a given tensor A can classified into one of

3



four states when used for distributed computation: replicated,
column-sliced, row-sliced or local, as shown in Figure 3:

• A replicated tensor is one which has the same value on
all devices.

• A column-sliced tensor (denoted by ACS) or row-sliced
tensor (denoted by ARS) is partitioned equally across
all devices in a column-parallel or row-parallel manner
respectively.

• A local tensor (denoted by AL) is one that has the same
shape on all devices, but contains a different value on
each device.

Matrix Operations Based on the above tensor states, the
valid matrix operations given two tensors A and B are as
follows (with multiplication denoted using @):

• ACS@BRS=ABL

• AR@BCS=ABCS

• ARS@BR=ABRS

• AR@BR=ABR

Non-linearities On each GPU, non-linearities such as the
rectified linear activation function (or ReLU) can be only be
executed on tensors that are not local since they require each
element in the tensor to be the same value as in the full tensor,
leading to the following rules:

• ReLU(AR) =[ReLU(A)]R
• ReLU(ARS) =[ReLU(A)]RS
• ReLU(ACS) =[ReLU(A)]CS

LayerNorm The LayerNorm operator can only be applied
to replicated tensors or row-sliced tensors since it is applied
along the row dimension. Therefore, the rules for LayerNorm
are as follows:

• LayerNorm(AR) =[LayerNorm(A)]R
• LayerNorm(ARS) =[LayerNorm(A)]RS

Self-Attention For the attention operator in the Transformer
model, we treat it as a black box to simplify the search
process because of the complexity of the attention mechanism.
Moreover, the architecture of the attention mechanism makes
it particularly suited for the parallelization scheme described
by Megatron-LM [10], which is why we only implement a
single rule. The Attention operator takes in a single matrix
containing the concatenated key, query, and value matrices,
and returns the attention matrix:

• Attention(ACS) = [Attention(A)]CS

Collective Communication For tensors distributed across
GPUs, collective communication operations can be used to
manipulate tensors on multiple devices at the same time. The
rules that govern how they operate are as follows:

• AllGather(ACS) =AR

• AllGather(ARS) =AR

• ReduceScatter(AL) =ACS

• ReduceScatter(AL) =ARS

• Since AllReduce is equivalent to an ReduceScatter
followed by an AllGather, AllReduce(AL) =AR

Transformer Layer To facilitate the searching of partition-
ing strategies while ensuring correctness, we also formalize
the process of inference through a single Transformer layer
using tensors and the operations described above.

Based on Figure 1, let A be the input tensor into a Trans-
former layer, QKV be the query, key, value matrix for the
self-attention operation, W0 be the weight matrix for linear
layer in the self-attention block, and W1 and W2 be the weight
matrices for the linear layers in the MLP block. We ignore
the residuals introduced by the Add operator for simplicity, as
these are element-wise operations that do not affect the search
space of valid partitioning strategies. We can then formulate
the resulting tensor from inference like so:

ReLU(LayerNorm(Attn(LayerNorm(A)QKV )W0)W1)W2

Given this, any partitioning strategy for LLM inference
can be defined as a set of operations on the input and weight
tensors. By matching the resulting tensor of the partitioning
strategy to the above tensor, we can verify the correctness of
the partitioning strategy.

4 Search
In this section, we detail the process of developing a

program to discover alternative partitioning strategies as well
as our results.
4.1 PartitionSearch

Based on the formulation in Section 3, we developed
PARTITIONSEARCH, a program capable of exhaustively
searching across all valid partitioning strategies for any LLM
model architecture. PARTITIONSEARCH keeps track of the
tensor state and sizes symbolically during its search. Using this,
for each discovered partitioning strategy, PARTITIONSEARCH
symbolically calculates the weight FLOPs, communication
volume, and weight memory for the strategy in terms of the
input length, model parameters, and number of GPUs used.

By substituting specific values for the weight FLOPs,
communication volume, and weight memory used, PARTI-
TIONSEARCH ranks and identifies the Pareto frontier across all
valid partitioning strategies in terms of these three objectives.

We consider a partitioning strategy to dominate another
strategy if it less or equal in all objectives, and strictly less in
at least one objective. A partitioning strategy is considered
Pareto optimal it is not dominated by any other strategy and
the set of all Pareto optimal strategies form the Pareto frontier.
4.2 Results

Figure 4 shows the results obtained by PARTITIONSEARCH
for the OPT 13B model [16] across both small and large
input lengths when parallelized across four GPUs. The results
show that there are a many valid partitioning strategies for
distributed LLM inference apart from Megatron-LM.

4



Figure 4: Characteristics of partitioning strategies discovered
for 1k and 100k tokens on an OPT 13B model parallelized
across 4 GPUs. The red line denotes the Pareto frontier for
partitioning strategies across weight FLOPs, communication
volume, and weight memory.

We observe that there is a wide variation in the performance
of these partitioning strategies, with the values for weight
FLOPs, communication volume, and weight memory differing
by up to five times. Many of these partitioning strategies
are not feasible practically because the FLOPs required
or memory requirements are too high to run any model
efficiently. Therefore, we prune all partitioning strategies that
require more than double the weight FLOPs, communication
overhead, or weight memory of the best partitioning strategy
for that specific objective.

Based on this, we identified three viable Pareto optimal
partitioning schemes for distributed LLM inference. Each
of these partitioning schemes perform differently depending
on the model and input length. Because these strategies share
similar sub-strategies across both the self-attention block and
MLP block, we first describe these sub-strategies below.

4.2.1 Sub-Strategies
Megatron-style Attention This refers to the partitioning
scheme used for the self-attention block in Megatron-LM
(§2.2.1). The communication overhead of this sub-strategy
scales with input length because there is an all-reduce

operation on the resulting tensor, and this dimensions of this
tensor depend on the input length.

Projection Replicated Attention Instead of performing an
all-reduce operation after the linear layer, an all-gather opera-
tion is performed on the attention matrix after the self attention
operation to obtain the replicated tensor, while the weight
tensor for the linear layer W0 is fully replicated. Therefore, an
all-reduce is no longer required to obtain the full tensor.

As compared to Megatron-style attention, projection
replicated attention has a smaller communication overhead
because it only requires an all-gather operation instead of an
all-reduce operation. However, this comes at the expense of
greater FLOPs and memory usage since the attention matrix
and weight matrix are multiplied as fully-replicated tensors
instead of sliced tensors.

Megatron-style MLP This refers to the partitioning scheme
used for the MLP block in Megatron-LM (§2.2.1). Similar to
with Megatron-style attention, the communication overhead
of this sub-strategy scales with input length.

Weight-gathered MLP In weight-gathered MLP, the
weights for both linear layers (W1 and W2) are fully replicated
for each Transformer pass. However, instead of the loading the
full weights for all Transformer layers on initialization, which
would not be feasible in the real-world given the prohibitive
memory requirements, an all-gather is executed to gather the
weights for each Transformer layer before they are required.
These gathered weights are then discarded after the operations,
avoiding having to store the weights for all Transformer
layers at once. Moreover, because the weight matrices are
replicated, the input tensor to the MLP block is partitioned
in a row-parallel manner to accelerate computation.

As compared to Megatron-style MLP, the communication
overhead of weight-gathered MLP is independent of the input
length because the collective communication operations are
only performed on the weight matrices of the linear layers,
which are fixed size for a given model. This communication
overhead depends solely on the size of the model. We note that
this overhead is significant, even for smaller models. For ex-
ample, for an OPT-13B model [16] with 40 layers and a hidden
dimension of 5120, the communication volume for a single
weight-gathered MLP block is over 400 MB, which translates
to over 16GB for MLP blocks across the entire model.
4.2.2 Overall Strategies

Using the above sub-strategies as building blocks, we now
describe the Pareto optimal partitioning strategies for a single
Transformer layer identified by PARTITIONSEARCH: MEGA-
TRON, PROJECTIONREPLICATED, and WEIGHTGATHERED.
Table 1 illustrates their performance in terms of weight FLOPs,
communication volume, and weight memory.

MEGATRON This is the same partitioning strategy used
by Megatron-LM (§2.2.1). Out of the three partitioning

5



Megatron Projection-
Replicated

Weight-
Gathered

Weight
FLOPs 24d2n/g 2d2n+22d2n/g 24d2n/g

Communication
Vol. (B) 8dn 6dn 4dn+16d2

Weight Mem-
ory (B) 18d2/g 16d2/g+2d2 18d2/g

Table 1: Characteristics of each strategy calculated by PARTI-
TIONSEARCH. d denotes the hidden size of the model, n de-
notes the input length, and g denotes the number of GPUs used.

strategies, it requires the least weight FLOPs, tied with
WEIGHTGATHERED, making it most efficient when compute,
and not communication, is the bottleneck. This depends on
both the specifications of the GPU and the input length, but
in general, this is the case for smaller sequence lengths since
the amount of communication volume will be lower.

PROJECTIONREPLICATED This strategy is a combination
of projection replicated attention and Megatron-style MLP.
Since the communication overhead for projection replicated
attention is lower as compared to Megatron-style attention, this
strategy is more efficient than the MEGATRON when commu-
nication is the bottleneck. This is the case in the prefill phase of
LLM inference (§2.1) when the input length is sufficiently long
since the entire set of input prompt tokens have to be processed
at once. When communication overhead becomes a bottleneck
is also affected by the specifications of the GPUs used, specifi-
cally the inter-GPU communication bandwidth. On GPUs with
lower interconnect bandwidth such as the L4 GPU, communi-
cation becomes a bottleneck at shorter input lengths.

WEIGHTGATHERED This strategy is a combination of
Megatron-style attention and weight-gathered MLP. Because
weight-gathered MLP expects its input to be partitioned
in a column-parallel manner, the all-reduce operation after
the original Megatron-style attention is replaced with a
reduce-scatter operation instead. Since the communication
overhead for weight-gathered MLP does not scale with
input length, there is a threshold whereby the input length
is sufficiently long such that the communication overhead
of PROJECTIONREPLICATED exceeds that of this strategy.
Therefore, in such a scenario, this strategy is the most efficient
out of all three strategies.

5 System Design
This section details the design of our LLM inference engine

based on dynamic partitioning.
5.1 Weight Layout

Importantly, the weights for the LLM are loaded in a
fashion that allows the inference engine to switch between
different strategies at inference time efficiently. By doing so,
we avoid having to move the weights around in GPU memory

at inference time, which would incur additional GPU memory
and significantly increase latency.

Self-Attention Block The weights for the query, key, and
value matrices are replicated fully on each GPU because the
self-attention mechanism is unchanged for all strategies. The
weights for the output linear layer in the self-attention block
are also fully replicated on GPUs. Even though Megatron-style
attention only requires these weights to be partitioned in
a column-parallel manner, fully replicating these weights
allow us to switch between Megatron-style attention and
projection replicated attention at inference time. Therefore,
we trade-off increased weight memory for reduced switching
cost at inference time.

MLP Block Since the weights are partitioned similarly
for both Megatron-style MLP and weight-gathered MLP, we
reuse the same weight layout as in Megatron-LM (§2.2.1):
the weights for the first linear layer are partitioned in a
column-parallel manner, while the weights for the second
linear layer are partitioned in a row-parallel manner.
5.2 Switching Thresholds

The inference engine switches between the three strategies
at inference time using input length thresholds based on
calculations detailed below.

From MEGATRON to PROJECTIONREPLICATED MEGA-
TRON is the most efficient for shorter sequence lengths when
inference is compute bound because it requires the least FLOPs
out of the three strategies. PROJECTIONREPLICATED becomes
more efficient when the input length increases to a point where
communication, and not compute, becomes the bottleneck
instead. Formally, denote the inter-GPU communication band-
width and FLOPs of the GPUs used as x GB/s and y FLOPs
respectively. Given a partitioning strategy with communication
volume C GB and F FLOPs, the time taken for communication
is x/C while the time taken for computation is y/F .

Therefore, when the time taken for communication exceeds
the time taken for computation, the inference engine switches
from MEGATRON to PROJECTIONREPLICATED as the
partitioning strategy.

From PROJECTIONREPLICATED to WEIGHTGATHERED
We calculate the threshold for the input length whereby
the communication volume of PROJECTIONREPLICATED
exceeds that of WEIGHTGATHERED, making WEIGHTGATH-
ERED more efficient. Let n denote the input length and d
denote the hidden dimension of the model. Based on the values
in Table 1, for an OPT model [16], the communication volume
of PROJECTIONREPLICATED exceeds that of WEIGHTGATH-
ERED when n>8d. Therefore, when the input length is longer
than this threshold, the inference engine switches from using
PROJECTIONREPLICATED to WEIGHTGATHERED when
serving an OPT model. This value differs for other LLM
model architectures. For instance, for the Llama 2 model
architecture [13], the threshold is n>3m instead, where m is

6



the model’s intermediate dimension.
We note that this threshold is an overestimate as it is a

theoretical value that does not account for the fact that with
WEIGHTGATHERED, weight-gathered MLP can overlap
computation and communication on the GPU more easily,
since the inference engine can queue all-gather operations for
the weight tensors before they are required. Accounting for
this would lead to a lower input length threshold.

6 Implementation
We developed a prototype LLM inference library in about 2k

lines of code in Python that implements dynamic partitioning.
The inference library is based on a minimal version of
vLLM [7] that includes specific features for speeding up
inference such as PagedAttention. For the model executor, we
implemented support for Llama 2 [13] using PyTorch [17].
For the collective communication of tensors across GPUs, we
use NCCL [18]. We verified the correctness of the inference
library by comparing the outputs of the Llama 2 models on
a variety of prompts to that of the Transformers library [19].

7 Evaluations
In this section, we evaluate the performance of dynamic

partitioning under a variety of workloads.
7.1 Experimental Setup
Model and cluster configuration We evaluate dynamic
partitioning on the Llama 2 family of LLMs with 7B, 13B, and
70B parameters [13]. The Llama 2 LLMs are the most popular
open-source models based on a LLM leaderboard [20], and
the range of model sizes evaluated cover a variety of use
cases. We evaluate the 7B and 13B Llama 2 models on four
L4 NVIDIA GPUs and evaluate the 70B Llama 2 model on
four A100-80GB NVIDIA GPUs consistent with industry
norms, all provisioned on Google Cloud Platform. Similarly,
we perform inference on half-precision weights to save GPU
memory and speed up inference. The L4 NVIDIA GPU is a
lower-end GPU with a constrained inter-GPU communication
bandwidth of 64 GB/s using PCIe Gen4 and achieves up to
242 TFLOPs of performance on half-precision floating point
numbers. On the other hand, the A100-80GB NVIDIA GPU is
a higher-end GPU that uses NVIDIA’s proprietary interconnect
NVLink, allowing it to achieve an inter-GPU communication
bandwidth of up to 600 GB/s, while also reaching 624 TFLOPs
on half-precision floating point numbers.

Metrics We use time to first token and latency as our main
metrics of success. Time to first token refers to how quickly
users see the first token after submitting the prompt, and a
shorter time to first token translates to better responsiveness,
which is critical for interactive use cases. This is affected
by how long it takes for the model to process the entire
prompt, generate the first output token, and return it to the
user. Next, latency refers to the time required to generate
the entire output response, and corresponds to the speed of
LLM inference perceived by the user. Low latency is essential

for a smooth user experience, especially in applications that
involve real-time interaction with the user such as chatbots or
search. Considering the inference phases (§2.1), time to first
token measures the time taken only for the prefill phase, while
latency measures the time taken for both the prefill phase and
auto-regressive generation phase.

Baselines For each of the model and cluster configurations,
we evaluate the time to first token and latency using each
partitioning strategies individually, as well as using dynamic
partitioning where we switch between the three strategies
dynamically. For both of these metrics, we evaluate the models
on increasing prompt lengths from 1 to 64678. Because of
the constrained GPU memory available on L4 GPUs, we
only evaluate up to a prompt length of 32384 for the 13B
model. As the main baseline for comparison, we consider
MEGATRON, the strategy used by Megatron-LM [10], which
is the state-of-the-art approach to model parallelism used in
modern LLM inference engines such as vLLM [7] and TGI [8].
7.2 Results

Figure 5 shows the time to first token for varying prompt
lengths on Llama 2 [13] using both dynamic partitioning and
each strategy individually. We observe that for the 7B and 13B
models, there is no single partitioning strategy that achieves the
shortest time to first token for all input lengths, highlighting the
importance of a dynamic strategy that is able to switch between
these individual strategies. For the 7B model evaluated on L4
NVIDIA GPUs, MEGATRON achieves the shortest time to first
token for a prompt length of 1, PROJECTIONREPLICATED
achieves the shortest time to first token for intermediate
prompt lengths up to 16192, while WEIGHTGATHERED
achieves the shortest time to first token for longer prompt
lengths up to 64678. For the 13B model, MEGATRON achieves
the shortest time to first token for prompts containing 1 token,
followed by PROJECTIONREPLICATED for prompts up to
32384 tokens. Finally, for the Llama 2 70B model evaluated
on A100 NVIDIA GPUs, MEGATRON achieves the shortest
time to first token for all prompt lengths.

A100 GPUs have a significantly higher inter-GPU
communication bandwidth as compared to L4 GPUs. As
such, inference is bottlenecked by compute for all evaluated
prompt lengths, which explains why MEGATRON always
achieves the shortest time to first token for the 70B model,
unlike with the other two model sizes. With the 7B and 13B
models evaluated on L4 GPUs, communication becomes
the bottleneck when the input length is 1024, leading to
PROJECTIONREPLICATED achieving a shorter time to first
token than MEGATRON from this point on. Based on the
calculation that the threshold for which WEIGHTGATHERED
becomes more efficient than PROJECTIONREPLICATED when
n> 3m (§5.2), this threshold is approximately 33024 for the
7B model (m = 11008). Consistent with these calculations,
WEIGHTGATHERED achieves a shorter time to first token than
PROJECTIONREPLICATED for the 7B model when the input
length is at least 32384. This value is lower than the calculated

7



Figure 5: Time to first token for Llama 2 models

theoretical threshold due to overlapping of computation and
communication in WEIGHTGATHERED as discussed (§5.2).

For all three models, dynamic partitioning achieves the
shortest or close to the shortest time to first token for all
prompt lengths, illustrating the effectiveness of this approach
as compared to using a static partitioning strategy. Specifically,
as compared to MEGATRON, using a dynamic partitioning
strategy achieves significant reductions in the time to first
token of 10% to 40% for the 7B model, and 6% to 12% for
the 13B model. For Llama 2 70B evaluated on A100 GPUs,
because MEGATRON is always the optimal strategy, there is
no significant improvement or regression from using dynamic
partitioning.

Figure 6 shows the latency on varying prompt lengths for
both shorter output sequences of 16 tokens and longer output
sequences of 64 tokens.We observe that because of the the high
communication overhead of WEIGHTGATHERED on short in-
put lengths (§4.2.1), using it as a static partitioning strategy for
inference leads to significantly higher latency of up to 50 times,
a trend that holds across all models and input lengths. Using
WEIGHTGATHERED for the auto-regressive LLM generation
phase (§2.1) is extremely inefficient communication-wise
since the input length is always one. The highlights the
importance of having a dynamic partitioning scheme that is
able to use a strategy such as WEIGHTGATHERED purely for
the prefill phase (§2.1), and to use more efficient strategies
such as MEGATRON or PROJECTIONREPLICATED for the
auto-regressive generation phase. Similar to with the time to
first token, we observe that for the Llama 2 7B and 13B models,
there is no single partitioning strategy that achieves the lowest
latency across all input lengths. With a shorter output length of
16, MEGATRON achieves the lowest latency for both the 7B and
13B models when the prompt length is 1, while PROJECTION-
REPLICATED achieves the lowest latency for longer prompt
lengths. While MEGATRON is indeed a more efficient strategy
than PROJECTIONREPLICATED for the generation phase since

this phase is compute bound, the lower latency achieved by
PROJECTIONREPLICATED for greater prompt lengths can be
attributed to the time saved from the more efficient prefill phase
(due to the lower communication overhead) outweighing
the less efficient generation phase. When the output length
is increased to 64, we observe that the threshold whereby
PROJECTIONREPLICATED achieves a lower latency than
MEGATRON increases to a prompt length of between 4096 and
8192. This is because with a longer output length, the overhead
from using the more inefficient PROJECTIONREPLICATED
for the generation phase becomes more significant, requiring
a longer prompt length to offset this with the prefill phase. For
the 70B model, MEGATRON again achieves the lowest latency
for all input and output lengths due to the significantly higher
inter-GPU communication bandwidth of the A100 GPU.

For all three models, we again observe that dynamic
partitioning achieves the lowest or close to the lowest latency
for all prompt lengths, highlighting the effectiveness of
this strategy. As compared to MEGATRON, using dynamic
partitioning leads to a reduction in latency of up to 18%
for the 7B model and up to 6% for the 13B model on both
short and long output lengths, demonstrating a notable
improvement over the approach used in existing inference
engines. By taking into the account the input length, model
size, and GPU characteristics, dynamic partitioning is able
to switch between MEGATRON, PROJECTIONREPLICATED,
and WEIGHTGATHERED to optimize for latency, ensuring
that performance remains high for a range of prompt lengths.
We note when dynamic partitioning is used, because the LLM
generation phase always contains one token, MEGATRON
is always used for this. Therefore, the main benefit from
using dynamic partitioning comes from being able to switch
between the three strategies during the prefill phase (§2.1).

8



Figure 6: Latency for Llama 2 model generation on short and long outputs (log scale)

8 Discussion
Our findings demonstrate the nuanced relationship between

model size, GPU capabilities, and partitioning strategies. The
effectiveness of the different partitioning strategies MEGA-
TRON, PROJECTIONREPLICATED, and WEIGHTGATHERED,
varies notably across different model sizes and GPUs. The
superior interconnect bandwidth of A100 GPUs enables
MEGATRON to consistently outperform other strategies for
the 70B model whereas with the 7B and 13B models on L4
GPUs, there is no single partitioning strategy that dominates
across all input lengths. Instead, there is a clear transition point
whereby communication becomes the bottleneck instead of
computation, necessitating a shift in partitioning strategy from
MEGATRON to PROJECTIONREPLICATED.

The strong observed performance of dynamic partitioning
in all these scenarios underscores its ability to optimize the
speed of LLM inference across a range of model and hardware
configurations. Importantly, when compared to MEGATRON,
the current state-of-the-art approach for model parallelism in
LLMs, we demonstrate that dynamic partitioning achieves
significant improvements in both the time to first token and
overall latency for the 7B and 13B models without any perfor-

mance degradation for the 70B model. This illustrates dynamic
partitioning to be a versatile and effective approach to model
parallelism for distributed LLM inference. This versatility is es-
pecially crucial for real-world LLM applications today, where
input lengths and computational demands can vary widely.

9 Related Works
Parallelism for LLM inference Prior works in the space
have proposed multiple approaches for training and serving
large models more efficiently via specific partitioning strate-
gies. FasterTransformer [21] establishes a suite built using
C++, CUDA, and cuBLAS for benchmarking single-GPU and
multi-GPU inference for different types of Transformer mod-
els across many model sizes. It exploits both tensor parallelism
and pipeline parallelism, along with other optimizations such
as quantization. EffectiveTransformer [22] is an inference
library built on top of FasterTransformer that reduces memory
usage while increasing execution speed by dynamically adjust-
ing the padding on intermediate tensors. Similarly, TensorRT
LLM [23] is an open-source library built on top of FasterTrans-
former that optimizes the inference performance of LLMs on
NVIDIA’s GPUs. It wraps NVIDIA’s TensorRT deep learning

9



compiler that uses the optimized kernels from FasterTrans-
former, performs pre-processing and post-processing, as well
as other optimizations such such as FlashAttention [24] and the
8-bit floating point data type. DeepSpeed Inference [25] aims
to further accelerate inference by leveraging ZeRO offload
to utilize CPU and NVMe memory on top of GPU memory
for models which do not fit in GPU memory. GSPMD [26] is a
compiler-based system for model computation whereby users
can provide hints for how to partition tensors across devices,
based on which the system will automatically distribute tensor
computation. This work shares many partitioning strategies
introduced by these prior works, but the act of dynamically
switching between strategies at inference time is novel.

Improving inference efficiency Several works have also
focused on improving the inference efficiency of Transformer
models by proposing improvements to the model architecture
and inference engine. These include improving the efficiency
of the self-attention block [27–29], quantization techniques
to reduce the memory required by LLMs [30–32], as well as
model distillation [33, 34], where smaller specialized models
are trained using larger models. FlashAttention [24] introduces
an IO-aware exact attention algorithm that reduces the number
of memory IO operations between GPU HBM and SRAM,
reducing the memory bottleneck and enabling faster inference
for Transformer models. PagedAttention [7] significantly
reduces memory fragmentation and duplication in the
key-value-cache for Transformer inference, reducing memory
usage for inference. Dynamic partitioning is orthogonal to
these techniques, and can be used in conjunction with them
to further speed up inference. We utilize a number of these
techniques such as FlashAttention and PagedAttention in our
library implementation.

Optimizing model parallelism automatically Finally,
a line of work also focuses on being able to automatically
determine the optimal approach to model parallelism for large
models. Tofu [35] uses a dynamic programming approach to
identify the optimal partitioning strategy for neural network
models across multiple GPUs. Similarly, TensorOpt [36] uses
a dynamic programming algorithm to identify new model
parallelism strategies that trade-off between different objec-
tives such as memory and cost of computation. Piper [37] is an
efficient optimization algorithm using dynamic programming
to partition models across multiple GPUs when leveraging
data parallelism, tensor model parallelism, pipeline model
parallelism, and other memory optimizations. FlexFlow [38]
focuses on a more comprehensive search of parallelization
strategies along the Sample, Operation, Attribute, and
Parameter dimensions (SOAP), using guided randomized
search of this space to identify the fastest parallelization
strategy. Varuna [39] focuses on commodity networking
clusters, and determines the optimal pipeline parallelism and
data parallelism strategy for training large models across these
devices, significantly reducing cost and improving training

time. Finally, Alpa [40] generalizes the search for optimal par-
allelism strategies using both integer linear programming and
dynamic programming, supporting a comprehensive search of
different strategies for distributed model training. While these
works target training for general machine learning models,
dynamic partitioning focuses specifically on inference for
LLMs, and our key observation about the wide-ranging input
lengths for these workloads allows for new optimizations.

10 Conclusions and Future Work

This paper introduced dynamic partitioning, a new approach
towards model parallelism for distributed LLM inference
where we dynamically switch between partitioning strategies
at inference time depending on the model, GPU specifications,
and input length. We conducted a systematic search of all vi-
able partitioning strategies and identified three Pareto optimal
strategies for parallelizing transformer inference across GPUs.
Based on these strategies, we developed an LLM inference
library that implements dynamic partitioning, demonstrating
significant improvements in the time to first token and latency
across the Llama 2 models [13] as compared to the de-facto ap-
proach introduced by Megatron-LM [10]. In particular, we find
that dynamic partitioning is most effective on smaller LLMs
and GPUs with lower interconnect bandwidth and compute.

There are several directions for future work. Our current
analysis of different partitioning strategies (§4.2.2) calculates
a theoretical value for the weight FLOPs, communication
volume, and weight memory. This does not account for how
certain strategies can take greater advantage of overlapping
communication and computation on the GPU, which might
affect the choice of Pareto optimal strategies. Therefore, we
plan to investigate how to formalize the ability of specific parti-
tioning strategies to overlap computation and communication
more easily. This would allow us to conduct a more extensive
search of partitioning strategies using PARTITIONSEARCH,
which might in turn lead to a larger set of optimal strategies
for dynamic partitioning.

Additionally, while this work focuses on NVIDIA GPUs as
a reflection of their widespread use, it leaves open the question
of how dynamic partitioning would perform on other hardware
architectures. Hence, we hope to extend our inference library
to work with other accelerators such as AMD GPUs and
Google Cloud TPUs, as well as investigate how dynamic
partitioning performs on these accelerators.

Finally, this work targets dense LLMs, but it would be inter-
esting to see how dynamic partitioning can be applied to other
related model architectures. For example, mixture of expert
models decompose LLMs into smaller sub-models that focus
on specific aspects of the input data, enabling more efficient
inference and resource utilization. Conducting a systematic
search of partitioning strategies for such models might lead
to new Pareto optimal strategies for dynamic partitioning.

10



References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,
May 2019. arXiv:1810.04805 [cs].

[2] Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario
Amodei, and Ilya Sutskever. Language Models are
Unsupervised Multitask Learners. 2019.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot
Learners, July 2020. arXiv:2005.14165 [cs].

[4] OpenAI. ChatGPT, 2022.
https://openai.com/blog/chatgpt.

[5] GitHub. GitHub Copilot, 2022.
https://github.com/features/copilot.

[6] William Fedus, Barret Zoph, and Noam Shazeer.
Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity, June 2022.
arXiv:2101.03961 [cs].

[7] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao
Zhang, and Ion Stoica. Efficient Memory Management
for Large Language Model Serving with PagedAttention,
September 2023. arXiv:2309.06180 [cs].

[8] HuggingFace. Text generation interface.
https://github.com/huggingface/text-generation-
inference.

[9] NVIDIA. Tensorrt-lllm.
https://github.com/NVIDIA/TensorRT-LLM.

[10] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism, March
2020. arXiv:1909.08053 [cs].

[11] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Se-
bastian Riedel, and Douwe Kiela. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks, April
2021. arXiv:2005.11401 [cs].

[12] Anthropic. Claude, 2023.
https://www.anthropic.com/index/introducing-claude.

[13] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. Llama 2: Open Foundation and Fine-Tuned
Chat Models, July 2023. arXiv:2307.09288 [cs].

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need, August
2023. arXiv:1706.03762 [cs].

[15] Abhinav Jangda, Jun Huang, Guodong Liu, Amir
Hossein Nodehi Sabet, Saeed Maleki, Youshan Miao,
Madanlal Musuvathi, Todd Mytkowicz, and Olli
Sarikivi. Breaking the Computation and Communication
Abstraction Barrier in Distributed Machine Learning
Workloads, March 2022. arXiv:2105.05720 [cs].

[16] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. OPT: Open Pre-trained Transformer
Language Models, June 2022. arXiv:2205.01068 [cs].

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

11



[18] NVIDIA. NCCL: The NVIDIA Collective Communi-
cation Library, 2023. https://developer.nvidia.com/nccl.

[19] HuggingFace. Transformers.
https://huggingface.co/docs/transformers/index.

[20] LMSYS Org. Chatbot arena. https://chat.lmsys.org/.

[21] NVIDIA. FasterTransformer, 2023.
https://github.com/NVIDIA/ FasterTransformer.

[22] ByteDance. Effectivetransformer.
https://github.com/bytedance/effectivetrans f ormer.

[23] NVIDIA. TensorRT LLM, 2023.

[24] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. FlashAttention: Fast and Memory-Efficient Exact At-
tention with IO-Awareness, June 2022. arXiv:2205.14135 [cs].

[25] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia
Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Jeff Rasley, Shaden Smith, Olatunji Ruwase, and Yuxiong
He. DeepSpeed Inference: Enabling Efficient Inference of
Transformer Models at Unprecedented Scale, June 2022.
arXiv:2207.00032 [cs].

[26] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hecht-
man, Yanping Huang, Rahul Joshi, Maxim Krikun, Dmitry
Lepikhin, Andy Ly, Marcello Maggioni, Ruoming Pang, Noam
Shazeer, Shibo Wang, Tao Wang, Yonghui Wu, and Zhifeng
Chen. GSPMD: General and Scalable Parallelization for ML
Computation Graphs, December 2021. arXiv:2105.04663 [cs].

[27] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan,
Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins,
Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger,
Lucy Colwell, and Adrian Weller. Rethinking Attention with
Performers, November 2022. arXiv:2009.14794 [cs, stat].

[28] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David
Grangier. Efficient Content-Based Sparse Attention with
Routing Transformers, October 2020. arXiv:2003.05997 [cs,
eess, stat].

[29] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
Reformer: The Efficient Transformer, February 2020.
arXiv:2001.04451 [cs, stat].

[30] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettle-
moyer. LLM.int8(): 8-bit Matrix Multiplication for Trans-
formers at Scale, November 2022. arXiv:2208.07339 [cs].

[31] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat.
Q8BERT: Quantized 8Bit BERT. In 2019 Fifth Workshop on
Energy Efficient Machine Learning and Cognitive Computing
- NeurIPS Edition (EMC2-NIPS), pages 36–39, December
2019. arXiv:1910.06188 [cs].

[32] Yijia Zhang, Lingran Zhao, Shijie Cao, Wenqiang Wang,
Ting Cao, Fan Yang, Mao Yang, Shanghang Zhang, and
Ningyi Xu. Integer or Floating Point? New Outlooks for
Low-Bit Quantization on Large Language Models, May 2023.
arXiv:2305.12356 [cs].

[33] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter, February 2020. arXiv:1910.01108 [cs].

[34] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient
Knowledge Distillation for BERT Model Compression,
August 2019. arXiv:1908.09355 [cs].

[35] Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting
Very Large Models using Automatic Dataflow Graph Parti-
tioning. In Proceedings of the Fourteenth EuroSys Conference
2019, pages 1–17, March 2019. arXiv:1807.08887 [cs].

[36] Zhenkun Cai, Kaihao Ma, Xiao Yan, Yidi Wu, Yuzhen Huang,
James Cheng, Teng Su, and Fan Yu. TensorOpt: Exploring the
Tradeoffs in Distributed DNN Training with Auto-Parallelism.
IEEE Transactions on Parallel and Distributed Systems,
33(8):1967–1981, August 2022. arXiv:2004.10856 [cs, stat].

[37] Jakub M Tarnawski, Deepak Narayanan, and Amar Phan-
ishayee. Piper: Multidimensional Planner for DNN Paralleliza-
tion. In Advances in Neural Information Processing Systems,
volume 34, pages 24829–24840. Curran Associates, Inc., 2021.

[38] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data
and Model Parallelism for Deep Neural Networks, July 2018.
arXiv:1807.05358 [cs].

[39] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachan-
dran Ramjee, and Nipun Kwatra. Varuna: Scalable, Low-cost
Training of Massive Deep Learning Models, November 2021.
arXiv:2111.04007 [cs].

[40] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang,
Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong Xu,
Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Sto-
ica. Alpa: Automating Inter- and Intra-Operator Parallelism for
Distributed Deep Learning, June 2022. arXiv:2201.12023 [cs].

12


	Introduction
	Background
	Transformer Architecture
	Model Parallelism
	Transformer Model Parallelism


	Formulation
	Search
	PartitionSearch
	Results
	Sub-Strategies
	Overall Strategies


	System Design
	Weight Layout
	Switching Thresholds

	Implementation
	Evaluations
	Experimental Setup
	Results

	Discussion
	Related Works
	Conclusions and Future Work

