
Quality-of-Service Aware LLM Serving

Siddharth Jha* 1 Rithvik Chuppala* 1

Abstract
Many applications must provide low-latency large
language model (LLM) service to users or risk
unacceptable user experience. However, over-
provisioning resources to serve models is often
prohibitively expensive. In this work, we iden-
tify various classes of LLM requests, each with
different quality-of-service requirements. To best
meet the requirements of all traffic classes, we de-
sign and implement scheduling algorithms for the
QUIC network protocol. Moreover, we present a
best-effort serving system that employs deep Q-
learning to adjust service quality based on task dis-
tribution and system load. We train the Q-learning
agent to optimize latency and model serving qual-
ity of higher priority classes while achieving fair-
ness and best-effort response quality for lower
priority requests. Our network schedulers show
better request latency and completion rate per-
formance compared to the standard QUIC proto-
col, as well as TLS/TCP. Overall, our end-to-end
model-serving system effectively caters to QoS
differentiation between requests and outperforms
current model-serving standards in per-token la-
tency and response quality metrics.

1. Introduction
Applications in the last decade have evolved from using
machine learning in background functions such as data ana-
lytics and monitoring to being at the forefront of user experi-
ence. Over the past couple of years, many applications have
adopted large language models (LLMs) to provide users
with both custom and interactive experiences. The need for
latency guarantees is critical for such applications as ser-
vices cannot simply hang and become unavailable to users.
LLM systems are faced with the challenge of serving a wide
range of user demands, such as varying context lengths
and request arrival rates, while simultaneously meeting ap-
plication QoS requirements. This necessitates an architec-
tural tradeoff as the simple solution of over-provisioning

*Equal contribution 1UC Berkeley.

resources to serve dynamic application needs is prohibitively
expensive for small businesses and independent developers.

Instead, we propose a best-effort system that dynamically
switches between models of different latency and quality.
In this best-effort setting, the serving system must serve at
the highest possible quality while maintaining availability.
Simply serving at the smallest model’s quality all the time
will be undesirable for a user, even though availability would
be high. In this work, we show that routing queries to
models is dependent on the set of tasks, the distribution of
those tasks, and the load on the system. In order to learn a
router that efficiently routes client requests to LLMs while
meeting latency guarantees, we utilize deep reinforcement
learning (RL) techniques with minimal hyper-parameter
tuning.

State-of-the-art model serving systems utilize REST
API/gRPC endpoints over base HTTP/2 (TCP/TLS) net-
work protocols (Agarwal et al., 2023) (vLLM Team, 2023)
(RayTeam, 2023). However, model-serving architectures
are agnostic to application-specific network patterns and do
not cater to QoS differentiation between requests. While
most active research explores major bottlenecks in the speed
of model inference, we find that effective network schedul-
ing not only allows us to cater to different traffic classes
but also meet per-token latency deadlines during periods of
high request load and network resource contention. For ex-
ample, one area of ongoing exploration is the use of LLMs
in synthesizing large text corpora, such as collections of
legal documents (Bornstein & Radovanovic, 2023). Com-
mon uses of the widely popular LLM platform, ChatGPT,
involve providing the LLM with contextual information fol-
lowed by a short question prompt (Raf, 2023). The former
potentially requires higher model qualities to accurately
synthesize domain-specific technical language, whereas the
latter needs low latency of response to provide a fluid and
interactive user experience.

To meet request SLOs, we leverage one of the key design
components of the QUIC network protocol - multiplexed
connection streams. This allows us to send different classes
of data in separate streams, reducing multi-connection over-
heads. To efficiently manage these streams and meet the
variety of application requirements detailed above, we pro-
pose the implementation of a scheduling abstraction in open-

1



Quality-of-Service Aware LLM Serving

source QUIC. By considering LLM traffic at both the net-
work level and model-serving level, we are able to schedule
and serve requests at low latencies even in the presence of
wide fluctuations in client behavior.

In summary, we make the following contributions in this
work:

1. We implement QUIC stream schedulers for client re-
quests and responses to meet the QoS requirements of
various traffic classes

2. We train and employ an RL router agent to send client
queries to appropriate models in order to maximize
response quality while meeting user-defined latency
guarantees

3. We design and implement an end-to-end model-serving
framework utilizing both network stream scheduling
as well as dynamic model selection

4. We evaluate our system, analyzing LLM application
requirements, and running request loads to benchmark
against existing model-serving techniques.

2. Background and Related Work
2.1. Large Language Models

LLMs have emerged as a powerful service for modern ap-
plications. There is a wide spectrum of LLMs which forms
a trade-off of quality and latency. Larger models with more
parameters can serve client requests at a higher quality but
incur higher latency. There is also a wide spectrum of tasks
that can be served using LLMs. Such tasks include sum-
marization (Hermann et al., 2015; Narayan et al., 2018),
translation (Cettolo et al., 2017), question answering (Ra-
jpurkar et al., 2016), etc. Prior work on LLM serving (Li
et al., 2023; Zhang et al., 2023; Gujarati et al., 2020) as-
sumes that client requests are bound to a specific model.
Our best-effort approach relaxes this, allowing for increased
scalability. Autoscalers such as Ray (Moritz et al., 2018)
dynamically increase GPU instances under load. However,
acquiring on-demand GPU instances is expensive and not
instantaneous.

2.2. Deep Reinforcement Learning

Deep RL is a promising technique for learning to control
systems and has been successfully applied in a variety of ar-
eas such as continuous controls (Brockman et al., 2016) and
games (Mnih et al., 2013) . There are three core components
in any RL problem: states, actions, and rewards. Given the
state, the RL policy chooses an action, which gives it a
reward for that action and transitions the environment to
the next state. The goal of RL algorithms is to maximize

the total rewards seen by the policy as it takes actions and
transitions to different states. Deep Q-learning methods
learn a Q-function, represented as a neural network, that
map state-action pairs to the expected return of taking the
action in the state and then following the policy. After fitting
the Q-function of the optimal policy, the Q-function may
be used to select actions with the highest expected reward.
Popular algorithms in this area include DQN (Mnih et al.,
2013), Double Q-learning (Van Hasselt et al., 2016), and
PER (Schaul et al., 2015).

2.3. QUIC

The QUIC network protocol (standardized in IETF RFC
9000, 9001, 9002) is a transport-level protocol built on
UDP and offers endpoint-to-endpoint uni- or bi-directional
connections, reliability semantics, congestion control mech-
anisms, encryption/security via TLS, low-latency connec-
tion establishment, and notably, stream multiplexing (Lang-
ley et al., 2017) (Iyengar & Thomson, 2021) (Thomson &
Turner, 2021) (Iyengar & Swett, 2021). Currently, QUIC is
primarily used in the HTTP/3 stack for web applications as a
replacement for TCP/TLS in HTTP/2 (Bishop, 2022). How-
ever, its properties make it a compelling network protocol
in several other use cases.

One of the key design components of the QUIC protocol
is the use of time-multiplexed streams in a single point-
to-point connection. While HTTP/2 (built over TLS/TCP)
attempts intra-connection multiplexing, it suffers from head-
of-line blocking, where all streams are blocked if just a
single stream experiences packet loss (Langley et al., 2017).

Figure 1. Stream multiplexing in TCP (which suffers from head-
of-line blocking) vs QUIC. Credits to (Chiariotti et al., 2021).

QUIC resolves this through flow multiplexing and retrans-
mission semantics at a stream-level granularity. As such,
packets in a stream do not block or wait on packets of an-
other stream in the context of loss recovery.

Priority for stream multiplexing was first introduced to
HTTP/2 in RFC 7540 (Belshe et al., 2015). However, it
was subsequently removed in HTTP/3 (Bishop, 2022) and

2



Quality-of-Service Aware LLM Serving

the revised HTTP/2 (Thomson & Benfield, 2022) due to
high complexity and low utilization of the feature. As an
artifact of the old HTTP/2 priority scheme, the QUIC RFC
recommends that implementations offer ways to indicate
the relative priority of streams (Iyengar & Thomson, 2021);
however, a wide number of open-source implementations
do not provide this feature.

2.4. Stream Scheduling

Despite a stream multiplexed design, the QUIC RFC does
not define or suggest stream scheduling behaviors. Conse-
quently, the vast majority of open-source QUIC implemen-
tations use either a default First-Come-First-Serve (FCFS)
or Round Robin (RR) scheduler (Kutter & Jaeger, 2022).
These implementations do not provide rich scheduling ab-
stractions beyond the default. Literature exploring stream
scheduling in QUIC is also quite limited. One work pro-
posed an abstraction to allow applications to effectively map
information flows to QUIC streams, focusing on the abil-
ity to define correlated data flows (Chiariotti et al., 2021).
Another work implements the MPEG-DASH protocol over
QUIC, involving scheduling only within the context of the
DASH protocol (Cui et al., 2022). Fernandez et al. explore
modifications of the QUIC stream scheduler to provide QoS
and latency guarantees to UAV video and control flows
(Fernández et al., 2023). They focus on priority schedul-
ing, which some open-source implementations already pro-
vide upon RFC recommendation. To the best of our knowl-
edge, there are no existing implementations of non-priority-
based scheduling algorithms, nor intricate QoS/multi-level
scheduling paradigms in open-source QUIC.

3. Design and Architecture
Interactive applications should aim to query as large of an
LLM as possible while still meeting an acceptable deadline
requirement for their user. However, just using one model
type (e.g. OPT-175B) will lead to unacceptably high la-
tencies and impossible-to-meet deadlines during periods of
high request load to the inference system. In order to cope
with the increasing demands, LLM serving systems need a
methodology to schedule all requests by deadline, priority,
and various other application-specific constraints, as well
as an option to provide smaller models at a small cost of
output fidelity.

We use smaller model sizes (e.g. OPT-125M and OPT-6.7B)
along with effective request stream scheduling during peri-
ods of high request load so users can achieve their desired
application latency requirements while receiving acceptable
quality from the LLM service. While the QUIC network pro-
tocol does not inherently support stream scheduling, the pro-
tocol packet framer can be modified to fit various scheduling
paradigms. First, we choose an appropriate network stream

Model-Serving 
Front-End Server 

(can be at the 
edge)

batched requests

QUIC protocol 
- stream scheduling
- streams per 

request/class

Model-Serving 
Back-End Server 

(in cloud)

GPUs w/ trained LLM Models/Model classes

model inference responses

Cloud
any network 

protocol

Figure 2. Architecture Diagram of the system. Front-end servers
receive client requests, initiate QUIC streams with the model-
serving back-end, and schedule request-response flows. The back-
end model serving environment is detailed in Figure 3.

scheduling algorithm, given user application requirements.
Then, we leverage DQN, a deep Q-learning algorithm, to
train a policy that determines what model to route a query to,
given the task and system load. During periods of low arrival
rates, we expect that a computationally efficient scheduling
algorithm, such as RR or FCFS, will be able to adequately
serve our requirements and we predict that our policy will
route to the largest LLM with no quality degradation. As
this is the expected environment most of the time, our sys-
tem should rarely degrade quality. We optimize for tail
request loads by scheduling streams to meet application re-
quirements (using Earliest Deadline First (EDF), Absolute
Priority (ABS), and novel application-specific MultiLevel
(ML) scheduling procedures) and routing queries to small
models.

Overall, the system architecture can be modeled in Figure 2.
Client LLM queries reach a group of front-end servers over
any network protocol or medium. The front-end servers,
which can either be at the edge or in a cloud-like environ-
ment, batch requests and initiate request-response streams
to the model-serving back-end server. A detailed view of the
model-serving environment is shown in Figure 3. In LLM
model inference, increased batch sizes result in increased
model throughput, providing benefits to batch several inde-
pendent requests together (Kwon et al., 2023). The batching
process smooths out requests and provides consistent be-
havior on top of which scheduling can be introduced. The
front-end servers utilize an active QUIC connection to the
back-end, initiating a bi-directional QUIC stream for each
request/class of requests. The request and response traffic
are assigned to a stream, each which is scheduled according
to its application traffic class. Each request is consumed

3



Quality-of-Service Aware LLM Serving

GPU 1

OPT-6.7B

OPT-1.3B

GPU 2 GPU 3 GPU 4

OPT-125M

Router

Client 1 Client N

OpenBookQA

PIQA

COPA

HellaSwag

Figure 3. The model serving environment consists of OPT-6.7B,
OPT-1.3B, and OPT-125M replicated across 4 GPUs. The system
serves HellaSwag, COPA, PIQA, and OpenBookQA.

by the model serving environment, which uses the DQN
agent to select a model along with a GPU to generate an
output. The RL agent analyzes the query and the load at
each of the models and GPUs and determines the best model
to route the query in order to maximize quality and meet
latency deadlines. The model response is sent back to the
corresponding front-end via the same QUIC stream, sched-
uled with the same semantics. Finally, these responses are
delivered back to the initiating clients, completing the flow.

We do not evaluate the setting where there are multiple
model-serving environments, since our work focuses on opti-
mizing network utility within a single endpoint-to-endpoint
connection and GPU utility within a single machine; how-
ever, the proposed architecture will scale accordingly. In the
above scenario, the front-end servers can each select among
a group of back-end servers, employing a load-balancing
framework to evenly spread the request load among the
group. Since QUIC streams are bi-directional, the model-
serving environment simply utilizes the same incoming
stream to send a response back to the appropriate front-end
server.

4. Implementation
4.1. QUIC Schedulers

The open-source QUIC implementation we decided to use is
quic-go. quic-go (Clemente & Seemann, 2023) is one
of the original canonical implementations that is up-to-date
with all current QUIC and HTTP/3 RFCs. It is actively
maintained, has shown to be one of the best-performing
open source implementations (Crochet et al., 2021), and is
the most well-implemented (Seemann, 2023).

The default scheduling procedure in quic-go is Round

Robin (RR). It cycles through each active stream (”active”
is defined as a stream with pending data to be sent), filling
up a fixed-size packet with the current stream’s data before
moving to the next stream and doing the same.

We extend the default RR scheduler with the following four
scheduling algorithms:

1. First-Come-First-Serve (FCFS): Streams are processed
in order of their arrival, with all of the data of the
first stream sent before processing the data of the next
stream. We use this as a benchmark, similar to RR.

2. Earliest Deadline First (EDF): Streams are each as-
signed a deadline by the application and are processed
in chronological order of their deadline. If a stream’s
deadline has passed before it has finished sending all
its data, it is discarded and removed from the active
stream queue.

3. Absolute Priority (ABS): Streams are each assigned a
priority level by the application and are processed in
order of priority (highest to lowest), with streams of
the same priority served FCFS.

4. MultiLevel (ML): Streams are bifurcated into a lower
and higher priority level. The higher priority streams
are always served before the lower priority ones. The
high priority streams are each assigned a deadline by
the application and are served on an EDF basis whereas
the lower level streams are served in a fair round robin
manner.

In addition, we have built a scheduling abstraction layer
that provides applications the functionality to select which
of the stream schedulers to utilize, along with an easy way
to pass in necessary information for each stream (priority
for ABS, deadline for EDF and ML, etc) at stream-creation
time. In our experimentation, we have enforced the same
scheduler at both the client and server ends (front-end server
and back-end server, respectively) but this is not necessary -
connection endpoints may inter-operate between different
scheduling schemes without any problem.

Stream management in quic-go is implemented by the
framer interface. The interface contains a streamQueue,
which keeps track of a list of active streams. The framer
interacts with scheduling in two main ways: first when
an active stream is created and added to the streamQueue,
and second when the active stream queue is processed to
send packets. In default RR, a stream gets added to the
streamQueue at the end of the queue. While there are active
streams in the streamQueue, the framer pops a stream
from the front of the queue and fills up-to a packet of data
from the popped stream. If the stream still has data to send,

4



Quality-of-Service Aware LLM Serving

the stream is appended to the back of the queue; if not, it is
removed.

First, we modified the behavior when a stream is initially
added to the streamQueue. In ABS, the stream is added to
the streamQueue in descending priority order (i.e. streams
with the highest priority values are added to the front of
the queue). Similarly, in EDF, the stream is added to the
streamQueue in ascending deadline order (i.e. streams with
the earliest deadlines are added to the front of the queue).
In EDF, an additional check is performed to verify that the
stream has not already missed its deadline (this check can
be omitted for soft-deadline use cases). In MultiLevel (ML),
we created an additional levelTwoStreamQueue, creating
a lower priority level. Higher priority streams are added
to the main streamQueue in ascending deadline order (as
in EDF), and lower priority streams are appended to the
levelTwoStreamQueue (as in RR). For FCFS, we append to
the end of the streamQueue.

Next, we modify the behavior when the active streamQueue
is being processed by the framer to create packets. In
FCFS, EDF, and ABS, the stream we are currently pro-
cessing is either the one that ”came first”, has the ”earliest
deadline”, or has the ”highest priority”, respectively. Con-
sequently, it remains at the front of the queue if it still has
data to be sent. If the stream has no more data to send,
it is removed from the queue. EDF does an additional
check that discards the stream if its deadline has passed (as
mentioned before, this can be omitted). The MultiLevel
(ML) processes the primary streamQueue while it has active
streams, utilizing the EDF approach above. If the primary
streamQueue has no more active streams, the secondary
levelTwoStreamQueue gets processed, utilizing the same
behavior as RR.

4.2. RL Router Agent

We train our router’s policy, represented by a 2-layer MLP
with hidden size 256, using the DQN algorithm. To prevent
over-estimation of Q-values we employ Double Q-learning
and use a target network that gets updated every 500 iter-
ations. We use a discount rate of 0.99 and a learning rate
of 0.0001. For exploration, we use an epsilon-greedy strat-
egy. We performed minimal hyper-parameter tuning and
use this for all trained policies. All models are served us-
ing vLLM (Kwon et al., 2023), which is a state-of-the-art
inference serving system. The state that the agent sees is
the batch size at each model in the system, the request’s
task, and an estimate of the request rate. The action is the
selected model, and the reward is the model’s accuracy if
the latency requirement is met and zero otherwise.

4.3. System Implementation

For the frontend and backend servers, we provisioned two
GCP VM instances running Ubuntu 22.04 with 8 vCPUs. In
order to simulate 3G network conditions (mimicking edge
placement of the frontend server), we utilized the tc Linux
kernel command, which allows a user to adjust packet drop
rate, packet latency, and connection bandwidth on any spec-
ified network interface. We utilize socket IPC to forward
requests to-and-from the QUIC and the model-serving run-
ner. Apart from modifying network interface characteristics
through tc, the network topology between the front-end and
back-end servers was hidden, as is commonly the case in
cloud environments.

5. Evaluation
5.1. RL Microbenchmarks

Prior work on model serving (Li et al., 2023; Zhang et al.,
2023; Gujarati et al., 2020) uses Microsoft’s Azure Function
(MAF) traces (Shahrad et al., 2020; Zhang et al., 2021) to
model behavior of clients in a serving system. The MAF1
trace (Shahrad et al., 2020) consists of stable request periods
at a fixed arrival rate before the arrival rate changes. On
the other hand, the MAF2 trace (Zhang et al., 2021) has
much more unpredictable client behavior and the arrival
rates rapidly change. Based on these observations, we eval-
uate our system on three types of synthetic workloads that
capture a wide range of client behavior. The first represents
a stable workload in which client requests arrive in the sys-
tem as a Poisson Process with a fixed rate for a set period
of time. The second workload represents one in which the
arrival rate of requests rapidly switches due to an underly-
ing stochastic process that controls the arrival rate and its
duration.

5.1.1. ENVIRONMENT

To evaluate our routing policy, we consider a serving system
with 4 GPUs. Each GPU contains an instance of OPT-125M,
OPT-1.3B, and OPT-6.7B, as depicted in Figure 3. When
the router chooses a model size for the request, we automati-
cally load balance by sending to the replica with the smallest
batch size for the model. We set the latency guarantee to
be 40 milliseconds/token. Additionally we use zero-shot
HellaSwag (Zellers et al., 2019), COPA (Roemmele et al.,
2011), PIQA (Bisk et al., 2020), and OpenBookQA (Mi-
haylov et al., 2018) as the four tasks in the system. We use
each model’s average accuracy on each task as a measure of
its quality. For each task we normalize the accuracy of each
model to OPT-6.7B’s accuracy to get the rewards shown
in Table 1. We pick tasks uniformly at random. We train
the policy for 1.2 million iterations using hard deadlines, a
uniform task distribution, and randomly chosen arrival rates.

5



Quality-of-Service Aware LLM Serving

Table 1. Rewards for tasks served in the system.

TASK OPT-125M OPT-1.3B OPT-6.7B

HELLASWAG 0.45 0.78 1.00
COPA 0.80 0.95 1.00
PIQA 0.82 0.96 1.00
OPENBOOKQA 0.70 0.94 1.00

5.1.2. STABLE WORKLOAD

For the stable workload, we vary the arrival rate of the
Poisson Process from 0.25 to 48 requests per second and
server for 40 seconds at each arrival rate before resetting
and going to the next arrival rate. We show the results with
hard deadlines in Figure 4. In the hard deadline setting, a
client request’s reward is zero if the policy does not pick an
action that returns a response to the client within the latency
requirements. As baselines, we show the performance when
only serving to OPT-6.7B, only serving to OPT-1.3B, only
serving to OPT-125M.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate
4x OPT-125M
4x OPT-1.3B
4x OPT-6.7B
Policy

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency vs Arrival Rate (All Tasks)

OPT-125M
OPT-1.3B
OPT-6.7B

Figure 4. The left figure shows the performance on the environ-
ment with hard deadlines. The right figure shows the distribution
of model selection from the policy.

As Figure 4 shows, in typical systems that serve all requests
to OPT-6.7B, the performance is near the peak possible per-
formance at low arrival rates. However, once the arrival rate
increases past a threshold (2 requests per second), many
latency deadlines are missed and client utility sharply de-
clines. While OPT-1.3B can serve requests at much higher
arrival rates, it’s quality cannot match OPT-6.7B even when
the arrival rate is low. Additionally, there is also a point at
which OPT-1.3B cannot keep up with client requests. Serv-
ing only with OPT-125M leads to significant performance
degradation at all but extremely high arrival rates.

In contrast, the policy dynamically adjusts which model to
send requests to. When the arrival rate is low, the policy
primarily sends to OPT-6.7B and achieves similar perfor-

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (HellaSwag)

OPT-125M
OPT-1.3B
OPT-6.7B

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

Model Frequency (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (OpenBookQA)

Figure 5. Model selection frequency for each individual task with
hard deadlines.

mance. However, as the arrival rate increases, the policy
correctly returns to route more requests to OPT-1.3B and
eventually even OPT-125M at the extreme end. Therefore
the policy allows the system to remain available for over
10x faster arrival rates than just using OPT-6.7B while still
providing equal quality to OPT-6.7B at low arrival rates.
Furthermore we notice that there are regions where the pol-
icy even performs better than just taking the maximum of
each of the baseline’s curves in Figure 4 as it is able to
multiplex between models at a given arrival rate.

We now examine how the routing varies for different tasks,
as shown in Figure 5. We see that the policy sends Hel-
laSwag tasks to OPT-6.7B much more often than the other
three tasks. Taking a look at Table 1, we see that OPT-125M
and OPT-1.3B have a significant quality gap compared to
OPT-6.7B for HellaSwag. This quality gap is much larger
than the gap between models on COPA, PIQA, and Open-
BookQA. Therefore the policy appropriately learns to prior-
itize sending HellaSwag to the large model. Furthermore,
when the arrival rate is very high, HellaSwag is sent to OPT-
1.3B more often than the other three tasks, for the same
reason as above. Thus the router learns a complex relation-
ship not only depending on the task’s quality across models
in isolation, but with respect to the quality of other tasks in
the system and their distribution.

5.1.3. UNPREDICTABLE WORKLOAD

We evaluate on an unpredictable workload with large bursts,
as mentioned in subsection 5.1. The first unpredictable
workload, we randomly vary the arrival rate and the number
of requests served at that arrival rate before switching to the
next arrival rate.

Figure 6 shows the performance of the routing policy as
well as the baselines, in addition to the changing arrival rate.
We show both the running average of performance across all

6



Quality-of-Service Aware LLM Serving

0 2000 4000 6000 8000 10000
Request Number

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn

Running Average

4x OPT-1.3B
4x OPT-6.7B
Policy

0 2000 4000 6000 8000 10000
Request Number

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
 (L

as
t 2

0) Running Average Over Last 20 Requests

0

10

20

30

40

50

Ar
riv

al
 R

at
e

0

10

20

30

40

50

Ar
riv

al
 R

at
e

Figure 6. Running total and windowed average over the last 20
requests of performance on the unpredictable workload. The arrival
rate at each step is also shown.

served requests and the running average of the performance
across the last 20 requests. The serving system that only uses
OPT-6.7B fails to meet latency deadlines during many of the
bursts and thus its utility to the user is highly variable. Even
though OPT-6.7B’s windowed average has many averages
near 1, the policy is in fact able to achieve more of these
peaks. We quantify this in Table 2.

Table 2. Number of request windows of size 20 that meet average
quality thresholds on the first unpredictable workload.

THRESHOLD POLICY OPT-6.7B OPT-1.3B

= 1.00 142 307 0
≥ 0.99 470 307 0
≥ 0.98 713 307 0
≥ 0.96 1264 307 0
≥ 0.94 1723 625 154

As shown in Table 2, OPT-6.7B is able to achieve more
windowed averages with the top average of 1 compared
to the policy. However, when analyzing the number of
windows which meet high utility thresholds such as 0.99,
0.98, 0.96, and 0.94, the policy achieves more such windows
than OPT-6.7B and OPT-1.3B. For example, it achieves
1.53× more windows at 99% quality, 2.32× more windows
at 98% quality, and 4.11× more windows at 96% quality
compared to OPT-6.7B. Additionally, it achieves 94% of
peak quality 2.75× more often than OPT-6.7B and 11.18×
more often than OPT-1.3B. This shows that the policy is
able to correctly balance between OPT-6.7B, OPT-1.3B, and
OPT-125M in the same window, even while faced with an
unpredictable workload.

5.2. QUIC Scheduler Microbenchmarks

5.2.1. EXPERIMENTAL SETUP

To evaluate our implemented schedulers, we set up a net-
work test between the frontend and backend VM instances.
As mentioned previously, we utilized the tc Linux ker-
nel command to emulate various 3G network character-
istics. We ran QUIC and TLS/TCP clients on the fron-
tend VM, which initiated streams/connections to the QUIC
and TLS/TCP servers on the backend instance. The server
echoes all the bytes it receives back to the client leveraging
the bidirectional streams of QUIC or the bidirectional con-
nections in TLS/TCP. We timed the round-trip total, starting
when the client first establishes a connection/stream and
ending when the client receives the final echoed byte from
the server. We also evaluate the completion rates of each
scheduler, based on the final round trip latency measure-
ments.

We benchmark the newly implemented EDF, ML, and ABS
schedulers against the baseline RR QUIC scheduling im-
plementation; we also utilize the new FCFS scheduler as a
baseline representing other implementations’ default sched-
uler. Moreover, we compare our modified schedulers against
TLS/TCP, since the HTTP-2/TLS/TCP stack is the industry
standard protocol used in open-source model-serving ap-
plications. For TLS/TCP, we imitated stream multiplexing
behavior by opening the same number of TCP connections
between the client and server as we did streams in the QUIC
tests. However, since we also wanted to take into account
the overhead of opening many TCP connections and provide
a standard of comparison against QUIC’s singular connec-
tion, we also tested a 1-connection TLS/TCP setup. We
test against TLS in conjunction with TCP since QUIC em-
beds the TLS protocol by default to provide secure transport
(Iyengar & Thomson, 2021), and we wanted to provide
an equal standard of comparison considering the increased
computational overhead.

For our tests, we established 3 classes of traffic, represent-
ing specific LLM usage patterns. The first class of traffic
is what we label ”Real-Time Short” traffic, consisting of
8 KB long streams with a 1-second deadline. This traffic
represents common LLM usage patterns, to be served with
strict latency requirements optimizing interactive user ex-
periences. Despite each LLM utilizing its own tokenizing
methodology, a commonly quoted amount for the number of
characters in a token is somewhere between 4-5 (Raf, 2023)
(Kadous, 2023). 2000 tokens is well within the context
window sizes of most small-sized models (OpenAI, 2023)
and represents the common usage pattern of supplying a
model with background contextual information followed
by a question based on the context. Since most system
character encodings represent each character with a byte
of data, 2000 tokens is approximately 8 KB; as such, we

7



Quality-of-Service Aware LLM Serving

have selected it as the size for Short Traffic. In EDF this
traffic class is assigned a 1-second deadline, in ABS it is
assigned the highest priority level, and in ML it is assigned
the higher priority queue. We made it our primary objective
to schedule streams to achieve as low of a latency and as
high of a completion rate as possible for this traffic class.

The second class of traffic is what we label ”Free-Tier Short”
traffic, consisting of the same 8 KB request streams as the
above Real-Time Short, but representing traffic with more
lenient deadlines and QoS requirements - perhaps ”free-
tier” traffic for LLM providers. In EDF this traffic class
is assigned a 2-second deadline, in ABS it is assigned the
lower priority level, and in ML it is assigned the lower
priority queue.

Finally, we label the third class of traffic as ”Long Output”
traffic. This traffic class consists of 102.4 KB long streams
with a 7-second deadline, representing long-input, long-
output corpora synthesizing tasks. 25,000 tokens is on the
higher end of context window sizes but is attainable by
today’s state-of-the-art advanced LLMs (OpenAI, 2023)
(Anthropic, 2023). In EDF this traffic class is assigned a
7-second deadline, in ABS it is assigned the lower priority
level, and in ML it is assigned the lower priority queue.

We simulate the 3G network via tc, dialing in 5 Mbps of
bandwidth, 0.5% packet loss, and 50 ms of added packet
latency (Chan & Ramjee, 2002). The client sends 90 re-
quests to the server, randomly selecting a traffic class (with
uniform probability), and recording the time from when the
stream/connection is first established, to when last byte of
the request is echo-ed back from the server. The latency of
each request is recorded, and a completion rate is calculated
based on the request class deadline.

5.2.2. DISCUSSION

Figure 7. Network completion rates of the 3 traffic classes using
various scheduling algorithms and network protocols. Short, Real-
Time tasks with 1-second deadline; Short, Lower-Priority tasks
with 2-second deadline; Long Context Window, Lower-Priority
tasks with 7-second deadline.

Figure 8. Network request latencies of the 3 traffic classes using
various scheduling algorithms and network protocols.

From the box plot of latency distributions, we see that QUIC-
RR and TLS/TCP (n-connections) performed similarly. In-
triguingly, the performances of the two protocols are quite
evenly matched despite the on-paper advantages that QUIC
has. We hypothesize several possible reasons - increased
overhead of a large number of streams multiplexing a sin-
gle QUIC connection, TCP integration and optimization
for Golang (TCP is part of the standard language library
whereas quic-go is independent), UDP kernel buffer size
restrictions, and QUIC’s strict maximum packet size limits -
however, we leave investigation out of scope for this work.

When analyzing completion rates, we see that both QUIC-
RR and TLS/TCP struggle to achieve high completion rates
for high-priority traffic, which is our most important met-
ric. TLS/TCP 1-connection latency results underscore the
head-of-line blocking issues present in the protocol with ex-
ceptionally high tail latencies for all 3 traffic classes. We see
a similar issue in QUIC-FCFS, where long-output streams
block progress for both high-priority and low-priority short
streams.

Given the primary metric used in LLM model-serving tasks
is per-token latency and deadline SLOs, we decided to first
build an EDF scheduler. From the boxplots, we can see that
it outperforms QUIC-RR in latency for all traffic classes.
Furthermore, QUIC-EDF achieves high completion rates
across all 3 traffic classes, reaching 100% for short/low-
priority. However, since short/low-priority stream deadlines
can occur before short/high-priority stream deadlines (due
to random selection and order of stream creation), high-
priority traffic can be preempted and thus miss its deadline.
As a result, we see sub-100% completion rates for high-
priority traffic prompting us to build two other schedulers
aimed to prevent the preemption of high-priority traffic.

Next, we implemented an absolute priority scheduler and
evaluated its performance. Since streams would be served
on a strict priority basis, preemption of high-priority traf-

8



Quality-of-Service Aware LLM Serving

fic would be avoided. As a result, we observe a 100%
completion rate and near-optimal latency of high-priority
traffic, accomplishing our primary scheduling metric. How-
ever, we note a huge drop-off in the performance of the
low-priority/short traffic class, with especially degraded tail
latencies. Since the priority scheduler serves each prior-
ity class on a first-come-first-serve basis, we see that low-
priority/short traffic gets blocked behind low-priority/long
traffic. This could be solved by assigning long-output traffic
a lower priority; however, we reasoned that this would not
match the intended semantics of the traffic classes.

In response, we created a novel multi-level scheduling
scheme, to address both preemption and head-of-line block-
ing issues seen in previous schedulers. The multi-level
scheduler addressed the high-priority preemption issues by
placing high-priority traffic in its own EDF higher-level
scheduling queue while also addressing low-priority/short
traffic blocking issues by utilizing a round-robin approach
for the lower-priority queue. Overall, we deem the ML
scheduler to perform best since it meets the primary criteria
achieving 100% completion rate and optimal latencies for
high-priority traffic while also serving both classes of low-
priority traffic with strong guarantees. We also observe the
most consistent behavior with the ML scheduler, evidenced
by the significantly lower latency variance in the boxplot.

5.3. Macrobenchmark

We now evaluate the performance of our network scheduling
in combination with the learned router agent. Network
scheduling and dynamic model selection can be applied in
a variety of settings. However, for our evaluation, we focus
on LLM applications that serve three classes of requests:

1. High priority traffic with small input sizes

2. Low priority traffic with small input sizes

3. Low priority traffic with large input sizes

As described in the above microbenchmark sections, an
application may need to serve small input sizes if it is an-
swering questions such as ”How to seal wood?” The appli-
cation may need to serve queries with large input sizes to
answer questions such as ”Summarize the following docu-
ment about sealing wood: ...”. We evaluate various network
schedulers and serving mechanisms on this workload, using
both stable and unpredictable arrival patterns.

The following are our metrics of success to test during
evaluation:

• Meet user-defined latency deadlines and QoS require-
ments, achieving high request completion rates.

• Serve highest possible model quality given resource
contention

• Handle both stable and unpredictable client requests
patterns across a wide range of client request rates.

We show the average performance on both the stable and
first unpredictable workload from subsection 5.1 in Table 3
and Table 4. Our performance score combines both model
quality and latency. If request’s latency deadline is met, the
performance score for the request is the selected model’s
accuracy. Otherwise, if the latency deadline is not met,
the performance is zero. Similarly, we serve HellaSwag,
COPA, PIQA, and OpenBookQA. We denote OpenBookQA
to be high priority traffic. The policy recognizes this by
up-weighting the reward for serving OpenBookQA at high
quality. We train the policy for 1.1 million iterations using
OPT-2.7B as the larger model and OPT-1.3B as the smaller
model. We see that the policy outperforms static serving
baselines on the stable workload, but only outperforms OPT-
2.7B on the unpredictable workload. We see that OPT-1.3B
outperforms the policy in the unpredictable workload. We
believe this is because the policy does not take into account
the network latency when making its decision, although it
takes into account the priority of the task. We leave this as
future work.

Table 3. Performance on the stable workload.

SCHEDULER OPT-2.7B OPT-1.3B POLICY

QUIC-RR 0.20 0.25 0.42
QUIC-FCFS 0.19 0.24 0.36
QUIC-EDF 0.21 0.37 0.52
QUIC-ABS 0.20 0.35 0.49
QUIC-ML 0.21 0.29 0.45
TLS/TCP 0.20 0.24 0.41
TLS/TCP (1 CONN) 0.18 0.22 0.31

Table 4. Performance on the unpredictable workload.

SCHEDULER OPT-2.7B OPT-1.3B POLICY

QUIC-RR 0.19 0.54 0.42
QUIC-FCFS 0.17 0.53 0.36
QUIC-EDF 0.19 0.64 0.48
QUIC-ABS 0.18 0.62 0.46
QUIC-ML 0.19 0.57 0.44
TLS/TCP 0.18 0.54 0.41
TLS/TCP (1 CONN) 0.16 0.51 0.35

We also investigate the quality of OpenBookQA, which is
the prioritized task in our system. As shown in Figure 9,
OpenBookQA and HellaSwag are sent to OPT-6.7B signif-
icantly more often than COPA and PIQA. This is because
HellaSwag is a hard task whose quality benefits significantly

9



Quality-of-Service Aware LLM Serving

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (HellaSwag)

OPT-125M
OPT-1.3B
OPT-6.7B

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

Model Frequency (OpenBookQA)

Figure 9. Model selection frequency for each individual task with
OpenBookQA prioritized.

from OPT-6.7B, and OpenBookQA is a prioritized task in
the system. Additionally, at high arrival rates, the system
favors sending OpenBookQA to OPT-1.3B while it sends
the other tasks to the smaller OPT-125M.

6. Future Work
There are a number of future directions to be explored to im-
prove the router agent. When running multiple models on a
GPU, there are scheduling decisions on the systems side that
need to be made to determine how models share compute re-
sources to further help meet latency deadlines. Additionally,
it will be interesting to see extensions to the work that use
embeddings or other ways to expand the state in order to
capture further information about a client’s request and the
state of the system. On the network scheduling end, further
exploration into the throughput tradeoffs between QUIC and
TLS/TCP is necessary, as our initial benchmarks showed
similar results between the two baselines. We also believe
that the overall system performance can be improved by hav-
ing the router agent take into account the network latency
for a request, rather than just its priority. In addition, we
can also assess the performance of multiple model-serving
environments. We envision an environment where front-end
servers can each select among a group of back-end servers,
employing a load-balancing framework to evenly spread the
request load among the group.

7. Conclusion
In this work, we have presented an end-to-end quality-of-
service aware model serving system. We utilized a Q-
learning-based routing agent to dynamically choose between
models of different latency and quality during periods of
high request load, maintaining availability and serving at
the highest possible quality. We have also designed and

implemented a series of stream scheduling algorithms for
the QUIC network protocol. We identified the SLO require-
ments of various classes of LLM requests and utilized both
network scheduling as well as dynamic model selection
to meet application requirements. We have trained the Q-
learning agent to optimize latency and model serving qual-
ity of higher priority classes while achieving fairness and
best-effort response quality for lower priority requests. We
have benchmarked the QUIC network schedulers and have
shown that the EDF and Multilevel schedulers perform best,
achieving the highest completion rates and lowest network
latencies for high-priority traffic while maintaining high
completion rates for lower-priority traffic as well. Overall,
the network schedulers have shown increased performance
over the baseline QUIC protocol, as well as TLS/TCP. We
benchmark our end-to-end system against today’s model-
serving standard and demonstrate the ability to not only cater
to QoS differentiation between requests but also outperform
current standards in per-token latency and model-output
quality.

References
Agarwal, M., Qureshi, A., Sardana, N., and Li, L.

Llm inference performance engineering: Best prac-
tices. https://www.databricks.com/blog/llm-inference-
performance-engineering-best-practices, 2023. Accessed:
12/14/2023.

Anthropic. Introducing 100k context windows, 2023.
URL https://www.anthropic.com/index/
100k-context-windows. Accessed: 12/14/2023.

Belshe, M., Peon, R., and Thomson, M. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540, May 2015.

Bishop, M. HTTP/3. RFC 9114, June 2022.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Bornstein, M. and Radovanovic, R. Emerging architec-
tures for llm applications. https://a16z.com/emerging-
architectures-for-llm-applications/, 2023. Accessed:
12/14/2023.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Cettolo, M., Federico, M., Bentivogli, L., Jan, N., Sebastian,
S., Katsuitho, S., Koichiro, Y., and Christian, F. Overview
of the iwslt 2017 evaluation campaign. In Proceedings
of the 14th International Workshop on Spoken Language
Translation, pp. 2–14, 2017.

10

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows


Quality-of-Service Aware LLM Serving

Chan, M. and Ramjee, R. Tcp/ip performance over 3g
wireless links with rate and delay variation. volume 11,
pp. 71–82, 09 2002. doi: 10.1007/s11276-004-4748-7.

Chiariotti, F., Deshpande, A. A., Giordani, M., Anton-
akoglou, K., Mahmoodi, T., and Zanella, A. Quic-
est: A quic-enabled scheduling and transmission scheme
to maximize voi with correlated data flows. IEEE
Communications Magazine, 59(4):30–36, 2021. doi:
10.1109/MCOM.001.2000876.

Clemente, L. and Seemann, M. quic-go: A quic implementa-
tion in pure go, 2023. URL https://github.com/
quic-go/quic-go. Accessed: 12/14/2023.

Crochet, C., Rousseaux, T., Piraux, M., Sambon, J.-F.,
and Legay, A. Verifying quic implementations using
ivy. In Proceedings of the 2021 Workshop on Evolu-
tion, Performance and Interoperability of QUIC, EPIQ
’21, pp. 35–41, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450391351. doi:
10.1145/3488660.3493803.

Cui, C., Lu, Y., Li, S., Li, J., and Ruan, Z. Dash+: Download
multiple video segments with stream multiplexing of quic.
In 2022 Tenth International Conference on Advanced
Cloud and Big Data (CBD), pp. 66–72, 2022. doi: 10.
1109/CBD58033.2022.00021.

Fernández, F., Zverev, M., Diez, L., Juárez, J. R., Brun-
strom, A., and Agüero, R. Flexible priority-based stream
schedulers in quic. In Proceedings of the Int’l ACM
Symposium on Performance Evaluation of Wireless Ad
Hoc, Sensor, & Ubiquitous Networks, PE-WASUN ’23,
pp. 91–98, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400703706. doi:
10.1145/3616394.3618267.

Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann,
A., Vigfusson, Y., and Mace, J. Serving {DNNs} like
clockwork: Performance predictability from the bottom
up. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pp. 443–462,
2020.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Iyengar, J. and Swett, I. QUIC Loss Detection and Conges-
tion Control. RFC 9002, May 2021.

Iyengar, J. and Thomson, M. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000, May 2021.

Kadous, W. Numbers every llm developer should know,
2023. URL https://www.anyscale.com/blog/
num-every-llm-developer-should-know.
Accessed: 12/14/2023.

Kutter, M. and Jaeger, B. Comparison of different quic
implementations. In Proceedings of the Seminar Innova-
tive Internet Technologies and Mobile Communications
(IITM), 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic,
C. B., Shi, C., Zhang, D., Yang, F., Kouranov, F., Swett,
I., Iyengar, J., Bailey, J., Dorfman, J. C., Roskind, J.,
Kulik, J., Westin, P. G., Tenneti, R., Shade, R., Hamilton,
R., Vasiliev, V., and Chang, W.-T. The quic transport
protocol: Design and internet-scale deployment. 2017.

Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin,
X., Huang, Y., Chen, Z., Zhang, H., Gonzalez, J. E.,
et al. Alpaserve: Statistical multiplexing with model
parallelism for deep learning serving. arXiv preprint
arXiv:2302.11665, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In EMNLP, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX symposium on operating
systems design and implementation (OSDI 18), pp. 561–
577, 2018.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the
details, just the summary! topic-aware convolutional neu-
ral networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

OpenAI. Openai models, 2023. URL https:
//platform.openai.com/docs/models. Ac-
cessed: 12/14/2023.

Raf. What are tokens and how to count them?
https://help.openai.com/en/articles/4936856-what-
are-tokens-and-how-to-count-them, 2023. Accessed:
12/14/2023.

11

https://github.com/quic-go/quic-go
https://github.com/quic-go/quic-go
https://www.anyscale.com/blog/num-every-llm-developer-should-know
https://www.anyscale.com/blog/num-every-llm-developer-should-know
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models


Quality-of-Service Aware LLM Serving

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

RayTeam. Ray serve: Scalable and programmable serving,
2023. URL https://docs.ray.io/en/latest/
serve/index.html. Accessed: 12/14/2023.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In 2011 AAAI Spring Symposium Series,
2011.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Seemann, M. Quic interop runner, 2023. URL https:
//interop.seemann.io/. Accessed: 12/14/2023.

Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P.,
Cooke, J., Laureano, E., Tresness, C., Russinovich, M.,
and Bianchini, R. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX annual technical conference
(USENIX ATC 20), pp. 205–218, 2020.

Thomson, M. and Benfield, C. HTTP/2. RFC 9113, June
2022.

Thomson, M. and Turner, S. Using TLS to Secure QUIC.
RFC 9001, May 2021.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

vLLM Team. vllm: Quickstart, 2023. URL
https://docs.vllm.ai/en/latest/
getting_started/quickstart.html. Ac-
cessed: 12/14/2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, H., Tang, Y., Khandelwal, A., and Stoica, I.
{SHEPHERD}: Serving {DNNs} in the wild. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pp. 787–808, 2023.

Zhang, Y., Goiri, Í., Chaudhry, G. I., Fonseca, R., Elnikety,
S., Delimitrou, C., and Bianchini, R. Faster and cheaper
serverless computing on harvested resources. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pp. 724–739, 2021.

12

https://docs.ray.io/en/latest/serve/index.html
https://docs.ray.io/en/latest/serve/index.html
https://interop.seemann.io/
https://interop.seemann.io/
https://docs.vllm.ai/en/latest/getting_started/quickstart.html
https://docs.vllm.ai/en/latest/getting_started/quickstart.html

