
Hardware Deserialization Accelerator
with GC Language Support

Ethan Wu, Viansa Schmulbach

JVM Integration
I We extend the Java Native Interface (JNI) to allow manipulation of JVM internals
I In HW, use simple bump allocator from large contiguous on-heap region obtained

from the GC’s allocator
I Implemented as a byte array allocated via JNI—can detect collections by

observing when the array is moved
I Optimization—can be implemented via direct allocations, which avoids having the

GC copy unnecessary data, but GC must inform code of when the region has been
freed

I Hook JVM’s safepointing mechanism to allow the accelerator to mark its thread as
not being at a safepoint—causing the GC to wait for it to finish before performing
stop-the-world pauses (in particular, evacuations cannot happen concurrently)

I Entire object graph of deserialized objects made visible to GC in one “atomic”
operation by creating a thread-local JNI handle pointing to the root message.
I Barrier integration not necessary—G1GC’s barriers are for pointer writes to

old-space and during concurrent marking, but HW never performs these writes

Figure 1: JNI Object Layout on Java Heap

Dynamically Sized Fields and Pointers
I All objects that have a known size when the field is first encountered are allocated

into the “fixed size buffer”; nested messages are represented as pointer fields, and
require the accelerator to allocate and initialize a new object

I repeated fields are represented as arrays but length is not known up
front—accelerator keeps separate “flexible buffer” for allocating these array buffers

I Compared to C++, there is an additional intermediate (fixed-sized) object
(ArrayList) that needs to be allocated for all fields backed by arrays
I Allocated in the same manner as normal submessage objects

Figure 2: Example Deserialized Protobuf Object with Repeated and Submessage

Overview
I Serialization and deserialization contribute a significant overhead to datacenter

workloads—5–6% among workloads at Google and Facebook
I We aim to accelerate deserialization for languages running on the Java Virtual Machine

building upon previous hardware accelerators targeting C++
I Deserialized objects must be source-compatible with the original Protobuf

libraries—field types must remain as “native” Java objects (e.g. java.util.List)
I We would like to expand upon this accelerator in a way that both preserves the original

C++ compatibility and can accommodate more languages in the future
I Aimed to reuse large pieces of hardware when possible. RTL updates are in blue

(Figure 3)

Figure 3: Accelerator Block Diagram

Accelerator Updates
I Many more fields need to be initialized in Java objects compared to C++—implemented

generic constant-value-writer in Accelerator Descriptor Table handling to write
arbitrary values that do not depend on the content of the incoming messages
I Subobject pointers must be valid at all times (even when fields not present) because

the GC will trace through them
I Must be initialized to point to empty singleton objects or null to ensure the heap is

not corrupt
I Object sizes and field offsets are not known at compile-time—perform one-time ADT

construction at runtime for each message type being deserialized, via JNI calls to probe the
JVM for object layout information

I Klass words (equivalent of C++ vtable pointers) are fixed throughout the lifetime of the
JVM, but addresses of singleton objects are not (they are affected by GC)—must update
these elements of tables whenever a collection occurs

I Object allocation state machines modified for the object format expected by Java (see left)

message M1 {
optional M2 f1 = 1;
repeated int64 f2 = 2;

}

{
.object_size = sizeof(M1),
.min_field_no = 1,
.fields = {

[0] = {.offset = offsetof(M1, f1_), .type = MESSAGE, .is_repeated = false,
.submessage = &M2_descriptor},

[1] = {.offset = offsetof(M1, f2_), .type = INT64, .is_repeated = true,
.submessage = nullptr},

},
}

Figure 4: Simplified Accelerator Descriptor Table Example

Verification
I Allocated 128MB of objects, forced an 8MB heap, to ensure that

garbage collection was happening
I Even after garbage collection happened, verified that was still

able to change and use all fields
I Ensure that old → new pointers did not break (JVM keeps card

table structure for keeping track of these)
I Ensure that GC is actually paused between safepoints by creating

another thread which allocates a lot of memory, seeing if
allocations hang

Benchmarks
I Evaluated using FireSim on a BOOM core running OpenJDK on

Linux
I Messages for deserialization are representative samples of Google

workloads
I Measured JNI overhead very small compared to most messages

(leftmost bar, in Figure 6)
I Software deserializing of large messages is limited by CPU

memory bandwidth (Figure 5)—accelerator has wider memory
interface and can achieve greater peak bandwidth

Figure 5: Baseline Deserialization Rate

Figure 6: JNI Overhead vs. Java Deserialization for each message

University of California, Berkeley Department of Electrical Engineering & Computer Sciences1


