
DCS: Secure Distributed Storage with DataCapsules
Ted Lin
UC Berkeley

Samuel Berkun
UC Berkeley

Saketh Malyala
UC Berkeley

ABSTRACT
DataCapsules are a recently proposed data container model with
built-in security properties, intended to be a standardized abstrac-
tion unit for secure portable storage over untrusted, heterogeneous
distributed infrastructure. We present DCS, a DataCapsule server
design and implementation. DCS supports efficient integrity proof
generation through the use of cryptographic hash chaining, client-
server mirrored verification caching, and a simple globally mono-
tonic heuristic. DCS also supports replication for durability, avail-
ability, and scalability. We introduce a novel anti-entropy algorithm
for faster convergence toward consistency across DataCapsule repli-
cas. Finally, DCS supports two alternative client APIs, including
a commit-based API that can enable accessing and verifying "sub-
records" with improved performance.

DCS demonstrates performance that is not drastically different
from the production-quality key-value store RocksDB on target
workloads such as YCSB. DCS also scales to handle 1000s of con-
current clients.

1 INTRODUCTION
In the modern computing world, there are many options for dis-
tributed storage, ranging from services managed by large-scale
cloud businesses such as AmazonWeb Services andMicrosoft Azure
[4, 15] to decentralized "edge" or "fog" resources administered by
individuals, municipalities, and other organizations [6, 21]. These
storage options, particularly those on the edge, have varying levels
of security guarantees [21], often relying on "border security" mech-
anisms that fail to fully protect against the myriad potential attack
vectors [17]. Furthermore, these storage options are often incom-
patible with each other due to the heterogeneous nature of the edge
[21] and the "vendor lock-in" economic incentive of cloud providers
[22]. For example, when migrating between different cloud storage
services, one would need to manually configure each service sep-
arately to achieve the same desired security properties, which is
an inefficient and error-prone process. The above issues suggest
that, although there is universal demand for it, shareable/portable
secure distributed data storage is currently not straightforward for
the average user to correctly set up and maintain.

To address these problems, a data-centric approach to security
and distribution has recently been proposed [16, 17]. The key ab-
straction behind this approach is the DataCapsule, a general data
container with built-in security properties. DataCapsules are analo-
gous to the standardized physical freight containers that are trans-
ported worldwide by cargo ships, trains, and trucks. Each DataCap-
sule includes all metadata required for globally unique identification
of the DataCapsule, access control over its contents with confiden-
tiality guarantees, and verification of the integrity and provenance
of its contents. A DataCapsule’s metadata and contents are fully
integrated with each other by immutable cryptographic hash link-
ing and are stored as a single entity, which means the DataCapsule

effectively serves as a standalone portable unit of storage that can
maintain security guarantees over untrusted, heterogeneous dis-
tributed infrastructure.

At a high level, the DataCapsule model consists of an append-
only directed acyclic graph of signed immutable records linked
together by cryptographically-secure hashes. This is a thin and
flexible low-level data model that many higher-level systems and
applications can be structured around, including key-value stores
(e.g. CapsuleDB [18]) and "Function as a Service" platforms (e.g.
Paranoid Stateful Lambdas [7]).

While DataCapsules are awell-developed idea in theory and have
already been used as the basis for several experimental systems,
there does not yet exist a concrete realization of a production-level
DataCapsule storage plane that DataCapsule-based systems and
applications can be built on top of. Challenges for such a storage
plane include:

• supporting low-power devices like sensors and mobile gad-
gets as clients.

• minimizing the performance overhead of generating proofs
of integrity and provenance.

• supporting replication of DataCapsules across servers for
increased durability, availability, and scalability.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the DataCapsule model based on prior
work [16, 17]. We also make connections with other existing work.

2.1 Threat Model
At creation time, each DataCapsule defines its authorized writers,
i.e. entities that have a private key that is associated with one of the
public keys attached to the DataCapsule. Authorized writers are
assumed to be trusted. Note that if an authorized writer is found to
be malicious, then the provenance guarantees of the DataCapsule
facilitate verifiably linking their authored records back to them.

Readers who are given decryption keys for the content of a
DataCapsule are assumed to be trusted. If they are not, then the
basic confidentiality guarantees of the DataCapsule break down.
Note that the DataCapsule preserves integrity and provenance
guarantees even in the presence of malicious readers with the ability
to decrypt its content.

The infrastructure over which DataCapsules are served is gen-
erally assumed to be untrusted. For example, servers are free to
reorder incoming requests, serve corrupt data to clients or other
servers, and maliciously respond to control messages.

One important property that we do not address in this paper is
protection against denial of service. We do not guarantee forward
progress in the presence of network attacks and malicious servers.
In practice, the economic incentives of most service providers, the
use of a federated network such as the Global Data Plane [16, 17],
and freshness queries (which we support as described in Section 3)
help mitigate this problem. However, making guarantees against

1



Figure 1: Model of internals of a DataCapsule.

denial of service is out of scope for this paper, and we leave it to
future work.

2.2 DataCapsule Model
As mentioned in Section 1, each DataCapsule includes immutable
metadata that is sufficient to globally identify the DataCapsule, man-
age confidential access to its contents, and anchor proofs of integrity
and provenance. Metadata may include a human-readable descrip-
tion of the DataCapsule, the public keys that authorized writers use
to digitally sign contents, a description of how readers can securely
request and receive content decryption keys (a process that is ex-
ternal to the DataCapsule model), a physical timestamp of creation,
and more. Each DataCapsule is globally identified by the 256-bit
cryptographically-secure hash of its metadata - we refer to this as a
DataCapsule name. Note that the use of a cryptographically-secure
hash here helpfully creates a tamper-proof association between the
DataCapsule name and its authorized writers.

The base unit of content that clients can write to or read from
a DataCapsule is the record. Records are individually encrypted
for confidentiality and digitally signed by authorized writers for
integrity and provenance. A record itself has no inherent structure;
the higher-level systems and applications built on top of DataCap-
sules can decide what they want individual records to represent.
For example, an individual record can represent anything from a
partial database index segment to an entire large file (though we
note this is probably undesirable for performance reasons).

An important property of records is that they are immutable - i.e.
records that have already been made durable cannot be modified or
deleted. This helps streamline verification of integrity and prove-
nance. This also makes handling replication easier, as we describe
in Section 2.3.

As records are immutable, a DataCapsule can only be modi-
fied by appending records. Assuming a single designated writer
at any given time and absence of failures, this results in a linear
totally-ordered log history of records. However, the requirement
of designating a single writer at any given time (e.g. through a
separate coordination or serialization service) is overly restrictive
for many applications and may be impractical in edge / distributed
settings [8]. Furthermore, failures are hard to avoid, especially in
the context of untrusted distributed infrastructure. For example,
if a writer client crashes and loses track of its most recently writ-
ten record, the untrusted infrastructure may unintentionally or
maliciously return stale records. Subsequently appending to such
stale records would result in an inconsistent state under the strict
linear model. Therefore, DataCapsules explicitly allow branching
in record histories, creating a well-defined partial-ordering over

Figure 2: Two replicas of the same DataCapsule can become inconsistent.
When compared against Replica #1, Replica #2 has a hole (record "D"). When
compared against Replica #2, Replica #1 has a stale branch (record "E") and
a missing branch (records "F" and "G").

written records in the form of a directed acyclic graph (DAG) and al-
lowing for strong eventual consistency guarantees that we describe
in detail in Section 2.3.

Records are linked by cryptographically-secure hashes. This has
two useful consequences:

• Causal relationships in the partially-ordered history of records
are efficiently represented, as opposed to alternatives e.g.
vector clocks [13] which introduce problems related to size.

• Proving the integrity of a given record does not require a di-
rect digital signature for that specific record. A cryptographically-
secure hash chain to any previously verified record acts as a
sufficient proof of integrity [14]. This forms the basis of sev-
eral important performance optimizations that we explore
throughout the rest of this paper.

2.3 Replication and Anti-Entropy
The ability to replicate DataCapsules across servers opens doors
to increased durability, availability, and scalability. However, repli-
cation also introduces classic distributed consistency problems. In
particular, when a server crashes or loses connection to the rest
of the network, its physical DataCapsule copies may become out
of sync with other replicas. A desirable guarantee for such situ-
ations is strong eventual consistency, which requires that "correct
replicas that have (eventually) delivered the same updates have
equivalent state" [20]. Following terminology established in other
seminal work [8, 19], we refer to algorithms that progress towards
convergence across replicas as anti-entropy algorithms.

Conveniently (by design), the immutability of records and append-
only nature of DataCapsules implies that achieving strong eventual
consistency is logically trivial - the order in which updates arrive to
a recovering replica does not matter since set-unioning is a commu-
tative operation. Therefore, a trivially-correct naive anti-entropy
algorithm for any given DataCapsule would be to: (1) periodically
pair up replicas, (2) have each replica send their entire local copy
of the DataCapsule to the other server in its pair, and (3) have
each replica union its local copy with the remote copy received
by the other server. Note that since servers are assumed to be mu-
tually untrusted, honest servers should verify the authenticity of

2



data received from other servers to avoid wasting storage space on
corrupted data.

In this naive algorithm, the back-and-forth sending of entire Dat-
aCapsule copies is clearly inefficient, especially when considering
that (1) many of the potential use-cases for DataCapsules involve
large record histories, and (2) inconsistencies across replicas only
arise as a consequence of infrastructure failures, which means that
replicas are expected to have almost the same state most of the
time. Prior work on DataCapsules shows that the naive algorithm
can cause significant stress on the underlying network and slow
convergence times, resulting in undesirable "staleness" of the data
being returned from read requests [12].

Existing work on general anti-entropy (not specific to DataCap-
sules) offers alternative approaches. One approach, adapted from
Amazon Dynamo [8], is to treat all records in a DataCapsule as a flat
set and build a separate Merkle tree over this set. To achieve conver-
gence between two replicas, start by having the replicas exchange
and compare the roots of their respective Merkle trees. If their roots
are the same, then we know the two replicas have exactly the same
state, and we are done. Otherwise, we know that the two replicas
are inconsistent, and we move on to have the replicas exchange and
compare the tree nodes on the next level of their respective Merkle
trees. By recursively repeating this process, we drill down to find
which records are missing from each replica. When compared to the
naive algorithm, this approach has the advantage of sending less
data overall to achieve convergence. However, a key disadvantage
is that it can require many rounds of network communication in
the worst case, which is exacerbated by the fact that DataCapsules
are intended to operate over untrusted infrastructure.

Prior work on DataCapsules includes an anti-entropy algorithm
that aims to address the issues mentioned above [12]. Since our
own algorithm builds on this one, we include its summary and our
interpretation of it as part of Section 3.4.

3 DCS DESIGN
3.1 DataCapsule Representation
Here we describe how the DataCapsule model introduced in Section
2.2 is materialized in DCS. Note that from this point forward, any
mention of "hash" assumes a cryptographically secure hash function
e.g. SHA-256.

Each logical record consists of two physical components: a header
and a body of (encrypted) application content. We make this physi-
cal distinction for performance reasons, e.g. integrity verification
through hash chaining should not require downloading potentially-
large application contents.

We define a record name as the hash over a record header. A
record’s name can also be thought of a hash pointer to that record.
"Signing a record" just means creating a digital signature on the
record’s name.

A record’s header consists of the DataCapsule name, a hash
pointer to the associated body, and a variable number of backpoint-
ers i.e. hash pointers to a selection of earlier records. The hash
pointer to the associated body "completes the chain" of integrity
from signature to application content. The backpointers to earlier
records serve two purposes: (1) establishing causality and (2) en-
abling hash-chained proofs of integrity (for those earlier records).

Allowing the number of backpointers to be variable similarly serves
two purposes: (1) creating well-defined points at which branches in
the record history "merge" according to application-specific seman-
tics and (2) improving the efficiency of integrity proof generation
and verification by giving earlier records an opportunity to "reach"
a record with a signature in fewer hash link "hops".

3.2 API
The intended clients of DCS include a range of higher-level systems
and applications with different requirements. With this in mind, we
define a low-level API with the goal of being a flexible base, noting
that middleware optimized for application-specific ergonomics and
performance can be built on top of DCS in the future.

Writer API
• Create(Metadata): creates a new DataCapsule.
• Init(DataCapsuleName): initializes a session/batch of requests
that refer to the given DataCapsule name.

• Write(Record): persists the given record to the DataCapsule
referred to by the containing context/session/batch. The
"Record" input here refers to a logical record that is fully
materialized as described in Section 3.1, including both body
and header. Note that this is exactly the "append" operation
with respect to the record history DAG.

• Sign(RecordName,WriterSignature): persists the given signa-
ture for the given record name to the DataCapsule referred
to by the containing context/session/batch.

For awrite request of any type, each server is expected to digitally
sign (with the server’s own asymmetric key pair) an acknowledge-
ment in response. These acks are for durability purposes. As in other
quorum-based systems [8], clients can configure the threshold of
acks required for a write request to be considered complete. Higher
thresholds result in increased durability at the cost of increased
latency or time spent blocking. Lower thresholds represent opti-
mistic writing (with little to no blocking) at the risk of introducing
logical holes with higher probability.

As an aside, prior work proposes offloading the collection and
verification of acknowledgements to proxies in secure enclaves [12].
In this work, we treat those proxies as an implementation detail of
the client and do not discuss them further.

Reader API
• Init(DataCapsuleName): initializes a session/batch of requests
that refer to the given DataCapsule name.

• Read(RecordName) -> Record: reads the logical record with
the given name.

• Prove(RecordName) -> Proof: generates a proof of integrity
for the named record. A proof can come in multiple forms,
including (1) a direct signature for the named record, (2) a
hash chain of record headers beginning at a record with a
direct signature and ending at the named record, or (3) a hash
chain of record headers beginning at a previously verified
record and ending at the named record.

• QueryFresh() -> Set<RecordName>: returns the set of heads
in the record history DAG. The reader can collect the re-
sponses of a high quorum of servers in order to be as up-to-
date as possible.

3



Figure 3: The secure hash chain from (unsigned) record-to-prove "A" to a
proven descendant record "D" is a sufficient proof for the integrity of "A".

Figure 4: Since record "Z" has an additional backpointer directly to record
"W", there are two equally valid hash chain integrity proofs for "W" from
"Z". The obvious choice is to use the shorter hash chain.

3.3 Integrity Proofs
A straightforward approach to ensuring integrity is to sign and
verify every individual record. However, as our measurements in
Section 6 show, this approach comes with a nontrivial performance
overhead, especially in contexts where data is being streamed at
a fast rate. Though this performance overhead may be tolerable
for some applications, it is unacceptable for many of the poten-
tial types of writer clients that will interact with DataCapsules,
including low-power / Internet-of-Things devices such as sensors
and mobile gadgets. By building on the fundamental idea of secure
hash chaining, DCS supports the ability to efficiently generate and
verify proofs of integrity while only having periodic records be
writer-signed.

To prove the integrity of any given record, a secure hash chain of
record headers from the given record to any verifiable (e.g. through
a signature) record is sufficient. Recall from Section 3.1 that records
can have multiple backpointers. In particular, a record can have
additional backpointers whose sole purpose is to shorten the length
of hash chaining required for earlier records to reach some record
with a signature. This feature, along with the presence of branches
and holes due to replication (see 2.3), implies that there can be
multiple valid hash chains from the record-to-verify to some record
with a signature. Upon receiving a Prove request, the server must
choose one of these valid hash chains to return.

An obvious heuristic is to choose the shortest hash chain, which
can be accomplished by a breadth-first-search on the reversed
record history DAG starting from the record-to-prove. However, as
intuition suggests, we observe that executing a breadth-first-search
on every Prove request induces significant overhead, particularly
for applications that need to support many concurrent readers or
common OLAP workloads that make up a significant population of
potential DataCapsule users.

To address this, DCS explicitly tracks the shortest proof for every
record in a DataCapsule. This is materialized in implementation by
associating every written record with a witness, which is a variant
type that either (1) contains a direct signature for the record, (2)
contains a hash pointer (opposite to the direction of flow in the

record history DAG) to the next record in the shortest path to
some directly verifiable record, or (3) represents a record whose
integrity cannot yet be proven. Variant (2) also explicitly includes
the length of said shortest path, so that it can be updated efficiently.
Variants (1) and (3) imply shortest path lengths of zero and infinity,
respectively. This tracking is eagerly updated on every Sign request,
e.g. by dispatching to background worker threads after making the
signature itself durable. Updating consists of a pruned breadth-first-
search on the (unreversed) record history DAG starting from the
record-just-signed.

The heuristic of shortest path length (in an append-only DAG)
also has the nice property of having updates that are logically mono-
tonic. For any given record, the shortest path from that record to a
signed record can only ever get shorter as more records get signed.
By the CALM Theorem [3], this implies that the heuristic is guar-
anteed to be eventually consistent without needing coordination,
i.e. it is safe to propagate updates across servers using whichever
methods are most efficient, e.g. gossip protocols [9, 11].

We next observe that it does not matter how the previously
verified record was verified - it could have been signed itself, but
it also could have been recursively verified by another hash chain
proof. This motivates the idea of reader-side caching of records
that the reader has already verified. For space efficiency reasons,
note that the reader does not need to store entire records in this
verification cache - just the names (secure hashes) of the previously
verified records are sufficient.

In order to fully realize the performance improvement potential
offered by reader-side verification caching, the server should be
aware of what is already in the requesting reader’s cache. DCS
takes the approach of client-server mirrored caching, where the
server maintains complete mirrors of each active reader’s verifi-
cation cache in order to generate shorter proofs tailored to the
specific requesting reader. By "complete mirror", we mean that all
cache characteristics (including size, eviction policy, and other im-
plementation details) are exactly identical on both the client and
server, such that if the client and server apply the same sequence
of operations, their cache states will end up consistent. This can be
achieved by having the reader send a detailed specification of its
verification cache configuration when initializing a connection to a
server. The reader can continue using the same verification cache
across different sessions by also sending the current set of cached
record names to the server upon session initialization.

The basic concept of cache mirroring does not specify synchro-
nization between client and server (other than at initialization time).
In particular, without additional mechanisms in place, the server-
side cache can "run ahead" of the reader-side cache by adding a
record for which it has successfully generated a proof before the
reader is able to receive and verify the proof. Under the assumption
of no failures, this lack of synchronization is acceptable since mir-
rored execution guarantees that the server will never send a proof
rooted at a record that the client does not have in its verification
cache. However, in cases e.g. where a client temporarily failed to
receive proof responses from the server, the client indeed may not
have verified the records that the server uses as the root of subse-
quent proofs. Assuming the absence of such failures is impractical,
so we add a client acknowledgement step which lets the server
know when the client has successfully finished verifying a record

4



and added it to their cache, at which point the server can apply the
update to its own mirroring cache.

As shown in Section 6, client-server mirrored caching (when
functioning as intended) achieves the clearest potential perfor-
mance gain in DCS by far. However, we note a couple of important
disadvantages of this approach that were discovered over the course
of its ideation and development. First, cache mirroring only works
with an honest server implementation. Malicious servers can cause
denial of service by intentionally messing with their own execution
of the protocol (though note that denial of service is outside of our
threat model established in Section 2.1). Even with the assumption
of an honest server, fully guaranteeing the correctness of cache
mirroring in practice is tricky due to the common issues that arise
in distributed systems and the fact that cache operations are not
commutative (assuming bounded cache size). In future work, we
look to establish correctness in a more complete and formal way.
Note that the correctness of cache mirroring only affects the perfor-
mance of integrity verification - an incorrect mirrored cache never
violates the security guarantees provided by DataCapsules, since
ultimately the reader has control over which records it considers
as verified.

3.4 Anti-Entropy
Building on our study of existing anti-entropy work in Section 2.3,
we make the following observation: Given how straightforward it
is to merge missing records into local DataCapsule state, the prob-
lem of anti-entropy for DataCapsules reduces to how a recovering
replica "A" can create a compact digest of its local state to send to
its paired replica "B", such that "B" can quickly figure out which
records it has that "A" is missing. Indeed, the current state-of-the-art
anti-entropy algorithm for DataCapsules, which we now refer to
as Lu’s algorithm, fits into this perspective.

First, we establish terminology that helps us be more precise
in our specifications and subsequent implementations. Note that
the rest of our discussion of anti-entropy is in the context of a
single (arbitrary) DataCapsule. We say a record hash pointer (in
the record history DAG) is a physical pointer w.r.t. a given replica if
both the record it originated from and the record it points to are
present in the replica. A replica’s heads are defined as records that
are present in the replica and have no incoming physical pointers.
Similarly, a replica’s roots are defined as records that are present in
the replica and have no outgoing physical pointers. We emphasize
the "physical" distinction here since it is the source of most of
the critical bugs we discovered in prior implementations of Lu’s
algorithm.

We now describe Lu’s algorithm:

(1) Have replicas periodically pair up to perform pairwise syn-
chronization.

(2) Let "A" and "B" be the names of two arbitrary replicas that
have been paired up. Have "A" and "B" exchange their re-
spective heads and roots.

(3) Having received the heads and roots of "A", "B" can perform
traversals over its own record history DAG to determine
which records "A" is missing. These can be categorized as:

(a) Stale branches in "A", detectedwhen heads of "A" are present
in "B" but are not heads in "B". Note that patching these is

similar to the "fast-forward merge" in Git [10] and requires
"B" to traverse its DAG with reversed edges.

(b) Holes in "A", detected when roots of "A" are present in "B"
but are not roots in "B".

(c) Missing branches in "A", detected when heads/roots of "B"
are neither heads/roots of "A" nor records collected in the
previous two cases.

Upon creating our own implementation of Lu’s algorithm, we
observed that the time-to-converge for any given pair of replicas
was bottlenecked by the need to retrieve local records sequentially
as part of the DAG traversals. This is especially apparent when
servers are taken offline for significant periods of time, resulting in
long chains of holes and stale/missing branches. Since this situation
is expected to be a common mode of failure, we developed a novel
anti-entropy algorithm that takes this into account.

Our algorithm views all records in the DataCapsule as a flat set,
similar to the Dynamo-based approach described in Section 2.3.
This allows us to do all record accesses in a batched or parallel-
mapped fashion and sidesteps the performance bottleneck of long
graph traversals in Lu’s algorithm.

Our algorithm is based on the observation that a compact esti-
mated digest of the local state of "A" can be formed by: (1) having
"A" keep track of which records "A" has received since the last time
it fully synchronized with "B", and (2) having "A" make a Bloom
filter over those records. A Bloom filter is a data structure that
efficiently solves the approximate set membership problem with
the convenient guarantee of zero false negatives [5]. "B" can then
cross-check the records "B" has received since its last sync with "A"
against the Bloom filter from "A". Any record that "B" has that the
Bloom filter returns false for is a record that "A" is guaranteed to
be missing. Note that, with small probability, the Bloom filter may
return a false positive, leading "B" to incorrectly believe that "A" is
not missing the record. This implies that our algorithm does not
guarantee full pairwise synchronization, but instead takes a large
step towards convergence with high efficiency.

In practice, we run a multi-stage anti-entropy protocol that com-
bines the best properties of multiple ideas and algorithms discussed
thus far. The full protocol is summarized as follows:

• Have each replica keep track of the records it has received
since its last pairwise synchronization with every other
replica. This can be done efficiently e.g. by associating every
record present in this replica with the local physical times-
tamp of when this replica received that record, and doing
range queries keyed on the timestamp.

• Have replicas periodically pair up to perform pairwise syn-
chronization. Perform the following in order:

(1) Perform a "quick check" by having each replica hash over
their respective "new records since last sync" and exchange
this hash. If the hashes are the same, the replicas are al-
ready consistent (i.e. there have been no failures since the
last sync), and we are done.

(2) Perform our Bloom-based algorithm to take a large but
efficient step towards convergence.

(3) Perform Lu’s algorithm to patch remaining inconsistencies
and reach full pairwise synchronization.

5



4 ALTERNATIVE SUBRECORD-BASED
DESIGN

4.1 Model
In all previous work, records are the main unit of information for
both reading, writing, and signing. This makes sense when records
are written one-at-a-time, but as discussed in the background, can
be suboptimal.

We propose a novel design that includes a mechanism for sub-
records within one record. With this model, records become the
main unit of information for signing and linking, while sub-records
become the unit of information for reading, writing, and proving in-
tegrity. This is particularly efficient when large numbers of writes
can be performed at once. For example, in a key-value store, a
batched update may consist of updates to many keys, which should
be stored in individual sub-records (to allow them to be read indi-
vidually). Storing the entire batch as one record, with the updates as
sub-records, allows the entire batch to be signed with one signature.

Internally, each record is stored as a Merkle tree, with the leaves
being the subrecords, and the root hash becoming the name of
the record. The Merkle tree may have additional leaves to link the
record to other records; this allows the overall structure of the
DataCapsule to become a DAG.

Writer API

• Create(Metadata): creates a new DataCapsule.
• Init(DataCapsuleName): initializes a session/batch of requests
that refer to the given DataCapsule name.

• Write(Subrecord): persists the given subrecord to the Data-
Capsule referred to by the containing context/session/batch.
The "Subrecord" input here only includes encrypted data,
since subrecords do not have individual hash pointers.

• Commit(Backpointers): Creates a record out of the latest
written subrecords. The client signs the root of the merkle
tree for use in integrity proofs; the server sends back a signed
acknowledgement that the record has been persisted.

Note that signatures are only exchanged on each "commit" oper-
ation, so the total amount of overhead in the system depends on the
average number of subrecords per record. If each record only con-
tains one sub-record, then this system matches prior DataCapsule
designs where each record is signed.

Reader API

• Init(DataCapsuleName): initializes a session/batch of requests
that refer to the given DataCapsule name.

• Read(SubrecordName) -> Subrecord: reads the subrecord
with the given name.

• Prove(SubrecordName) -> Proof: generates a proof of in-
tegrity for the subrecord. A proof can come in multiple forms,
including (1) a hash chain of leading up to the merkle root,
or (2) a hash chain ending at a previously proved node in
the merkle tree.

• QueryFresh() -> Set<RecordName>: returns the set of heads
in the record history DAG. The reader can collect the re-
sponses of a high quorum of servers in order to be as up-to-
date as possible.

• Subrecords() -> Set<SubrecordName>: returns the set of sub-
records within a given record.

This is very similar to the API presented in section 3.2; the main
difference is that operations which previously applied to records
now apply to sub-records.

4.2 Integrity Proofs
Integrity proofs work very similarly to the mechanism described in
3.3. However, since each record stores a Merkle tree with a known
depth, heuristics are not needed to find the shortest path. Instead,
the server may simply walk up the edges of the Merkle tree until
either the root is reached, or a node in the mirrored cache is reached.
This is overall more efficient for the server to compute, especially
when there are few signatures.

Sequential proofs of subrecords within a record are very efficient,
since nodes that are next to each other in the Merkle tree have many
nodes in common, and therefore have a high probability of a node
being cached. This may be achieved in the other design as well, if
the client decides to put the records in a Merkle tree structure, but
this design has a lower overhead because the Merkle tree structure
is assumed.

5 IMPLEMENTATION
5.1 Overview
We implemented both of the designs described in section 3 (which
we will refer to as the "Flexible API" design) and section 4 (which we
will refer to as the "Subrecord API" design). Although the designs
have different APIs and algorithms, the engineering for both of
them is very similar and they share most of their components. The
implementations and tests total to around 4900 lines of Rust code,
excluding the TCP alternative implementations (discussed in 5.3).

5.2 Peer-to-peer network
DataCapsules were originally designed with the Global Data Plane,
a federated network, in mind. However, the Global Data Plane is
not ready for use at the time of writing. To simulate the Global Data
Plane, we implemented a simple peer-to-peer network in Rust, that
internally uses TCP sockets for communication. The performance
characteristics of our peer-to-peer network may not match that of
the real Global Data Plane, so we attempted to control for network
latencies as much as possible in our benchmarks.

5.3 TCP Alternative network
While integration theGlobal Data Plane is the "end goal" for DataCapsule-
related research, most elements of the design should function inde-
pendently of what is used to transport information between clients
and servers (for example, DataCapsule records could be sent as
handwritten letters delivered via the US Postal service). One partic-
ularly useful networking model is that of a TCP server. Deploying
TCP servers is particularly simple in modern society; in addition,
the TCPmodel provides some particularly useful features that make
implementation and scaling easier.

• Message ordering
• Ability to detect when clients connect and disconnect
• Separate socket per client

6



• Abundance of libraries for implementing applications on top
of TCP

So in addition to the peer-to-peer networked versions of our clients
and servers, we also implemented TCP server versions of both
designs. These implementations can be deployed without a peer-
to-peer network, making them more easily usable.

However, server-to-server gossiping is much harder in the TCP
model (each server would have to know all the other servers hosting
each datacapsule). We did not have time to implement a useful
server-to-server communication model on top of TCP, so the TCP
implementations are missing replication and anti-entropy features.

5.4 Wire Format
Each peer-to-peer message contains a sender, destination, some
content, and some optional metadata. In our implementation, the
content of each message represents one or more operations, as
described by the server API. The operations are serialized in the
Postcard Wire Format [1], chosen for its efficiency. However, the
wire format is not fundamental to our design, and may be switched
to an alternative (such as Protocal Buffers) in the future if needed.

5.5 Storage
We used sled, an experimental high-performance key-value store
[2] written in Rust. Sled has the ability to create separate names-
paces, called "trees". We store the data for each datacapsule in a
separate tree. Within each datacapsule, we also have separate trees
for different types of storage.

For the base design, it has separate trees for:
• Metadata: the datacapsule’s metadata is stored separately
from its records.

• Record Bodies: the hash of the record is used as the key, and
the encrypted content of the record is the corresponding
value.

• Record Headers: the hash of the record is used as the key,
and the corresponding value is the record header (consisting
of the hash of the body, and the hash of previous records
that this record points back to).

The experimental design is similar, but has a tree for Merkle tree
blocks instead of record headers.

5.6 Server Networking
The server makes heavy use of green threads, for scalability reasons.
It starts a green thread for every client it sees, keeping a small
amount of per-client state to allow it to efficiently answer to queries.

5.7 Client Library
We implemented a small client library for clients to use. It han-
dles cryptography and networking details, but is otherwise very
minimal. It exposes APIs for:

• Creating requests (one function for each request in the server
API)

• Sending batches of requests
• Waiting for batches of requests to be received

The client library verifies cryptographic hashes and signatures,
and encrypts/decrypts data on write/read operations.

6 EVALUATION
6.1 Hardware
All benchmarks were ran on a laptop, specifically a Lenovo Think-
book 14 Gen 4. The laptop has an 8-core CPU (AMD Ryzen 7 5825U)
and a 512 GB SSD with a PCIe gen 4 interface.

All tests were run locally, with both the client and the server
implementations running on the laptop. The client and the server
connected to each other via a simulated peer-to-peer network that
internally used TCP sockets. This simulated network has a much
lower latency than any real-world network. It is unknown whether
the simulated network has lower or higher computational overhead
than a real-world network.

6.2 Benchmarking Goals
The main concern of these benchmarks is the throughput of the
server. Latency is a concern, but processing time contributes very
little latency compared to the total latency of each operation. For
reference, real-world network latency is usually in the 10-100ms
range, but our server had an internal latency of a few microseconds
per operation (not counting networking cost). Therefore, it is more
fruitful to focus on the server’s total throughput as a metric of its
performance.

To minimize networking costs as much as possible, we usually
combine many operations into a single peer-to-peer message. This
may be realistic for some use cases (For example, if a client is trying
to read an entire datacapsule’s history all at once), but unrealistic
for others. Regardless, our main goal is to test the throughput of
our algorithms, not the throughput of our peer-to-peer network,
so we view this optimization as a necessity.

Finally, many of our benchmarks use 16 byte records, which is
unrealistically small. However, this aligns with the goal of testing
the overhead of our algorithms. Using 16 byte records make any
differences in overhead more apparent, since per-record overhead
takes up the majority of the computation time. In contrast, if we
ran our benchmarks with kilobyte-sized or megabyte-sized records,
the majority of the time taken would be in less interesting parts of
the system, such as networking.

6.3 Sequential Benchmarks
To evaluate the maximum throughput of our integrity proofs, we
create sequential benchmarks that wrote 100,000 records and asked
for proofs sequentially. The cache performs very well, butting down
proof times by an order of magnitude. This is the best case for the
cache, but the cache still performs well in the later YCSB bench-
marks.

6.4 YCSB

Methodology. In order to test real-world performance, we use
realistic workloads generated by the Yahoo Cloud Serving Bench-
mark. YCSB is a benchmark suite that has been used to evaluate
several other Datacapsule-related projects.

We use traces generated from YCSB, which are a mixture of reads
and writes. We then simulated a simple key-value store on top of
our DataCapsule client, that works as following:

7



M
ill

is
ec

on
ds

 p
er

 1
0k

 o
pe

ra
tio

ns

0

2000

4000

6000

1 10 100 1000 10000 100000

with cache no cache

Figure 5: Times with and without proof caching. Each bar is the time it
took to do 10k operations, in milliseconds. The x-axis is how many records
there are per signature.

Commit size

P
ro

of
 ti

m
es

 (m
ill

is
ec

on
ds

 p
er

 1
0k

 o
pe

ra
tio

ns
)

0

2000

4000

6000

1 10 100 1000 10000 100000

Figure 6: Proof times vs commit size. Each bar is the time it took to do
10k operations, in milliseconds. The x-axis is how many records there are
per signature.

• The key-value store stores a hashmap and a hashset in-
memory. The hashmap is maps keys to record hashes. The
hashset store the hashes of any records that have not been
signed.

• For each write, it performs a datacapsule write (with a ran-
dom 16-byte value), then stores the hash of the new record
in the hashmap. It also stores the hash in the hashset.

• For each read, it looks up which record hash it corresponds
to. If the hash is in the hashset, it is unsigned. In that case, the
client signs the latest hash (which allows the server to prove
all the currently unsigned hashes), then clears the hashset.
The client then reads the record hash, and requests a proof
for the hash.

This algorithm allows the key-value store to avoid making signa-
tures as long as possible, allowing it to have much higher through-
put than if it needed to sign every write. Signatures are still needed,
however, to allow the DataCapsule server to prove the integrity of
each record.

YCSB Workloads. We use four different workloads generated by
YCSB: Workload A is a random write-only benchmark. Workloads

Workload

O
pe

ra
tio

ns
 / 

se
co

nd

0

100000

200000

300000

400000

500000

A B C D

Flexible API, with proofs/signatures Subrecord API, with proofs/signatures
Flexible API, no proofs/signatures Subrecord API, no proofs/signatures

Figure 7: YCSB Benchmarks on both implementations.

B is a random read-heavy benchmarks, with approximately 95%
reads and 5% writes. Workload C is a random read-only benchmark.
Workload D is a "read latest" benchmark, where reads are more
likely to correspond to the latest writes.

Main Results. Our implementations perform well in the YCSB
Benchmarks, with almost as high throughput as in the sequential
benchmarks. The blue and red bars in figure 7 represent overall the
performance of the Flexible API implementation and the Subrecord
API implementation respectively. They perform very similarly, with
the Subrecord API performing better in workload C due to being
more efficient for integrity proofs.

The Effect of Cryptography. Much of the overhead of our sys-
tem comes from signatures and integrity proofs. To quantify how
much, we turned off the signatures and integrity proofs, which are
the yellow and green bars in figure 7 respectively. This increases
the throughput by more than double, indicating that cryptography
(and related algorithms) is a majority of our total overhead.

Comparison against RocksDB To see if our implementation
stands up to the state-of-the-art, we also compared its performance
to RocksDb. For a fair comparison to RocksDb, an embedded data-
base, we ran our system locally with one client. We batched both
systems’ operations. The comparison against our implementations
against the orange bars representing RocksDb is shown in Figure 8.
RocksDb’s batching generally performed poorly on mixed work-
loads. Our implementation performed better on workloads B and D,
with only 5% writing, than workload A with 50% writing. RocksDb
also performed better on these workloads by a much greater fac-
tor, suggesting that RocksDb cannot batch as effectively when the
workload contains significant writing and reading.

RocksDb is heavily read-optimized, as evidenced by its stellar
performance in workload C.

6.5 Concurrent clients
To test the scalability of our DataCapsule servers, we tested the
total throughput of both implementations with different numbers
of clients connected. Each test consists of 1 million writes, 1 million
reads, and 1 million integrity proofs spread out among N different
clients. Figure 9 shows the results for the flexible API: it has a higher
throughput when multiple clients are connected, although its total

8



Workload

O
pe

ra
tio

ns
 / 

se
co

nd

0

250000

500000

750000

1000000

A B C D

Flexible API, with proofs/signatures Subrecord API, with proofs/signatures
Flexible API, no proofs/signatures Subrecord API, no proofs/signatures Rocksdb

Figure 8: YCSB Benchmark comparison against RocksDb.

Number of clients

Ti
m

e 
(s

)

0

5

10

15

20

1 10 100 1000

Write time Read time Prove time

Figure 9: Concurrent benchmarks for Flexible API

Commit size

R
ea

d 
tim

es
 (m

ill
is

ec
on

ds
 p

er
 1

0k
 o

pe
ra

tio
ns

)

0

50

100

150

200

250

1 10 100 1000 10000 100000

Figure 10: Read performance vs commit size

throughput is limited by the underlying hardware. Importantly, its
throughput does not degrade when large numbers of clients are
connected. Figure 14 shows the results for the subrecord API, which
are very similar.

7 CONCLUSION AND FUTUREWORK
DCS represents a step towards a production-level DataCapsule
storage plane that DataCapsule-based systems and applications
can be built on top of. We show that the security guarantees of

Commit size

W
rit

e 
tim

es
 (m

ill
is

ec
on

ds
 p

er
 1

0k
 o

pe
ra

tio
ns

)

0

2500

5000

7500

10000

12500

1 10 100 1000 10000 100000

Figure 11: Write performance vs commit size

Commit size

P
ro

of
 ti

m
es

 (m
ill

is
ec

on
ds

 p
er

 1
0k

 o
pe

ra
tio

ns
)

0

2000

4000

6000

1 10 100 1000 10000 100000

Figure 12: Sequential proof performance vs commit size

M
ill

is
ec

on
ds

 p
er

 1
0k

 o
pe

ra
tio

ns

0

2000

4000

6000

1 10 100 1000 10000 100000

with cache no cache

Figure 13: Sequential proof time with and without a cache.

DataCapsules can be provided with acceptable overhead for high-
stress workloads.

While our implementations are functional, they are far from
ready for real-world heavy usage. In particular, implementing sup-
port for replication across servers and anti-entropy among replicas
is a work-in-progress. As mentioned in Section 3.3, we are also
looking to improve our cache mirroring technique in terms of both
performance characterization and correctness guarantees.

9



Number of clients

Ti
m

e 
(s

)

0

5

10

15

20

1 10 100 1000

Write time Read time Prove time

Figure 14: Concurrent benchmarks for Subrecord API

Furthermore, we note that our evaluations lack workloads from
a diverse set of real-world applications and systems. This is in part
due to the current ecosystem around DataCapsules being relatively
small and scattered. We hope that this ecosystem and DCS can be
co-designed and co-developed into the future.

REFERENCES
[1] The Postcard Wire Specification. (????). https://postcard.jamesmunns.com/
[2] Sled: the champagne of beta embedded databases. (????). https://github.com/

spacejam/sled
[3] Peter Alvaro, Neil Conway, Joe Hellerstein, and William Marczak. 2011. Con-

sistency Analysis in Bloom: a CALM and Collected Approach. CIDR 2011 - 5th
Biennial Conference on Innovative Data Systems Research, Conference Proceedings,
249–260.

[4] Amazon. 2023. Amazon S3: Object storage built to retrieve any amount of data
from anywhere. (2023). https://aws.amazon.com/s3/

[5] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (jul 1970), 422–426. https://doi.org/10.1145/362686.
362692

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12). Association
for Computing Machinery, New York, NY, USA, 13–16. https://doi.org/10.1145/
2342509.2342513

[7] Kaiyuan Chen, Alexander Thomas, Hanming Lu, William Mullen, Jeffery Ich-
nowski, Rahul Arya, Nivedha Krishnakumar, Ryan Teoh, Willis Wang, Anthony
Joseph, and John Kubiatowicz. 2022. SCL: A Secure Concurrency Layer For
Paranoid Stateful Lambdas. (2022). arXiv:cs.CR/2210.11703

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles (SOSP ’07). Association for Computing Machinery, New York, NY, USA,
205–220. https://doi.org/10.1145/1294261.1294281

[9] Alan J. Demers, Daniel H. Greene, Carl H. Hauser, Wes Irish, John Larson, Scott
Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. 1988.
Epidemic algorithms for replicated database maintenance. ACM SIGOPS Oper.
Syst. Rev. 22 (1988), 8–32. https://api.semanticscholar.org/CorpusID:1889203

[10] Git. 2023. Fast-Forward Merge in Git. (2023). https://git-scm.com/docs/
git-merge#_fast_forward_merge

[11] David Kempe, Alin Dobra, and Johannes Gehrke. 2003. Gossip-based computa-
tion of aggregate information. 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings. (2003), 482–491. https://api.semanticscholar.
org/CorpusID:5689705

[12] Hanming Lu. 2022. DCR: DataCapsule Replication System. Master’s the-
sis. University of California, Berkeley. Advisor(s) Kubiatowicz, John. https:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-267.pdf

[13] Friedemann Mattern. 1988. Virtual time and global states of distributed systems.
In Proceedings of the InternationalWorkshop on Parallel and Distributed Algorithms,
M. Cosnard (Ed.). Elsevier, Chateau de Bonas, France.

[14] Ralph Merkle. 1989. A Certified Digital Signature, Vol. 435. 218–238. https:
//doi.org/10.1007/0-387-34805-0_21

[15] Microsoft. 2023. Azure Blob Storage: Massively scalable and secure object storage
for cloud-native workloads, archives, data lakes, high-performance computing,
and machine learning. (2023). https://azure.microsoft.com/en-us/products/
storage/blobs

[16] Nitesh Mor. 2020. Global Data Plane: A Widely Distributed Storage and Commu-
nication Infrastructure. Ph.D. Dissertation. University of California, Berkeley.
Advisor(s) Kubiatowicz, John. https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2020/EECS-2020-10.pdf

[17] Nitesh Mor, Richard Pratt, Eric Allman, Kenneth Lutz, and John Kubiatowicz.
2019. Global Data Plane: A Federated Vision for Secure Data in Edge Computing.
In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). 1652–1663. https://doi.org/10.1109/ICDCS.2019.00164

[18] William Mullen. 2022. CapsuleDB: A Secure Key-Value Store for the Global Data
Plane. (2022), 33 p. http://digicoll.lib.berkeley.edu/record/269485

[19] Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and Alan J.
Demers. 1997. Flexible update propagation for weakly consistent replication.
Proceedings of the sixteenth ACM symposium on Operating systems principles
(1997). https://api.semanticscholar.org/CorpusID:6455497

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of Dis-
tributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 386–400.

[21] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646. https://doi.org/10.1109/JIOT.2016.2579198

[22] Ion Stoica and Scott Shenker. 2021. From Cloud Computing to Sky Computing.
In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’21).
Association for Computing Machinery, New York, NY, USA, 26–32. https://doi.
org/10.1145/3458336.3465301

10

https://postcard.jamesmunns.com/
https://github.com/spacejam/sled
https://github.com/spacejam/sled
https://aws.amazon.com/s3/
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
http://arxiv.org/abs/cs.CR/2210.11703
https://doi.org/10.1145/1294261.1294281
https://api.semanticscholar.org/CorpusID:1889203
https://git-scm.com/docs/git-merge#_fast_forward_merge
https://git-scm.com/docs/git-merge#_fast_forward_merge
https://api.semanticscholar.org/CorpusID:5689705
https://api.semanticscholar.org/CorpusID:5689705
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-267.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-267.pdf
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-10.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-10.pdf
https://doi.org/10.1109/ICDCS.2019.00164
http://digicoll.lib.berkeley.edu/record/269485
https://api.semanticscholar.org/CorpusID:6455497
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Threat Model
	2.2 DataCapsule Model
	2.3 Replication and Anti-Entropy

	3 DCS Design
	3.1 DataCapsule Representation
	3.2 API
	3.3 Integrity Proofs
	3.4 Anti-Entropy

	4 Alternative Subrecord-Based Design
	4.1 Model
	4.2 Integrity Proofs

	5 Implementation
	5.1 Overview
	5.2 Peer-to-peer network
	5.3 TCP Alternative network
	5.4 Wire Format
	5.5 Storage
	5.6 Server Networking
	5.7 Client Library

	6 Evaluation
	6.1 Hardware
	6.2 Benchmarking Goals
	6.3 Sequential Benchmarks
	6.4 YCSB
	6.5 Concurrent clients

	7 Conclusion and Future Work
	References

