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Abstract
Numerous works have tackled the problem of offload-

ing deserialization workloads to specialized hardware

accelerators, however few target interoperability with

“managed” languages which employ a garbage collec-

tor and other advanced runtime features. We develop

a deserialization accelerator that can directly create

“native” Java objects that have no additional software

overhead for Java code to interact with, as if they had

been created by Java code. In the process, we explore

how a hardware accelerator’s memory allocation and

object creation functionality can be integrated with the

HotSpot Java Virtual Machine, without sacrificing ac-

celerator performance. Our final accelerator, developed

in Chisel with a RISC-V BOOM OoO Core, obtains a

speedup between 1.5-30× higher throughput over exe-

cuting purely in Java on BOOM, depending on the size

of the object, with a geometric mean of 10.9×.

1 Introduction
1.1 Motivation
The rise of warehouse scale compute has sparked inter-

est in the discussion of datacenter-specific costs, dubbed

the “datacenter tax” [7] which includes serialization/de-

serialization, RPCs, and compression. In Google’s Ware-

house Scale Computers, an estimated 5% of cycles were

spent serializing and deserializing objects. This pro-

vided the motivation for Karandikar et. al.’s accelerator

for Protobuf [8], Google’s serialization framework. This

accelerator offloads cycles from the CPU by directly se-

rializing and deserializing C++ objects in hardware and

placing the result in an accelerator-owned arena. The

deserialization accelerator was shown to have a 6.9×
increase in performance over the Xeon-based system,

and the serialization accelerator had a 4.5× increase in

performance over the Xeon. However, the accelerator

is limited to only working with C++ objects. We extend

support of this accelerator to a garbage-collected lan-

guage, specifically Java, while maintaining comparable

performance, as well as performance for C++. That is,

the hardware writes the native object to be used by

the software directly into memory, without the soft-

ware needing to perform further manipulation of the

deserialized objects. Additionally, the accelerator is in-

teroperable with existing software — applications using

the accelerator can talk to other applications using the

standard software Protobuf implementation.

1.2 Background
1.2.1 The Garbage-First Garbage Collector. The
HotSpot Java Virtual Machine implementation contains

many garbage collectors. We target the current default,

Garbage First (G1GC), which is a parallel, generational,

concurrent-marking garbage collector [2]. Like all other

garbage collectors in HotSpot, G1GC compacts the heap

by moving live objects into a “survivor region” when

performing a collection—this process is called evacu-
ation. As a result, HotSpot serves the majority of its

allocations via a simple bump allocator, since due to

compaction the heap has large contiguous chunks of

free space from which to allocate. Thus, the hardware

accelerator can also use a bump allocator instead of

needing to understand more complex structures like

freelists. Additionally, G1GC performs its evacuation

step in a stop-the-world pause, not concurrently; this

fact greatly simplifies integration with the hardware

accelerator’s allocations.

Internally, G1GC partitions the heap into multiple

regions, each of which can be designated as Eden (new

objects), Survivor (young generation), and Old. Collec-

tions evacuate entire regions at a time into new regions

of either Survivor or Old type; the original regions are

then freed.

Additionally, if an object’s size exceeds half the size

of a region, that object is placed within a “humongous"

region. Importantly, humongous regions do not get

evacuated, so our accelerator should not place objects

within humongous regions (see 2.3 for more informa-

tion).
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Figure 1. Java Object Layout, Gray is Header

1.2.2 The Protobuf Wire Format. Protocol buffers
are a structured serialization format, where each field

is encoded on the wire as a field identifier containing

type information, followed by the actual field data. The

Protobuf wire encoding heavily uses the varint en-

coding for integers, which uses fewer bytes for smaller

integers [3]. This format is particularly amenable to

hardware acceleration, since it is significantly slower

to decode on CPU compared to other field data types

such as bytes (which simply places the raw bytes as-is,

and is decoded with a memcpy) [8].

1.2.3 Java Object Format. Each Java object in the

HotSpot JVM contains a header (usually 12 bytes, see

Figure 1) at the beginning of the object that contains

metadata that must be populated for the object to be

correctly recognized by the JVM. On 64-bit systems, the

first 8 bytes are a mark word containing generic meta-

data and GC state—for freshly-created objects, this is

always a constant bit-pattern. The next 4 bytes contain

the klass word, which identifies the type of the object

(analagous to a vtable pointer in C++). For each object

type, the klass word is a constant value for the lifetime

of the JVM.

Fields within a Java object are laid out as the JVM sees

fit, and are often rearranged from their declared order;

the JVMpacks them to reducewaste due to alignment as

much as possible. The layout may not be stable between

different invocations of the JVM (depending on VM

parameters), however fields are never rearranged while

the JVM is running.

1.3 Prior Work
Karandikar et. al. [8] describe the original Protobuf ac-

celerator which is to be extended during this project. As

explained in the background section, the accelerator in

this project only supported C++ as a host language. We

would like to extend this accelerator to support multiple

languages, including garbage collected languages.

The Cereal paper [5] describes a hardware acceler-

ator for serialization which implements a specialized

serialization format for Java objects, but does not ex-

plain how the GC becomes aware of the objects created

by the accelerator. Additionally, the paper does not pub-

lish any artifacts, so it is hard to determine if the paper

edited the GC. Finally, the paper only supports one

language, while our proposed design will support Java

and C++ simultaneously. We are the first paper to both

implement a serializer for Java and open-source our

artefacts.

The Skyway paper [10] discusses how to share heap

data between multiple machines without undergoing

deserialization and serialization, thus solving a similar

problem of objects “appearing” on the heap without

software knowledge. This project targets moving ob-

jects around a distributed system, without regard to

interoperability with existing formats; it also tackles

the problem with pure software, without investigat-

ing hardware offload. Skyway modifies the JVM and

garbage collector, updating GC data structures when-

ever a new object is allocated so that the object is reach-

able by the GC. Additionally, Skyway targets sharing

static data, which is a very different role from Protobuf

messages, which are used for active communication.

Thus, some of the design decisions (such as allocating

into the old generation) are unsuitable for warehouse-

scale workloads.

The Breakfast of Champions paper [11] uses an NIC

based accelerator which implements a zero-copy seri-

alization technique. However, it does not address de-

serialization and the garbage collector and allocator

integration it entails, but calls this out as future work.

Their accelerator also does not work with multiple lan-

guages. In addition, they generate custom types for

Protobuf messages that do not match those generated

by the standard C++ Protobuf compiler.

1.4 Contributions
For the native language, we chose to focus on Java

for a few reasons: (1) Java is commonly used by the

users of Protobuf, ie. there is more demand for a Java

deserialization accelerator (2) the complexity of the JVM

and HotSpot and lack of pointers make Java likely the

most challenging target language, and thus raises some

interesting research questions and (3) the compacting

garbage collector (as compared to Go, which uses free

lists) allows us to reserve a large chunk of memory and

have our objects be naturally adopted by the JVMwhen

they are collected and moved outside of our region.

To the best of our knowledge, no other work has

created a deserialization accelerator in a mainstream
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serialization format such as Protobuf (ie. not custom

format) which also allows for GC language support, and

is the only paper implementing a deserialization accel-

erator which explicitly addresses garbage collection

support. Additionally, this work will propose the first

hardware deserialization architecture which supports

multiple languages with a standardized wire format. In

addition to our high-performance accelerator, we raise

interesting questions about how to integrate high-level

languages with accelerators. Due to a lack of Java in-

terfaces for integration as outlined in this paper, this

is a task not commonly done; the RISC-V port for Java

was not even released until late 2022, so there is scarce

existing research on integrating RISC-V accelerators

into Java.

2 JVM Integration
In order to interface with the accelerator, we used the

Java Native Interface (JNI), which allows for “native”

C++ methods to be called from Java code, which can

then call into the JVM through a special JNIEnv* object
passed to the method.

2.1 Background: The Java Native Interface
All JNImethods are passed in as arguments the JNIEnv*,
which facilitates calling into the JVM, as well as the

jobject, a reference to the current object calling the

native method. For instance, the JNI Function header

for the the deserialize method is as follows:

JNIEXPORT jobject JNICALL
Protoacc_deserialize

(JNIEnv *, jobject , jclass , jbyteArray);

In addition to the JNIEnv* and jobject, our deserialize
function requires a reference to the class which is being

deserialized into, as well as a byte array which holds

the bytes of the serialized object.

Of important note is the fact that the jobject is not

a direct pointer to a Java object, but rather a pointer to

a “handle” which contains a pointer to the Java object.

In addition to requiring all objects to be wrapped in a

JNI handle, this also means that Java will update the

JNI handles of objects whenever they are moved by

garbage collection.

2.2 Generations and Barrier Interaction
Since Protobuf is often used for workloads like RPC (via

gRPC [4]) where deserialized objects are short-lived,

we allocate objects into the young generation of the

heap, where objects are cheap to create and expected

to mostly die young.

To keep the young generation fast, in G1GC, there

are no barriers present in reading or writing to young-

generation objects except during concurrent marking.

The concurrent marking write barrier serves to ensure

that duringmarking, amutator cannot remove an object

from the graph visible to the marking process [2]. How-

ever, a deserialization accelerator will never overwrite

pointers to existing objects since it will only create new

objects; thus, this write barrier can be safely ignored.

The second barrier present in G1GC is the remem-

bered set write barrier, triggered whenwriting a pointer

to the young generation into an old generation object

[2]. However, since the accelerator never writes to any

objects other than the ones it creates, it does not interact

with this barrier either.

2.3 Allocating Java Heap Memory
In order to implement a zero-copy accelerator, our ac-

celerator place objects directly on the Java heap, as the

GC will reject any object placed outside the Java heap.

However, if we simply pass a pointer on the Java heap

to the accelerator, the JVM will write over the objects

created as that heap space is unallocated according to

the JVM. Because there is not a straightforward method

of requesting a portion of heap space in Java, we accom-

plished this by requesting a Java byte array through

the JVM, so that the JVM would reserve the space in-

side the array. Then, we pass a pointer from within our

newly-allocated array to the accelerator, which then

allocates the object within the array. Once the acceler-

ator completes, a new JNI Handle for the deserialized

object is created in C++; a pointer to this handle is then

returned to the Java caller.

Figure 2 shows the Java heap after the accelerator

has deserialized an object. On the left, the accelerator

has newly deserialized the object into the Java byte

buffer. The JVM considers all JNI handles to be roots

when marking live objects during a garbage collection

cycle. Thus, when the GC is evacuating a region for

collection, it will find the accelerator-created objects

via the JNI handle pointing to the root message object,

and proceed to copy the entire object hierarchy out

into a survivor region. After this collection (shown on

the right of Figure 2), the newly-allocated objects are

exactly the same as any other object on the Java heap.

As an optimization, we opt to not retain a JNI han-

dle to the byte array, and instead make a handle to a

sentinel object at the beginning of the array. This way,
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Figure 2. Java Heap, Before and After GC

the Java heap remains parseable from the perspective

of the JVM (which assumes the heap is packed with

contiguous objects), but the byte array does not need

to get unnecessarily copied. We detect an evacuation of

the region the byte array was in by observing when the

sentinel object moves; when this happens, we must ob-

tain a new byte array to allocate into. This also ensures

that our allocation remains in an Eden heap region, and

does not get moved to old space.

2.4 Pausing the Garbage Collector
If garbage collection occurs while the accelerator is de-

serializing the object, this could result in the byte array

being moved in memory and the accelerator writing

into newly freed space. Therefore, while the acceler-

ator is in the process of deserializing, garbage collec-

tion must be paused. To accomplish this, we add a new

JNI method, ForceThreadSafepointUnsafe to pause

garbage collection.

In G1GC, all threads must be at a safepoint before

the evacuation phase of garbage collection can occur.

However, all native threads are considered to be at a

safepoint until they call into the JVM, as it is assumed

that native threads are not editing Java objects, and

therefore their execution will not interfere with the

JVM. We add an additional bit to each Java thread’s

state to indicate whether an accelerator is currently

deserializing in that thread. Additionally, we update

the safepoint checking mechanism to check this field,

and return false if this thread currently has a hard-

ware deserialization in progress. The implementation of

ForceThreadSafepointUnsafe therefore simply sets

this bit in the current thread.

class IntArrayList extends AbstractList {
boolean isMutable;
int size;
int[] array;

}
class CustomMessage {

int memoizedSize = -1;
int bitField0_;
UnknownFieldSet unknownFields;
byte memoizedIsInitialized = -1;
/* Other fields here */

}

Figure 3. Object structures of types involved in Proto-

buf messages

3 Software Stack
3.1 Background: Protobuf Generated Java

Object Format
The Java object graph for the Protobuf in-memory repre-

sentation contains many common Java classes (such as

java.util.List) and singleton objects. For instance,

integer repeated fields are deserialized into IntArrayList,
a customProtobuf implementation of the java.util.List
interface. The object layout of an IntArrayList is

shown in Figure 3. It is important to zero out any pointer

fields as the pointers will be traced by the GC mark-

ing phase, which will crash if these are left as garbage

values.

Additionally, each user-defined message contains

some internal fields which need initializing, such as

memoized values thatmust be set to -1, and an unknownFields
object which must point to a singleton empty list. Fur-

thermore, the object contains a bitfield (referred to

as the “hasbits” field) which holds information about

which of the fields in themessage are populated. The ob-

ject layout of a Protobuf Java message CustomMessage
is shown in Figure 3.

3.2 Accelerator Descriptor Table
In order for our accelerator to be able to deserialize a

message object, it needs some additional information

about the layout of the object in Java. To implement

this, we generate an Accelerator Descriptor Table for

each type of message sent, expanding upon the ADT

developed by Karandikar, et. al. [8]. Our deserialize

method constructs the ADT lazily the first time a de-

serialization of this message type is requested, and is

reused on subsequent deserializations.
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struct DescriptorTableFieldEntry {
uint64_t offset : 58;
uint64_t type : 5;
uint64_t is_repeated : 1;
DescriptorTable *nested_descriptor;

};

struct DescriptorTable {
uint32_t klass_word;
uint16_t unknown_fields_offset;
uint16_t memoized_size_offset;
uint32_t object_size;
uint32_t memoized_is_initialized_offset;
uint64_t hasbits_offset;
uint32_t min_field_num;

DescriptorTableFieldEntry entries [];
};

Figure 4. Accelerator Descriptor Table Fields

Figure 4 shows all the fields in the ADT (labeled

DescriptorTable), all of which are constant through-

out the execution of the Java program. These fields

include (1) the Java klass_word of the object (2) the

offset of multiple fields, as discussed in 3.1 (3) the size of

the current object, so the accelerator knows the amount

of space to allocate, and (4) the minimum field number

used (used to look up items in the descriptor table).

Additionally, for each field, there is an entry in the de-

scriptor table (labeled DescriptorTableFieldEntry
in Figure 4) which includes the offset of that field in

bytes within the Java object, (2) the Java type of this

field, (3) whether or not this field is repeated, and (4) if

this field is a submessage, a pointer to the ADT of that

message.

3.3 Custom Accelerator Instructions
Since the accelerator is located near the core [8], soft-

ware interfaces with the accelerator through custom

instructions, implemented using the RoCC interface of

the Rocket Chip framework [1].

The accelerator contains a set of new instructions for

managing information about the current JVM’s runtime

environment that is used during deserialization. Since

the classes and singleton instances are not specific to

any particular message, information about these objects

is stored on registers within the accelerator. This re-

duces the number of memory reads that need to be per-

formed during deserialization. This data (klass words

for the classes and object instance addresses for single-

tons) is loaded into the accelerator via a set of RoCC

instructions. In particular, since singletons may move

upon GC, the addresses of singleton objects is sent to

the accelerator before each deserialization operation af-

ter garbage collection has been paused; since these are

implemented as custom instructions, these operations

complete very quickly.

3.4 Protobuf Runtime Changes
To facilitate more efficient hardware deserialization,

somemodifications were made to the software Protobuf

runtime to trade off work done by hardware for work

done by software on infrequently-used code paths.

The first such change was using a sparse represen-

tation of the “hasbits” field-presence bitmap, as done

in Karandikar et. al.’s original version of the accelera-

tor [8]. To summarize the reasoning presented in the

original paper, using a sparse representation does not

incur very high space overheads on the in-memory rep-

resentations of objects, and removes the need for the

accelerator to block on memory reads for a descriptor

table lookup to perform initial processing of a deserial-

ized field.

The second change was for the representation of

empty object-type fields within the in-memory repre-

sentation of an object. Protobuf initializes List-type
fields to be singleton empty lists to avoid branches in

the code path for retrieving a field. However, imple-

menting this in hardware would require the hardware

to know about the current addresses of many such sin-

gleton objects; since such field accesses on an empty

list would already be an error, we instead opt to insert

additional code into the field access path to detect this

condition and respond accordingly. We expect that such

code will get optimized by the JIT compiler to have min-

imal performance impact, since the fast-path branch

should be easily predictable.

4 Hardware Design
The Protobuf accelerator RTL implemented byKarandikar

et. al. was fairly language-agnostic. We aimed to reuse

as much RTL as possible between the two accelerators

for a few reasons: (1) to cut down on area and power

consumption, (2) to show that the accelerator could be

easily expanded to multiple languages with a similar

object format beyond Java and C++, and (3) ease of en-

gineering. A block diagram for the accelerator unit can

be seen in 5, with the blue and purple modules being

the main modules which we updated to implement the

Java paths.
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Figure 5. Accelerator architecture overview

Figure 6. FieldHandler FSM (left), Submessage FSM

(right)

4.1 Background: C++ Accelerator
In Karandikar et. al’s Protobuf accelerator implementa-

tion, there are two allocation arenas passed to the ac-

celerator via RoCC instructions: a flexible arena, where

arrays are allocated, and a fixed arena, where all other

objects are allocated. This is due to the fact that the

size of array objects are not known up front, so the

hardware must therefore continue writing to this array

in the flexible arena while allocating objects in the fixed

arena until the array is closed out.

The core module of the accelerator, called the Field-

Handler, is implemented as a finite state machine which

reads in descriptor table entries and serialized data, and

writes the final serialized object (including hasbits).
The FSM can be seen on the left of Figure 6, with up-

dated and new states in yellow. The Java-specific states

in yellow are skipped during C++ execution. Many

states are implemented as a separate FSM within that

state. For example, strings, fields, and submessage ob-

jects all are implemented as their own finite state ma-

chine.

Field handling logic is rather language specific. Scalar

fields (i.e. those with Java primitive types) are handled

exactly the same in C++ and Java, however more com-

plex types such as strings and nested messages are rep-

resented differently between the two languages, as C++

tends to place more data inline within objects while

Java places every object behind a pointer.

The accelerator has a wide (128 bit) interface to the

L1/L2 caches. Whenever possible, multiple writes are

grouped together (ex. header fields) to minimize the

amount of writes done.

4.2 Strings, Byte Buffers, and Nested Objects
For representing string and bytes types, the Protobuf
Java library uses a ByteString object which contains a

byte array. These objects have fixed layouts and known-
upfront sizes, and thus are populated with memory

writes as fast as the data-cache can accept them—all

header values are retrieved from internal registers (3.3).

Nested objects are allocated and populated in a simi-

lar fashion to C++, except with more fields to populate.

Since the layout and klass word depends on the mes-

sage, nested messages require loading data from the

descriptor table and result in more, smaller scattered

writes.

The FSM for the for the implementation of the nested

message is depicted on the right of Figure 6. Note that

in Java, due to the garbage collector, all pointers in the

newly allocated object must be initialized to 0 whereas

for C++ they may be left as garbage. To implement

this, we naively zero out the entire object. One possible

improvement upon this could be to write the offsets of

the pointer fields in the descriptor table, and have the

accelerator read these and perform the writes. However,

despite doing less writes, this performs more reads and

may actually perform worse. We analyze the overhead

of zeroing-out objects in 5.2.4. Additionally, a set of

states to read in Java-specific header information from

the descriptor table and write the object header are

added.

4.3 Repeated Fields
Repeated fields are backed by an array containing the

elements of the field. Since the length of this array is not

known up front, it is allocated into the flexible region,

where new elements are written as they are encoun-

tered. Additionally, Java has strongly-typed arrays, and

does not support polymorphism over primitive types.

As a result, for a repeated field of each primitive type,

the Protobuf Java library utilizes a different type of

primitive array and wrapper ArrayList object. Thus,
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message Sample {
message Sub {

// fields ...
}
optional Sub

field1;
repeated Sub

field2;
}

Figure 7.Message with repeated nested submessage

the field type dictates which of the klasses (stored in

local registers) is used for the created objects.

Java does one or two extra object allocations for re-

peated fields, depending on the wire type, (the

java.util.List object, and another list object for string
repeateds), which is implemented in the

AllocJavaArrayList state.
Since most of the objects involved in creating the

list for a repeated field include length fields, the length

fields of the objects are all written (in separate requests)

once the repeated field is closed, either by the end of

message or by the start of a new repeated field; when

possible, additional fields are initialized at the same

time as this final write to save a write operation.

5 Evaluation
5.1 Correctness
Since themajority of the correctness tests are architecture-

agnostic and do not depend on exact accelerator details,

these were implemented through JNI code performing

memory accesses like an accelerator would. They were

run against the modified JVM on ARM64, and also veri-

fied on RISC-V under QEMU emulation—the results are

identical.

5.1.1 Verify JVM Object Adoption. To verify that

our approach of allocating new objects into an existing

byte array on the Java heap does not cause unforeseen

problems, we created a test that allocates large numbers

of objects and verifies that their internal structure is

still valid. On each iteration, the test fills an array with

newly allocated objects, and then reads the fields of

all of these objects after the array is populated. Thus,

we verify that the messages are not corrupted by the

GC and are still usable later during program execution.

Finally, the amount of data allocated by this test loop

far exceeds the maximum heap size that the JVM is

allowed to use, forcing all the created objects to be

garbage-collected. If the newly created objects were not

properly being collected, we would see that the JVM

would run out of memory. Since this test completes

successfully, we see that the objects are properly being

integrated with the JVM’s heap.

5.1.2 Verifying GC Pause. To confirm the effective-

ness of the safepointing implementation, we imple-

mented a simple test where one thread marks itself as

not at a safepoint and sleeps, while another thread trig-

gers garbage collection. By enabling garbage-collection

and safepoint logs in the JVM, we can observe that the

JVM does not reach a safepoint until after the sleeping

thread wakes up again and clears our safepoint over-

ride bit. Similarly, from the logs we observe that the

GC evacuation does not occur until after the safepoint

is reached, confirming the validity of our approach.

5.1.3 Object Value Correctness. Once we have vali-
dated our basic techniques and constructed accelerator

RTL to implement full object deserialization, we must

verify that our deserialized objects indeed contain the

data they should. To check this, we constructed a Java

test harness that deserialized the same messages using

both the normal software Protobuf library, and using

the accelerator. We then verify that they compare as

equal, both via the normal .equals() method and by

accessing and checking each field individually through

the generated accessor methods.

5.1.4 Benchmarking Stress Tests. Finally, our main

benchmarks (described in detail in the next section)

also serve as a stress-test for general robustness. The

benchmarking harness loads and executes code from

many other classes before and after benchmarking runs,

and from multiple threads. Thus, during certain phases

of the benchmark, the accelerator will operate alongside

other activity in the JVM; also, the benchmark runner

creates heap pressure as many objects are allocated as

fast as possible.

5.2 Benchmarking
5.2.1 Setup. To benchmark accelerator performance,

we leveraged HyperProtoBench, a set of benchmarks

containing messages that are representative of those

seen in workloads at Google [8]. We ported these bench-

marks to Java by exporting serialized data from the

original C++ benchmarks, and then loading and dese-

rializing them in Java. The benchmark runs measure

only the time spent in deserialization, however the JVM

also outputs additional debugging information about
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Figure 8. HyperProtoBench Bench4 Results

GC events such as pause times. Each message from the

benchmarks in HyperProtoBench are measured inde-

pendently because the variation in individual message

composition provides interesting performance insight.

The measurements are performed using OpenJDK’s

JMH harness [6], configured to run 5 iterations of mea-

surement lasting 5 seconds each. For each test, the ac-

celerator is compared against the pure Java Protobuf

library implementation, running on the same CPU and

system.

The tests are run on HotSpot JVM 21 Server for RISC-

V, using G1GC, and with pointer compression disabled

and a maximum heap of 512MB. The heap size was

chosen to be artificially small to bring out the impact of

the accelerator architecture on garbage collection per-

formance. To evaluate the hardware design, we employ

FireSim [9], a cycle-accurate simulator with accurately

modeledmemory timings, booting Linux to run the Java

workloads. The accelerator is attached to a BOOMv3

core, an OoO superscalar RISC-V core comparable to

ARM A72-like cores [12]; the core runs at 3.0GHz.

Due to the cycle-accurate simulated nature of the

system and low noise within Linux (since the image was

based on buildroot with no other significant userspace

processes running), benchmark timings are extremely

stable—all standard deviations were measured to be less

than 2% of the measured average value.

5.2.2 Throughput Results. Figure 8 and Figure 9

show the throughput performance for our accelerator

compared against deserialization in pure Java. We do
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toBench

not present all messages in HyperProtobench but only

Bench1 and Bench4, which are roughly representative

of the rest of the benchmark. In terms of peak perfor-

mance, we see that for 80% of messages the accelerator

is between 4-33× faster than pure Java. It is important to

note that these access times are assuming that the mem-

ory buffer is pre-allocated, i.e. it does not include the

time spent to allocate the buffer. Even for the smallest

object at 17B, our accelerator still provides a speedup

of 1.4×.
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5.2.3 Performance Limitations. In Figure 10, it is

clear that beyond a certain size threshold (∼250KB), our
accelerator’s performance drops off steeply, though it

still maintains higher performance than the Java im-

plementation. We have a few hypotheses for why this

might be the case. The first hypothesis is that the accel-

erator spends a large amount of time zeroing bytes for

these objects, and therefore its performance starts to

decrease as it is bottlenecked by memory.

Another theory is that at a certain size threshold, we

can no longer benefit from the direct interface with

the L1/L2 caches as the objects can no longer fit in the
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Figure 13. Bench0M25 time breakdown

cache. To verify this, we used FireSim’s profiling tools

to collect statistics on memory. Though our core has

an L1 and L2, FireSim adds and extra LLC outside our

RTL and samples metrics based on the FireSim LLC. We

show the FireSim LLC misses in Figure 11 and reads

sent to the FireSim LLC (and therefore misses in the

on-chip LLC) in Figure 12 over time, and plot this for

multiple message sizes. While there is not a significant

difference in the number of LLC misses between differ-

ent message sizes, we do see that the FireSim LLC is

getting much more traffic in the large message, imply-

ing that there are many more L1/L2 cache misses in this

message. Future work therefore includes re-running our

accelerator with differently sized caches and measuring

the impact on performance.

Additionally, in figure Figure 13 we measured the

overhead of (1) an empty JNI call, to measure the over-

head of transitioning between the JVM and C++, as

well as (2) our entire software stack minus the actual

deserialization. We see that the pure JNI overhead is

very low (∼300ns), as is the SW overhead (∼600ns);
most of the deserialization effort is spent within the

accelerator. This implies that for areas of optimization,

decreasing the amount of cycles spent writing memory

(zeroing out bytes, for example) are the most promising

candidates for further optimization.

5.2.4 ObjectAllocationMethods. In figure Figure 13
and figure Figure 14, we analyze the difference between

9
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Figure 14. Bench0M1 time breakdown

implementing no object zeroing in hardware and ze-

roing out all sub-messages allocated in hardware and

find that in one of the messages, very little overhead

(6%) is introduced, while for another, a very significant

amount of overhead is introduced (50%). Though our

data on this benchmark is limited, this would suggest

that the amount of overhead introduced by zeroing out

the objects is highly variable.

5.2.5 Pause Times. Pause times during benchmarks

were measured to be in the 10ms range, well above

the time necessary to perform a deserialization. Thus,

in terms of overall impact on pause time, the behavior

of pausing GC until a deserialization has completed

has minimal impact on overall responsiveness. How-

ever, pauseswere infrequent enough and deserialization

times short enough that we were unable to directly ob-

serve the impact of the GC requesting a stop-the-world

pause while a deserialization operation is running—this

demonstrates that even under heavy synthetic load, the

hardware accelerated deserialization is highly unlikely

to impact pause times at all.

5.2.6 Physical Synthesis Results. We ran the de-

sign through synthesis for a commercial 22nm process.

The deserializer achieves a frequency of 1.72 GHz with

a silicon area of 0.191mm
2
. Our gate count was 226,000

standard cells.

6 Conclusion and Future Work
In conclusion, we have demonstrated that hardware

acceleration of deserialization workloads can be ex-

tremely effective in a managed language runtime such

as Java. We have validated a method for interoperat-

ing with a current production-grade garbage collector

(G1GC) while demonstrating a performance improve-

ment across all message sizes.

One immediate area for further exploration is the

way in which newly created objects are initialized. Our

accelerator currently zeros the entire newly-created

object, however not all bits of the object are significant

(and can tolerate having garbage uninitialized memory).

There exists a tradeoff between the number of bytes

written (when blindly zeroing the entire object) and

the bytes read from descriptor tables (to know which

fields need to be zeroed — which also may stall the

accelerator’s pipeline).

Within the context of the JVM, further work remains

to be done in obtaining better support for all of the

JVM’s VM features. Newer garbage collectors such as

ZGC support fully-concurrent evacuation, implemeneted

through additional evacuation-time barriers. Although

our current design does not support this, the usage

of handles to expose the entire object tree atomically

to the GC can be used to interoperate with such GCs.

For simplicity of implementation, we opted to disable

compressed object pointers within the JVM, however

pointer compression can save large amounts of space

in objects. Beyond the JVM, it is also valuable to in-

vestigate how to design a generic pointer-compression

functional block that can be reprogrammed for differ-

ing pointer compression schemes used by different lan-

guage runtimes, such as the scheme used by V8, the

JavaScript engine powering Google Chrome.

Future work to be done includes extending the hard-

ware design further to support reconfiguring language-

specific parameters (such as the structure of the object

graph for a particular Protobuf field type) at runtime, so

that new languages can be supported without changes

to the hardware. In particular, a model must be devel-

oped for describing the object graph and fields to ini-

tialize in a way that can be processed without needing

excessive memory reads while deserializing.

An additional avenue of improvement is obtaining

tighter integration with the JVM; significant portions

of the overhead in our approach are due to the JNI inter-

face and the necessary book-keeping for transitioning

between “native” and “VM”. If the accelerator were to
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be directly integrated in the core JVM, much of this can

be skipped.
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