
Design Benchmarking
Network Scheduling

● We evaluate QUIC schedulers, along with 
QUIC-RR and TLS/TCP as a baseline.

● 3 traffic classes: real-time short (8 KB, 1 sec 
deadline), low-prio short (8 KB, 2 sec 
deadline), long input (102.4 KB, 7 sec 
deadline).

● Simulated 3G network - 5 Mbps, 50 ms addt’l 
latency, 0.5% packet drop.

● Client sends 80 requests, randomly selecting 
a traffic class; server echoes back to client

● Evaluate completion rate and average 
latency of each traffic class for all schedulers.

Design and Implementation

Network Scheduling
● The frontend server establishes a QUIC 

connection with the model server.
● Each client request creates a QUIC stream 

which can be scheduled.
● We augment the open-source Quic-Go 

implementation with 4 scheduling 
interfaces, in addition to the default Round 
Robin.
○ EDF (deadline for each traffic class)
○ FCFS
○ Absolute Priority (priority level for each 

traffic class)
○ Multi-Level (higher level served via EDF, 

lower level served via Round Robin)
● We allow each traffic class to assume 

different requirements, utilizing the 
scheduler to best meet QoS.

Model Serving
● Receives a request and determines which 

model and GPU to send it to.
● As state, it keeps track of is the task 

corresponding to the model, the current 
batch size at each of the models, and an 
estimate of the arrival rate.

● Each request has a corresponding deadline 
associated with it and the request must be 
served by that deadline or the reward for its 
service is zero. If it is served then the reward 
is the accuracy of the model. 

● We train a RL agent with DQN to maximize 
the sum of rewards. An image of the various 
models and GPUs is shown below.

Quality-of-Service Aware LLM Serving
Rithvik Chuppala and Siddharth Jha

Introduction
As applications continue to integrate LLM services at the frontend of user 
experience, serving LLM queries with low-latency guarantees is 
imperative. However, unpredictable workloads with bursty arrival rates 
requires system modifications and tradeoffs to meet user application 
requirements. We propose a two-pronged approach via scheduling at 
the network level, as well as dynamic model selection. 

● We leverage the QUIC network protocol and its ability to multiplex 
several streams of data over a single point-to-point connection. 

● We implement QUIC stream schedulers to provide QoS to client 
requests and model responses to meet the criteria of respective traffic 
classes

● We perform model selection by exploring tradeoffs in model 
complexity through a hybrid serving architecture.

● We employ an RL router agent to send client queries to appropriate 
models in order to maximize response quality while meeting user 
defined latency guarantees.

● We evaluate our system, analyzing current LLM application 
requirements, and running request loads to benchmark against 
existing model-serving techniques.

System Evaluation
● We evaluate with three classes of request traffic

○ High priority traffic with small input sizes (common LLM usage)
○ Low priority traffic with small input sizes (common LLM usage)
○ Low priority traffic with large input sizes (large text synthesis)

● We assign an end-to-end per-token latency requirement of 1800 ms 
for the small input streams and a latency requirement of 2300 ms for 
the large input stream.

● We implement a variety of network schedulers as mentioned.
● We train a DQN policy for 1.2 million iterations to act as the router 

agent.
● We double the RL reward for high priority traffic and calculate the 

reward as the accuracy if the deadline is met, otherwise zero.
● Below we show the performance on a stable workload where the 

arrival rate is fixed for a fixed time before transitioning to the next 
arrival rate. The policy and EDF outperforms all baselines.

● Below we show the performance on an unpredictable workload 
where the arrival rate and its duration vary randomly. The policy 
outperforms static serving with the large model but does not 
outperform static serving with the medium model.

● In both workloads, we see that EDF performs the best regardless of 
the serving mechanism. Then, Absolute Priority scheduling and 
Multi-Level scheduling perform the best.

● In all cases QUIC outperforms TLS/TCP.

Future Work
● Understand why the policy does worse than static serving with the 

medium model on the unpredictable workload and close the gap.
● Implement dynamic scheduler which changes algorithms to request 

load.
● Train the policy to take request’s network delay into account.

Metrics of Success
● Meet user-defined latency deadlines and QoS requirements, 

achieving high request completion rates.
● Serve highest possible model quality given resource contention
● Handle both stable and unpredictable client requests patterns 

across a wide range of client request rates.

Background
● Typical model serving systems do not dynamically adjust the quality 

of service in order to attend to periods of high request load. As such, 
they need to overprovision expensive GPU resources to handle such 
events or sacrifice service availability. This leads to either prohibitively 
high costs on the application developer or unacceptable latency for 
the user. We propose dynamically adjusting response quality to 
maximize client utility while meeting deadlines.

● DQN is a reinforcement learning algorithm that learns a Q-function 
which can be used to pick the best action given the state of the 
environment.

● As opposed to on-policy algorithms such as REINFORCE, TRPO, PPO, 
and A2C, off-policy algorithm such as DQN achieve better sample 
complexity.

● State-of-the-art model serving systems utilize REST API/gRPC 
endpoints over base HTTP/2 (TCP/TLS) network protocols. Not much 
research has gone into optimizing serving applications for network 
and traffic patterns observed in their use. As such, model-serving 
architectures are agnostic to application-specific network patterns 
and do not cater to QoS differentiation between requests.

● Previous attempts to multiplex a connection in TLS/TCP suffer from 
head-of-line blocking. QUIC resolves this by providing stream-level 
retransmission and congestion semantics

● However, baseline QUIC implementations do not provide rich 
scheduling abstractions for stream multiplexing. Most 
implementations only use a default Round Robin or FCFS scheduler 
between streams.

Model Serving
● We train the RL policy for 1.2 million iterations 

and evaluate both on a stable (top) and 
unpredictable workload (bottom). As seen, 
the policy outperforms static model serving 
baselines in both cases and dynamically 
switches model usage.

● Clients requests reach front-end server over any network 
protocol and medium.

● Front-end server can be at the edge or in cloud.
○ Batches requests and initiates request-response 

streams to model server. 
● Each request assigned to a QUIC stream and scheduled 

according to traffic class. 
● The RL agent analyzes the query and the load at each of 

the models and GPUs and determines the best model to 
route the query in order to maximize quality and meet 
latency deadlines.

References
● Mnih, Volodymyr, et al. "Playing atari with deep reinforcement 

learning." arXiv preprint arXiv:1312.5602 (2013).
● Kwon, Woosuk, et al. "Efficient memory management for large 

language model serving with pagedattention." Proceedings of the 
29th Symposium on Operating Systems Principles. 2023.

● Langley, Adam, et al. 2017. The QUIC Transport Protocol: Design and 
Internet-Scale Deployment. In Proceedings of SIGCOMM ’17.

● J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and 
Secure Transport.” RFC 9000, May 2021.

● L. Clemente and M. Seemann, “A QUIC implementation in pure Go,” 
2022. Accessed: November, 2023.


