Hardware Deserialization. Accelerator
V- 4 with GC Language Support

SLICE Ethan Wu, Viansa Schmulbach

JVM Integration ___ Overview

We extend the Java Native Interface (JNI) to allow manipulation of JVM internals » Serialization and deserialization contribute a significant overhead to datacenter » Allocated 128MB of objects, forced an 8MB heap, to ensure that
> In HW, use simple bump allocator from large contiguous on-heap region obtained workloads—5-6% among workloads at Google and Facebook garbage collection was happening
from the GC's allocator » We aim to accelerate deserialization for languages running on the Java Virtual Machine » Even after garbage collection happened, verified that was still
> Implemented as a byte array allocated via JNI—can detect collections by building upon previous hardware accelerators targeting C++ able to change and use all fields
observing when the array is moved » Deserialized objects must be source-compatible with the original Protobuf » Ensure that old — new pointers did not break (JVM keeps card
» Optimization—can be implemented via direct allocations, which avoids having the libraries—field types must remain as “native” Java objects (e.g. java.util.List) table structure for keeping track of these)
GC copy unnecessary data, but GC must inform code of when the region has been » We would like to expand upon this accelerator in a way that both preserves the original » Ensure that GC is actually paused between safepoints by creating
freed C+-+ compatibility and can accommodate more languages in the future another thread which allocates a lot of memory, seeing if
» Hook JVM's safepointing mechanism to allow the accelerator to mark its thread as > ,(A\Firned tc3>)reuse large pieces of hardware when possible. RTL updates are in blue allocations hang
igure

not being at a safepoint—causing the GC to wait for it to finish before performing

B et ey coneren) el _
TileLink System Bus (L2) / PTW B m
» Entire object graph of deserialized objects made visible to GC in one “atomic” enCh arks

operation by creating a thread-local JNI handle pointing to the root message. Mem Interface Wrappers » Evaluated using FireSim on a BOOM core running OpenJDK on
» Barrier integration not necessary—G1GC's barriers are for pointer writes to Linux
old-space and during concurrent marking, but HW never performs these writes 6 Descriotor Hachits » Messages for deserialization are representative samples of Google
p N g N O Memloader FixedWriter P . workloads
Thread Local Handle Block Thread Local Handle Block E:E Unit TableHandler Writer
» Measured JNI overhead very small compared to most messages
[JNI Handle J [JNI Handle [JNI Handle J [JNI Handle J T T (Ieftmost bar, in Figure 6)
e analer uni Coe Cpe
:: v ! j:: garbage ~ - » Software deserializing of large messages is limited by CPU
{ ob } collection Heap Region (empty) memory bandwidth (Figure 5)—accelerator has wider memory
ject - : - : . :
ByteButter | :> - 4 “ Figure 3: Accelerator Block Diagram interface and can achieve greater peak bandwidth
g p
~ Heap Region ~ {BWEEUHEI- J @ 1.84%+ 11218 R*=0.986
’ ‘ . Heap Region) " | o
Heap Region (empty) 600000
(y—- Accelerator Updates o)
Heap Region (empty) J { Object J
___Heap Region Y » Many more fields need to be initialized in Java objects compared to C++—implemented 5
.) —= 400000
Figure 1: JNI Object Layout on Java Heap generic constant-value-writer in Accelerator Descriptor Table handling to write £ o
l_
arbitrary values that do not depend on the content of the incoming messages 5
» Subobject pointers must be valid at all times (even when fields not present) because = 00000
i »
: . . . h ill h h the 2 o* o
Dynamically Sized Fields and Pointers the GC will trace through them | | 3
» Must be initialized to point to empty singleton objects or null to ensure the heap is o0 °
» All objects that have a known size when the field is first encountered are allocated not corrupt 0 d“' — —— —
into the “fixed size buffer”; nested messages are represented as pointer fields, and » Object sizes and field offsets are not known at compile-time—perform one-time ADT |
require the accelerator to allocate and initialize a new object construction at runtime for each message type being deserialized, via JNI calls to probe the iessage Size (byie)
» repeated fields are represented as arrays but length is not known up JVM for object layout information Figure 5: Baseline Deserialization Rate
front—accelerator keeps separate “flexible buffer” for allocating these array buffers » Klass words (equivalent of C++ vtable pointers) are fixed throughout the lifetime of the 600000
> Compared to C_l__|_, there is an additional intermediate (ﬁxed_sized) Object JVM, but addresses of Sing|eton ObjeCtS are not (they are affected by GC)_mUSt update
(ArrayList) that needs to be allocated for all fields backed by arrays these elements of tables whenever a collection occurs
» Allocated in the same manner as normal submessage objects » Object allocation state machines modified for the object format expected by Java (see left) _ o omone
,f - ™ E
r//_ IntArrayList P‘L{ { object _size = sizeof (M1) E 200000
\ D'bjECt Int[]] .min_figld_no =1, '_E
/_t message M1 { fields = { @
S meSSElgE optional M2 f1 = 1; [0] = {.offset = offsetof (M1, f1), .type = MESSAGE, .is repeated = false, A
Object repeated int64 f2 = 2; .submessage = &M2_descriptor}, g
ll_ + [1] = {.offset = offsetof (M1, f2), .type = INT64, .is_repeated = true, AE R A me =
J_" .Submessage = nullptr}, % S e e
[Message Db]Et‘.‘t] ¥, E
l\ Fixed Size Buffer _// . Flexible Buffer ./ ¥ =
Figure 2: Example Deserialized Protobuf Object with Repeated and Submessage Figure 4: Simplified Accelerator Descriptor Table Example Figure 6: JNI Overhead vs. Java Deserialization for each message

UNIVERSITY OF CALIFORNIA, BERKELEY Department of Electrical Engineering & Computer Sciences'

