
Dynamic LoRA Serving System and Applications to
Offline Context Learning

• Personalized LLM model serving is of essential need.
• A base model per user is expensive and can waste 

significant computation resources.
• Goal: achieve scalable and accurate personalized 

LLM serving leveraging the Low-Rank Adaptations 
(LoRA) technique.

Scalable Serving System Evaluation 
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1. Efficient Memory Management: Unified Paging for 
Adapters and KV cache

Offline Context Learning

2. Heterogeneous Batching:

3. Performance:
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Optimizations

Long context…. Chapter 1…. Chapter 2…
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A: Example Answer

Q: Example question

LLM You

Q: what virtual reality game 
introduces Earth's scientists to the 
Trisolaran civilization's world?

A: Oh no… Too much 
text… Give me some 
time…

Handling long context is challenging for LLM, our goal is to 
learn thest context information offline using LoRA finetuning. 

Training Methods

Learn by reconstruction:  LLM should reconstruct the 
original context based on the context embeddings.

Learn by self-instruction:  We ask the LLM to generate a few 
questions itself and use it for instruction finetuning. 

● LLM: LLaMA2-7B-4096
● Context Encoder: Pretrained In-Context Autoencoder (an 

encoder finetuned for context compression) from Ge et al.
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