
th

Secure Distributed Storage Plane with DataCapsules
Samuel Berkun, Ted Lin, Saketh Malyala

th

Introduction
● DataCapsules are data containers with built-in integrity, 

provenance, and eventual consistency.

● Designed to be a standardized abstraction for distributed 
storage over untrusted infrastructure.

th

Basic Model

…

● A DataCapsule fundamentally consists of a DAG of immutable 
records linked by secure hashes.

● The root of the DAG is metadata for the DataCapsule as a 
whole, representing global identification, provenance, and 
access control.

● Designated writers digitally sign records such that readers can 
obtain proofs of integrity and provenance.

th

Our Goals

● Build a practical Rust-based implementation of DataCapsule 
servers.

● Explore how to provide efficient integrity proofs, including 
taking advantage of secure hash chaining and client-side 
caching. Explore the associated tradeoffs between read and 
write performance.

● Develop a DataCapsule-specific anti-entropy strategy to patch 
unintended branches and holes in the DAG that appear due to 
faults under replication.

● Experiment with variations of the DataCapsule model/API that 
may inherently perform better.

● Evaluate the overhead of guaranteeing the secure properties 
of DataCapsules compared to existing storage solutions 
without them.

th

Efficient Integrity Proofs

● Problem: Durably signing every single record can be 
inefficient/impractical for writer clients like sensors or other 
low-power devices.

● Observation 1: The secure hash chain from (unsigned) 
record-to-prove "A" to a proven descendant record "D" is a 
sufficient proof for "A".

th

Experimental Variation of Model/API 
● Many applications create groups of commits with a Merkle tree 

structure (i.e. KV store, datacapsule-based file system).

● Performance gains can be achieved by optimizing the system around 
Merkle trees.

● Under the experimental model, each record consists of one or more 
sub-records, which are automatically linked together by a Merkle 
tree. The outer records still form a DAG. Each sub-record can be read 
and proved individually, thus allowing them to fill the role of the 
“normal” model’s records.

● Extreme example: in an immutable KV store, the entire KV store may 
be one record, with individual key-value pairs being sub-records. 

● Equivalent to base design if every record has exactly one sub-record.

● For workloads with many sub-records per record, up to 9.5x faster 
writes and 19x faster integrity proofs than base design.

● Caching for integrity proofs (see Efficient Integrity Proofs section) 
works particularly well under this model; allows reverse sequential 
proving times to be up to 20x faster than they would be without a 
cache.

A

…

B

C D

● Observation 2: It doesn't matter how we got the proof for "D".
D itself may not even be signed!
○ Caching any previously-proven record (not just direct 

signatures) can speed up subsequent proofs.

● Observation 3: There may be multiple hash chains from the 
record-to-prove to proven descendants - how does a server 
choose one to return?
○ Note it may be impractical/unscalable for server to track what 

individual readers have cached.
○ Simple heuristic: closest signed descendant. Can be eagerly 

updated by each server on every signature received. Also 
globally monotonic, which lets replicas safely gossip updates.

Anti-Entropy / Convergence of Replicas

● DataCapsules are meant to be replicated and distributed, which 
introduces classic consistency problems.

● Unintended branches and holes in a DataCapsule's DAG can 
appear when a subset of the network / servers fail. 

Fig 4: Benchmarks. Each bar is the time it took to do 10k operations, in 
milliseconds. The x-axis is how many sub-records there are per record.

A
D

CBReplica #1

A
D

GF

E

Replica #2

● DataCapsules have CRDT properties, so convergence of replicas 
can be safely achieved by gossiping, e.g. as a background task.

● In existing work on anti-entropy for DataCapsules, pairs of replicas 
share their DAG sources+sinks to deterministically reach 
convergence. This can be expensive under frequent failures.

● Extension: Use Bloom filters (improving network bandwidth) to 
detect which records the other replica definitely doesn't have. To 
account for false positives, fall back on deterministic algorithm.

A D

CBTrue State

GF

E


