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ABSTRACT
The “pretrain-then-finetune” paradigm is commonly adopted in the deployment of large language models. Low-
Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model
to a multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. In
this project, we try to address two problems: (1) how to derive LoRA adapters from long-context documents
so that we can have tailored finetuned adapters per user, and (2) how to design a system for scalable serving
of many LoRA adapters concurrently. To address (1), we propose offline context learning, a novel strategy to
memorize long documents through parameter-efficient finetuning. Our evaluation on the QuALITY QA dataset
shows that our proposed method outperforms in-context learning while processing over 32x fewer tokens during
inference. To resolve (2), we propose S-LoRA, a serving system scalable to thousands of LoRA adaptors on a
single GPU. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support of
LoRA serving), our serving system S-LoRA can improve the throughput by up to 4 times and increase the number
of served adapters by several orders of magnitude.

1 INTRODUCTION

Large language models (LLMs) have exhibited exceptional
abilities to perform a variety of language-processing tasks.
Recent studies have revealed that the way the prompt is
crafted can markedly influence the performance of LLMs
on downstream tasks. Stemming from this insight, the com-
munity has embraced the paradigm of in-context learning
(Dong et al., 2023), which requires carefully designing
prompts to improve the performance of LLM on down-
stream tasks. As a consequence of this new paradigm,
prompts become increasingly longer. Many common down-
stream tasks, such as document summarization, document
question answering, code completion, and chatbots requires
LLMs to process over thousands of tokens.

However, scaling LLMs to long context still presents sev-
eral key challenges. First, due to the self-attention mecha-
nism, transformer-based LLMs incur a quadratic computa-
tional and memory overhead as sequence length increases.
Many long-context tasks require repeatedly processing over
the same prompt, which incurs extra latency overhead and
substantial costs, as most commercial LLMs operate on a
pricing model that is directly tied to the number of tokens
processed. Second, even though recent LLMs (e.g. GPT4-
turbo, Claude) could support input sequence length to as
long as 100k tokens, studies have shown that the perfor-

1The serving system is developed by the S-LoRA team:
https://arxiv.org/abs/2311.03285 .

mance of LLMs degrades as the input length increases. For
example, (Liu et al., 2023a) reveals that LLMs exhibit sig-
nificantly better performance when the relevant information
is positioned either at the beginning or end of the context
window.

To address the long context challenge, we propose long-
context learning – a novel approach based on LoRA fine-
tuning to learn these contexts offline. To illustrate our idea,
consider this analogy: envision an LLM as a student prepar-
ing for an exam, where we are the examiners providing
study materials and questions. Traditional in-context learn-
ing resembles an open-book exam, where the LLM can refer
to materials while answering questions. In contrast, we pro-
pose a method akin to a closed-book exam, where the LLM
studies the material beforehand and then answers questions
without accessing the material during the exam. In ma-
chine learning terms, this involves using parameter-efficient
finetuning methods to enable the LLM to learn long con-
texts offline. Then, during inference, we use the finetuned
model weights without needing to prepend the relevant long
context to the prompt. Since each sets of documents is fine-
tuned with a different LoRA adaptor, the main challenge
that arises from this setting is how we could efficiently swap
and serve multiple LoRA adaptors at the same time.

When scaling the fine-tuning of a base model for tasks
such as offline context learning, the associated training
and serving costs can become substantial. To address this,
several parameter-efficient fine-tuning methods have been
developed. A prime exemplar is Low-Rank Adaptation
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(LoRA) (Hu et al., 2021), which enables efficient fine-tuning
by updating only low-rank additive matrices. These matri-
ces consist of a small number of parameters, referred to as
adapter weights. LoRA has shown that by fine-tuning just
these adapter weights, it is possible to achieve performance
on par with full-weight fine-tuning. However, despite con-
siderable research into fine-tuning, the question of how to
serve these fine-tuned variants at scale remains unexplored.

The original LoRA paper proposes swapping adapters by
adding and subtracting LoRA weights from the base model
for multi-model serving. While this approach enables low-
latency inference for a single adapter and serial execu-
tion across adapters, it significantly reduces overall serv-
ing throughput and increases total latency when serving
multiple adapters concurrently.

We observe that the shared base model, which underpins
numerous LoRA adapters, presents a substantial opportunity
for batched inference. To achieve high-throughput multi-
adapter serving, it is advantageous to separate the batchable
base model computation from individual LoRA computa-
tions.

In summary, to provide highly usable and efficient person-
alized LLM service, we will need to address the following
challenges: First, serving many LoRA adapters simultane-
ously requires efficient memory management and smarter
batched operations. Since GPU memory is limited, we must
store adapter weights outside the GPU and dynamically
fetch them when needed. However, dynamically loading
and unloading adapters of varying sizes, coupled with the
dynamic allocation and deallocation of KV cache tensors
for requests with different sequence lengths, can lead to
significant memory fragmentation and I/O overhead. More-
over, the batched computation of many adapters with dis-
tinct ranks in non-contiguous memory is challenging and
demands the development of new computation kernels.

The primary contributions of this project are summarized as
follows:

• a novel strategy called offline context learning to mem-
orize long documents prior to inference using LoRA
finetuning.

• a scalable system for serving a large number of LoRA
adapters concurrently with techniques such as unified
paging and heterogeneous batching.

We evaluate our approach on the QuALITY long-context
QA dataset, and our preliminary results show that our of-
fline learning method outperforms in-context learning while
processing over 32x fewer tokens during inference.

We also evaluate the serving system by serving Llama-
7B/13B. Results show that we can serve thousands of LoRA
adapters on a single GPU with a small overhead. When com-

pared to the state-of-the-art parameter-efficient fine-tuning
library, Huggingface PEFT, we can enhance throughput by
up to 30×. In comparison to the high-throughput serving
system vLLM using a naive support of LoRA serving, we
can improve throughput by up to 4× and increase the num-
ber of served adapters by several orders of magnitude.

2 BACKGROUND

2.1 LoRA Finetuning

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a
parameter-efficient fine-tuning method designed to adapt
pre-trained large language models to new tasks. The mo-
tivation behind LoRA stems from the low intrinsic dimen-
sionality of model updates during adaptation. In the training
phase, LoRA freezes the weights of a pre-trained base model
and adds trainable low-rank matrices to each layer. This
approach significantly reduces the number of trainable pa-
rameters and memory consumption. When compared to full
parameter fine-tuning, LoRA can often reduce the number of
trainable parameters by orders of magnitude (e.g., 10000×)
while retaining comparable accuracy. For the inference
phase, the original paper suggests merging the low-rank
matrices with the weights of the base model. As a result,
there is no added overhead during inference, setting it apart
from previous adapters like (Houlsby et al., 2019) or prompt
tuning methods such as (Lester et al., 2021).

Formally, for a pre-trained weight matrix W ∈ Rh×d, LoRA
introduces the update as W ′ = W +AB, where A ∈ Rh×r,
B ∈ Rr×d, and the rank r ≪ min(h, d). If the forward pass
of a base model is defined by h = xW , then after applying
LoRA, the forward pass becomes

h = xW ′ = x(W +AB) (1)
= xW + xAB. (2)

Typically, this adjustment is only applied to the query, key,
value, and output projection matrices in the self-attention
module, excluding the feed-forward module.

Because LoRA greatly reduces the training and weight stor-
age costs, it has been widely adopted by the community,
and people have created hundreds of thousands of LoRA
adapters for pre-trained large language models and diffusion
models (Mangrulkar et al., 2022).

2.2 Serving Large Language Models

Most large language models (LLMs) are based on the trans-
former architecture (Vaswani et al., 2017). The number of
parameters in an LLM ranges from several billion to several
trillion (Brown et al., 2020; Chowdhery et al., 2022; Fedus
et al., 2022), corresponding to disk sizes spanning several gi-
gabytes to even terabytes. This scale results in LLM serving
having significant computational and memory demands.
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Additionally, the inference process for LLMs requires iter-
ative autoregressive decoding. Initially, the model carries
out a forward pass to encode the prompt. Following this, it
decodes the output one token at a time. The sequential pro-
cess makes decoding slow. Since each token attends to the
hidden states of all its preceding tokens, it becomes essential
to store the hidden states of all previous tokens. This storage
is referred to as the “KV cache”. Such a mechanism adds to
the memory overhead and causes the decoding process to
be more memory-intensive than computation-intensive.

The challenges become even more pronounced in online
settings, where requests of varying sequence lengths ar-
rive dynamically. To accommodate such dynamic incoming
requests, Orca (Yu et al., 2022) introduces a method of fine-
grained, iteration-level scheduling. Instead of scheduling at
the request level, Orca batches at the token level. This ap-
proach allows for the continuous addition of new requests to
the currently running batch, resulting in substantially higher
throughput. vLLM (Kwon et al., 2023) further optimizes
Orca’s memory efficiency using PagedAttention. PagedAt-
tention adopts concepts from virtual memory and paging in
operating systems and manages the storage and access of
dynamic KV cache tensors in a paged fashion. This method
efficiently reduces fragmentation, facilitating larger batch
sizes and higher throughput.

When serving very large models that exceed the memory
capacity of a single GPU, or when there are stringent la-
tency requirements, it is necessary to parallelize the model
across multiple GPUs. Several model parallelism methods
have been proposed, such as tensor parallelism (Shoeybi
et al., 2019), sequence parallelism (Korthikanti et al., 2023),
pipeline parallelism (Huang et al., 2019), and their combi-
nations (Narayanan et al., 2021; Zheng et al., 2022).

3 OFFLINE CONTEXT LEARNING

In this section, we explain our method on learning com-
pressed representation of long contexts. Our goal is to com-
press a context of long sequence length (e.g. 4096 tokens)
into a much more condensed set of memory tokens of finite
length (e.g. 128 tokens). Intuitively, the memory tokens
should serve as a concise summary and capture the essence
of the longer context. We can then use these memory to-
kens instead of the original long context for downstream
instruction-following tasks such as question answering via
supervised fine-tuning (SFT). We now provide details on
our proposed model and training strategies.

3.1 Model Architecture

We illustrate our proposed model architecture in Figure 1.
Concretely, our model has two main components: a context
encoder that compresses the original long context (e.g. a
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Figure 1. Our proposed model architecture. The context encoder
and LLM decoder are both adapted from pretrained models with
trainable parameters denoted as θf and θg respectively. Depending
on the design choices of the context encoder (detailed in Section
3.1), θf can be modeled with a LoRA adapter or a linear layer. The
context encoder maps the original (long) context c into a compact
set of memory tokens m. Given the memory tokens, the decoder
can autoregressively reconstrcuct the original context.

long article) into memory tokens, and an LLM decoder that
autoregressively outputs given the memory tokens and po-
tentially other prompts such as questions about the context.
The context encoder is an LLM encoder that converts the
context c = {x1, . . . , xL} where L is the context length
into memory tokens m = {m1, . . . ,mk}, where k is the
number of memory tokens and L ≫ k. In our experiments,
we explore two choices for the context encoder: (1) a pre-
trained context encoder from ICAE (Ge et al., 2023) that
contains trainable LoRA weights, (2) a pretrained sentence
embedding model such as GTR (Ni et al., 2021) followed by
a trainable linear layer that projects the memory embedding
dimension to the hidden dimension of the target LLM. The
former choice adapts an existing work that is specifically
trained to compress long contexts but requires training of the
LoRA modules in the model. The latter choice uses a frozen
off-the-shelf embedding model and only requires training of
a simple linear layer. This is a lot more flexible as we can
easily swap between embedding models and the linear layer
is considerably simpler to train than LoRA weights. We
conduct experiments on both settings and present findings in
the next section. For the decoder, we adopt a LoRA-adapted
LLM decoder such as LLaMA2-7B (Touvron et al., 2023a).
Conditioned on the memory tokens, the decoder is expected
to both maintain knowledge of the long context and gener-
ate reasonable responses (answers) regarding this context if
given additional prompts (questions). We now present the
training procedures for our proposed model.

3.2 Pretraining via Reconstruction

At the first training stage, our model is trained to compress
long contexts into memory tokens that can faithfully repre-
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Figure 2. Supervised fine-tuning on instruction data. Given the
memory tokens m and prompts q, the decoder now autoregres-
sively outputs a response a.

sent the meaning of the original contexts. To this end, we
condition the LLM decoder on the memory tokens m to
produce the original sequence c and train the model via a
reconstruction loss (illustrated in Figure 1):

Lrec = max
θf ,θg

P (c|m; θf , θg, θcontext, θLLM ), (3)

where θcontext and θLLM represent the frozen weights of
the context encoder and LLM decoder while θf and θg
represent the trainable weights1 in the context encoder and
LLM decoder, respectively. Intuitively, this objective is
analogous to reciting and memorizing the exam material in
the test-taker example in Section 1.

3.3 Fine-tuning via Self-Instruct

Once the model becomes capable of memorizing the long
contexts, we further fine-tune the model on instructional
data. This enables the model to respond to various prompts
or questions regarding the context which is now represented
by the compressed memory tokens. To achieve this goal, we
first generate an instruction dataset in the form of (context,
question, answer) triples. These samples can be generated
by either the LLM decoder itself or some other LLM models
such as GPT-4.

Concretely, conditioned on the memory tokens m and given
the pair of question q and answer a, the model is opti-
mized via the following supervised fine-tuning objective
(illustrated in Figure 2):

Lsft = max
θf ,θg

P (a|m,q; θf , θg, θcontext, θLLM ). (4)

1For the decoder, the trainable weights are LoRA adapters. For
the encoder, the trainable weights can be either LoRA modules or
weights of a linear layer, depending on the design choices of the
encoder as detailed in Section 3.1.
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Figure 3. Separated batched computation for the base model and
LoRA computation. The batched computation of the base model
is implemented by GEMM. The batched computation for LoRA
adapters is implemented by custom CUDA kernels which support
batching various sequence lengths and adapter ranks.

Intuitively, this objective is analogous to taking mock exam
questions in the test-taker example in Section 1.

4 SERVING SYSTEM

Our underlying serving system S-LoRA encompasses three
principal components of innovation. In Subsection 4.1, we
introduce our batching strategy, which decomposes the com-
putation between the base model and the LoRA adapters.
The ability to batch across concurrent adapters, introduces
new challenges around memory management. In Subsec-
tion 4.2, we generalize PagedAttention (Kwon et al., 2023)
to Unfied Paging which support dynamically loading LoRA
adapters. This approach uses a unified memory pool to
store the KV caches and adapter weights in a paged fashion,
which can reduce fragmentation and balance the dynamic
changing size of the KV caches and adapter weights.

4.1 Batching

Our batching strategy aims to support online and high-
throughput serving of many LoRA adapters simultaneously.

For a single adapter, the method recommended by (Hu et al.,
2021) is to merge the adapter weights into the base model
weights, resulting in a new model (see Eq. 1). This has the
advantage that there is no additional adapter overhead during
inference, since the new model has the same number of
parameters as the base model. In fact, this was a prominent
feature of the original LoRA work.

However, when there are multiple adapters, merging the
weights into the base model leads to multiple weight copies
and missed batching opportunities. Directly merging the
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Figure 4. Overview of memory allocation in S-LoRA. S-LoRA
stores all adapters in the main memory and fetches the active
adapters for the current batch to the GPU memory. The GPU
memory is used to store the KV cache, adapter weights, base
model weights, and other temporary tensors.

models requires maintaining many copies of the full lan-
guage model. In the original LoRA paper, the authors pro-
posed adding and subtracting LoRA weights on the fly to
enable serving multiple models without increasing the mem-
ory overhead. However, this approach doesn’t support con-
current inference on separate LoRA adapters and therefore
limits batching opportunities.

As illustrated in Subsection 6.3, merging LoRA adapters
into the base model is inefficient for the multi-LoRA high-
throughput serving setting. Instead, we propose computing
the LoRA computation xAB on-the-fly as shown in Eq. 2.
This avoids weight duplication and enables batching of the
more costly xW operation. But this approach also increases
the computation overhead. However, because the cost of
xAB is substantially lower than xW and there is a consid-
erable savings from batching xW across different adapters,
we show that the savings far exceed the additional overhead.

Unfortunately, directly implementing the factored computa-
tion of the base model and individual LoRA adapters using
the batch GEMM kernel from the existing BLAS libraries
would require significant padding and result in poor hard-
ware utilization. This is because of the heterogeneity of
sequence lengths and adapter ranks.

In S-LoRA, we batch the computation of the base model and
then employ custom CUDA kernels to execute the additional
xAB for all adapters separately. This process is illustrated
by Figure 3. Instead of naively using padding and using the
batch GEMM kernel from the BLAS library for the LoRA
computation, we implement custom CUDA kernels for more
efficient computation without padding.

While the number of LoRA adapters can be large if we
store them in main memory, the number of LoRA adapters
needed for the currently running batch is manageable, be-
cause the batch size is bounded by the GPU memory. To
take advantage of this, we store all LoRA adapters in the
main memory and fetch only the LoRA adapters needed

for the currently running batch to the GPU RAM when
running the inference for that batch. In this case, the max-
imum number of adapters that can be served is bounded
by the main memory size. This process is illustrated by
Figure 4. To achieve high-throughput serving, we adopt the
iteration-level scheduling batching strategy from Orca (Yu
et al., 2022). In this approach, requests are scheduled at the
token level. We immediately incorporate a new request into
the running batch if space is available. The request will exit
the batch once it reaches the maximum number of gener-
ated tokens or fulfills other stopping criteria. This process
reduces GPU memory usage but introduces new memory
management challenges. In Subsection 4.2, we will discuss
our techniques to manage memory efficiently.

4.2 Unified Paging

Compared to serving a single base model, serving multiple
LoRA adapters simultaneously presents new memory man-
agement challenges. To support many adapters, S-LoRA
stores them in the main memory and dynamically loads the
adapter weights needed for the currently running batch into
GPU RAM.

During this process, there are two noticeable challenges.
The first is memory fragmentation, resulting from the dy-
namic loading and offloading adapter weights of various
sizes. The second is the latency overhead introduced by
adapter loading and offloading. To tackle these challenges
efficiently, we propose Unfied Paging and overlap the I/O
with computation by prefetching adapter weights.

Understanding the nature of adapter weights is essential for
optimizing memory usage. Our primary observation is that
these dynamic adapter weights are analogous to dynamic
KV caches in several ways:

• Variable sizes and operations: Just as the size of
KV cache size fluctuates with the sequence length, the
ranks of the active adapters can also depend on the
choice of adapter associated with each request. KV
caches are allocated when requests arrive and deal-
located once the requests are completed. Similarly,
adapter weights are loaded and cleared with each re-
quest. If not managed properly, this variability can
result in fragmentation.

• Dimensionality: A KV cache tensor for a request in
a layer has a shape of (S,H), where S denotes the se-
quence length and H represents the hidden dimension.
Meanwhile, the shape of a LoRA weight is (R,H),
with R standing for the rank and H the hidden dimen-
sion. Both share a dimension size of H that can be
leveraged to reduce fragmentation.

Motivated by these parallels, we extend the idea of Page-
dAttention (Kwon et al., 2023) to Unified Paging which
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Figure 5. Unified memory pool. We use a unified memory pool to
store both KV caches and adapter weights in a non-contiguous way
to reduce memory fragmentation. The page size is H elements.

manages adapter weights in addition to the KV cache. Uni-
fied Paging uses a unified memory pool to jointly manage
both KV cache and adapter weights. To implement this, we
first allocate a large buffer statically for the memory pool.
This buffer uses all available space except for the space oc-
cupied by the base model weights and temporary activation
tensors. Both KV caches and adapter weights are stored in
this memory pool in a paged manner, with each page corre-
sponding to a vector of H . Thus, a KV cache tensor with a
sequence length of S uses up S pages, while a LoRA weight
tensor of rank R takes up R pages. Figure 5 illustrates the
layout of our memory pool, where KV caches and adapter
weights are stored interleaved and non-contiguously. This
approach significantly reduces fragmentation, ensuring that
adapters weights of various ranks can coexist with dynamic
KV caches in a structured and systematic manner.

5 EVALUATION OF OFFLINE CONTEXT
LEARNING

Dataset We evaluate our system on the QuALITY (Pang
et al., 2022) dataset. QuALITY is a multiple-choice question
answering dataset for long contexts. It contains 150 articles
with an average length of 5000 tokens, with 6737 questions
in total. This dataset is particularly suited to evaluate models
in a long-context setting.

Model configuration We use LLaMA-7B-chat (Touvron
et al., 2023a) as our base model, which has a maximum
context window of 4096 tokens. Our LoRA rank is set to 8
unless otherwise specified.

5.1 Setup

We experiment with using pretrained encoder from
ICAE (Ge et al., 2023) as our context encoder. This encoder
is a LLaMA2-7B-chat (Touvron et al., 2023a) model pre-
trained on the Pile (Gao et al., 2020) dataset and instruction
fine-tuned on the self-curated PwC (Prompt-with-Context)
dataset to perform general context compression task. The
encoder takes a context as long as 4096 tokens as input,

and can compress it to 128 memory tokens. Even though
the maximum supported length is 4096 tokens, experiment
results from ICAE demonstrates that its context compressor
maintain the same performance with memory tokens when
the original context length is below 512 tokens. In our set-
ting, the context length is 4096 tokens. We will truncate
the article to 4096 tokens if the article’s length exceeds the
context window limit.

In order to evaluate our methods performance on QuALITY
, we consider the following scenarios.

1. Base LLM with Question. In this setting, we do
not provide the context at all and only provide the
multiple-choice questions to the base LLM. We use the
pretrained LLaMA2-7B-chat as our model and do not
perform additional training.

2. Base LLM with Question + Context. In this setting,
we additionally prepend the article relevant to the ques-
tion, and ask the LLM to answer the question. The
context is truncated so that the total token length does
not exceed 4096. This represents a baseline usage of
LLMs on this task.

3. Finetuned LLM (Next Token Prediction) with Ques-
tion. In this setting, we consider a naive finetuning
method where we simply use LoRA to fine-tune on
all the articles in the dataset using standard next-token
prediction objective. During inference, we provide no
context and directly append the question to the LLM.

4. Off-the-shelf ICAE encoder with Question In this
setting, we directly use the pre-trained ICAE encoder to
compress the context into memory tokens and prepend
these tokens before the question. We do not perform
any finetuning of our model. The LLM is supposed to
answer the question conditioned on the memory tokens
and the question.

5. Finetuned LLM (ours) + Question. In this setting,
we use the offline context learning method proposed
in our work to fine-tune the LLM. Since our context
encoder is also a LLaMA-7B model, we finetune both
the context encoder and the LLM using two separate
LoRAs. During inference, we use the finetuned model,
and use the ICAE context encoder to compress the
context into 128 memory tokens, and prepend it before
the question.

Our results are summarized in the following table.

Examining the results from Table 1, we observe a notable
improvement in accuracy, increasing from 31% to 37%,
when context is provided to the base LLM. However, sim-
ply finetuning the LLM with next token prediction on these
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Base LLM w.
Question

Base LLM w.
Question + Context

Finetuned LLM
(N.T.P) w.
Question

Pretrained ICAE
w. Question

Finetuned LLM (ours)
w. Question

31% 37% 31% 27% 39%

Table 1. Multiple-Choice QA Accuracy on the QuALITY dataset

contexts does not yield effective results. For instance, fine-
tuning the LLM without context during inference results in
an unchanged accuracy of 31%, mirroring the base model’s
performance in a similar setting. Moreover, utilizing the off-
the-shelf ICAE as a context encoder, without any additional
finetuning, leads to a reduced accuracy of only 27%. This
is even lower than the base LLM’s performance without
context, suggesting that the pretrained context encoder on
its own is insufficient for learning the context information
effectively.

In contrast, the application of our offline context learning
method significantly enhances the model’s performance,
achieving an accuracy of 39%. This result not only surpasses
the base model with context but also exceeds the in-context
learning accuracy of 37%.

6 EVALUATION OF S-LORA
We evaluate the performance of S-LoRA on both synthetic
and real production workloads. S-LoRA is built on top of
LightLLM (ModelTC, 2023), a single-model LLM serv-
ing system based on PyTorch (Paszke et al., 2019) and
Triton (Tillet et al., 2019). We evaluate the scalability of
S-LoRA by serving up to two thousand LoRA adapters si-
multaneously and compare it with other strong baselines.
We then perform ablation studies to verify the effectiveness
of individual components.

6.1 Setup

Model. We test the Llama model series (Touvron et al.,
2023a;b), one of the most popular open large language mod-
els. We consider 3 different model and adapter configura-
tions, which are listed in Table 2 Our optimizations can be
easily adapted to other transformer-based architectures as
well, such as GPT-3 (Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022; Anil et al., 2023).

Setting Base model Hidden size Adapter ranks

S1 Llama-7B 4096 {8}
S2 Llama-7B 4096 {64, 32, 16, 8}
S4 Llama-13B 5120 {64, 32, 16}

Table 2. Model and adapter configurations.

Hardware. We conduct tests on various hardware settings,

including a single NVIDIA A10G GPU (24GB), a single
A100 GPU (40GB), a single A100 GPU (80GB), and mul-
tiple A100 GPUs (40GB/80GB). The host’s main memory
varies based on the GPU setup, ranging from 64 GB to
670 GB. We will show that S-LoRA can efficiently scale
the number of adapters, limited only by the available main
memory.

Baselines. We benchmark several variants of S-LoRA, Hug-
gingFace PEFT (Mangrulkar et al., 2022), and vLLM (Kwon
et al., 2023).

• “HuggingFace PEFT” is a library for training and run-
ning parameter-efficient fine-tuning models. It lacks ad-
vanced batching and memory management. We build a
server using it that batches single adapter requests and
switches adapter weights between batches.

• “vLLM m-packed” is a simple multi-model serving
solution based on vLLM, a high-throughput serving
system. Because vLLM does not support LoRA, we
merge the LoRA weights into the base model and serve
the multiple versions of the merged weights separately.
To serve m LoRA adapters, we run m vLLM workers
on a single GPU, where multiple workers are separate
processes managed by NVIDIA MPS. We statistically
allocate the GPU memory proportionally to the average
request rate for each process.

• “S-LoRA” is S-LoRA with all the optimizations and it
is using the first-come-first-serve scheduling strategy.

• “S-LoRA-no-unify-mem” is S-LoRA without the uni-
fied memory management.

• “S-LoRA-bmm” is S-LoRA without unified memory
management and customized kernels. It copies the
adapter weights to continuous memory space and per-
forms batched matrix multiplication with padding.

Metrics. There are several metrics to measure the perfor-
mance of serving systems, including latency and throughput.
Following common practice, we report the throughput, av-
erage request latency, average first token latency, and SLO
attainment. SLO attainment is defined as the percentage of
requests that return the first token in 6 seconds. Additionally,
we introduce a new metric termed user satisfaction, which
offers a more fine-grained analysis of the first token latency.
Intuitively, a shorter first token latency gives a higher satis-
faction. The satisfaction becomes 0 if the first token latency
exceeds the SLO.
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6.2 End-to-End Results on Synthetic Workloads

Workload trace. We generate synthetic workload traces
using the Gamma process. Given n adapters, the requests for
adapter i are modeled using a Gamma arrival process with
a mean rate of λi and a coefficient of variance (CV) of cv.
The mean rate, λi, adheres to a power-law distribution with
an exponent α. The total request rate for all adapters is R
requests per second. For the n adapters, we set their ranks
based on the list provided in Table 2 with a round-robin
method. Our tests cover various combinations of n, α, R,
and cv. For every request, the input and output lengths are
sampled from uniform distributions U [Il, Iu] and U [Ol, Ou]
respectively. The default duration of a trace is 5 minutes. To
conduct comprehensive experiments, we first pick a set of
default parameters for generating workloads, as shown in
Table 3. We then vary one of the n, α, R, and cv to see how
each factor affects the performance.

Table 3. Default parameters for generating the synthetic workloads.
“7B @ A10G” means running a Llama-7B on a single A10G.

Setting n α R cv [Il, Iu] [Ol, Ou]

7B @ A10G (24G) 200 1 2 1 [8, 512] [8, 512]
7B @ A100 (80G) 200 1 10 1 [8, 512] [8, 512]
13B @ A100 (40G) 200 1 2 1 [8, 512] [8, 512]
13B @ A100 (80G) 400 1 6 1 [8, 512] [8, 512]

Table 4. Throughput (req/s) comparison between S-LoRA, vLLM-
packed, and PEFT. The hardware is a single A100 (80GB). We run
PEFT for a shorter duration when n = 100. We do not evaluate
PEFT for n ≥ 1000, as its throughput is already very low for a
small n. “OOM” denotes out-of-memory.

Model Setup n S-LoRA vLLM-packed PEFT

S1

5 8.05 2.04 0.88
100 7.99 OOM 0.25
1000 7.64 OOM -
2000 7.61 OOM -

S2

5 7.48 2.04 0.74
100 7.29 OOM 0.24
1000 6.69 OOM -
2000 6.71 OOM -

S4
2 4.49 3.83 0.54

100 4.28 OOM 0.13
1000 3.96 OOM -

Comparison with other systems. We compare S-LoRA
with both vLLM-packed and HuggingFace PEFT for serv-
ing many LoRA adapters. The results are shown in Table 4.
Remarkably, S-LoRA can serve 2,000 adapters simultane-
ously, maintaining minimal overhead for the added LoRA
computation. In contrast, vLLM-packed needs to maintain
multiple weight copies and can only serve fewer than 5
adapters due to the GPU memory constraint. The through-
put of vLLM-packed is also much lower due to the missed

batching opportunity. Although PEFT can swap adapters
between batches, enabling it to handle a large number of
adapters, its lack of advanced batching methods and mem-
ory management results in significantly worse performance.
Overall, S-LoRA achieves a throughput up to 4x higher than
vLLM-packed when serving a small number of adapters,
and up to 30x higher than PEFT, while supporting a signifi-
cantly larger number of adapters.

Comparing with own variants. Since no baseline system
can efficiently scale to a large number of adapters, we now
focus on comparing S-LoRA with its own variants. Fig-
ure 6 illustrates how they scale with the number of adapters.
S-LoRA achieves noticeably higher throughput and lower
latency compared to S-LoRA-bmm and S-LoRA-no-unify-
mem. This implies that our memory pool and custom ker-
nels are effective. When the number of adapters increases,
the throughput of S-LoRA initially experiences a slight de-
cline due to the overhead introduced by LoRA. However,
once the number of adapters reaches a certain threshold
(e.g., 100 in most experiments), the throughput of S-LoRA
no longer decreases. This stability can be attributed to the
fact that as the number of adapters grows, the number of
activated adapters for the currently running batch remains
unchanged, maintaining a constant overhead. Consequently,
S-LoRA can scale to a much larger number of adapters with-
out incurring additional overhead, constrained only by the
available main memory.

6.3 Ablation Study

Merging adapter weights versus computing on-the-fly.
While S-LoRA does not merge adapter weights and com-
putes LoRA matrices on-the-fly each time, we compare it
with an alternative design that merges an adapter with the
base model, denoted as x(W + AB), as proposed in the
LoRA paper. This approach involves: 1) Updating the base
model with the current adapter weights before each new
batch; and 2) Switching to a new adapter if there are too
many waiting requests.2 This method is efficient for a small
number of adapters due to the reduced LoRA computation
overhead.

Results in Figure 7 demonstrate that with just one adapter,
the merging approach outperforms the on-the-fly computa-
tion owing to a one-time merging cost. However, its per-
formance declines with more than 2 adapters, primarily
because of the time-consuming switch between adapters.
Such switching results in periods of GPU under-utilization.
Furthermore, a smaller value of α causes requests to be
distributed unevenly across adapters, which in turn reduces
batch sizes and overall performance.

2This is different from PEFT. For example, it has continuous
batching and PagedAttention, which are not enabled in PEFT.
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Figure 6. The throughput and average request latency of S-LoRA and its variants under different numbers of adapters. S-LoRA achieves
significantly better performance and can scale to a large number of adapters. We run S-LoRA-bmm for a shorter duration since it has a
significantly lower throughput. Some S-LoRA-bmm curves are omitted because it is out of the figures’s scope.
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7 RELATED WORK

Long-context LLMs. Pretrained LLMs have a fixed-size
context window, which usually has a length of 4096 as in
LLaMA 2 (Touvron et al., 2023a) or 8192 as in GPT-4
(versions 0314 and 0613). Further increasing the context
window sizes during pretraining has been challenging for
a long time due to the high cost induced by the quadratic
time and memory complexities of exact attention. Recently,
there have been many attempts to extend the context window
of LLMs with continued training or fine-tuning. Positional
interpolation (Chen et al., 2023b) extends the context lengths
of LLaMA family models to 32k by finetuning with scaled
rotary position encodings, which applies to RoPE-based
pretrained LLMs (Su et al., 2021). LLaMA 2 Long (Xiong
et al., 2023) applies a similar technique but with continual
pretraining. Mistral (Jiang et al., 2023a) proposes sliding

window attention that only allows the token to attend to a
certain number of tokens from the previous layer, reducing
compute costs and enabling pretraining with long-context
to 32k. Nevertheless, as the auto-regressive generation in
LLMs is largely memory-bound, storing the KV cache of
such extended long contexts slows down the inference and
creates requirements for large GPU VRAMs.

Context compression. A closely related but different area
of research is context compression. In this area, the goal is
to train a general compressor that can compress any input
prompts to a shorter one. GIST (Mu et al., 2023), Auto-
Compressor (Chevalier et al., 2023), and ICAE (Ge et al.,
2023) fine-tune LLMs in a ”soft prompt-tuning” manner,
either applying specific regularization in attention masks or
utilizing dedicated ”memory tokens” to compress contexts
into embeddings with significant shorter lengths. LLM-
Lingua (Jiang et al., 2023c;b) proposes a question-aware
coarse-to-fine compression framework to compress prompts
in black-box LLM APIs. Another line of work employs
KV cache eviction (Zhang et al., 2023c; Liu et al., 2023c),
which only caches a subset of keys and values (denoted
as ”Heavy Hitters” or ”pivotal tokens”), and removes to-
kens that are uninformative for future outputs during the
inference. Those methods reduce the memory footprint and
essentially achieve the similar goal of prompt compression.
However, all those approaches aim to compress any inputs
seen during the inference time, which results in rapid per-
formance drops as the compression ratio exceeds a certain
limit (e.g. 25-50%) and they usually incur considerable per-
formance drops for out-of-distribution texts. In this work,
we mainly focus on extreme compression of in-distribution
documents of interest, going down to 32× compression
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rates.

Optimize LLM serving with system techniques. The sig-
nificance of the transformer architecture has led to the devel-
opment of many specialized serving systems for it. These
systems use advanced batching mechanisms (Fang et al.,
2021; Yu et al., 2022), memory optimizations (Sheng et al.,
2023; Kwon et al., 2023), GPU kernel optimizations (Wang
et al., 2021; Aminabadi et al., 2022; NVIDIA, 2023; Dao,
2023), model parallelism (Pope et al., 2022; Aminabadi
et al., 2022), parameter sharing (Zhou et al., 2022), and
speculative execution (Stern et al., 2018; Miao et al., 2023)
for efficient serving. Among them, PetS (Zhou et al., 2022)
is most relevant to ours. However, PetS only considers
the serving for small encoder-only BERT models. It does
not consider generative inference, a very large number of
adapters or large models go beyond a single GPU, so it does
not address the problems in our settings.

In a concurrent work (Chen et al., 2023a), the concept of
decomposed computation for the base model and adapters
was explored. Our CUDA kernels were developed based
on the implementation presented in a prior blog post of this
study, with additional support for batching different ranks
and non-contiguous memory. Moreover, our novel memory
management and tensor parallelism techniques have not
been covered in any previous work.

Optimize LLM serving with algorithm techniques. In
addition to system-level improvements, inference efficiency
can be enhanced using algorithm techniques like quanti-
zation (Yao et al., 2022; Dettmers et al., 2022; Frantar
et al., 2022; Xiao et al., 2023; Lin et al., 2023), sparsifi-
cation (Frantar & Alistarh, 2023; Zhang et al., 2023b) and
model architecture improvements (Shazeer, 2019). These
approaches can reduce memory consumption and accelerate
the computation, with a minor compromise in model quality.
They are complementary to the techniques in this paper.

Parameter-efficient fine-tuning. Recent work has devel-
oped methods for parameter-efficient fine-tuning of large
pre-trained language models. These methods show fine-
tuning is possible with only a small fraction of tuned param-
eters. The state-of-the-art methods include LoRA (Hu et al.,
2021), Prefix-tuning (Li & Liang, 2021), P-Tuning (Liu
et al., 2021), Prompt tuning (Liu et al., 2023b; Lester et al.,
2021), AdaLoRA (Zhang et al., 2022), and (IA)3 (Liu et al.,
2022). While our paper focuses on LoRA due to its wide
adoption, most techniques can be easily applied to other
parameter-efficient fine-tuning methods as well.

General purpose model serving systems. Over the years,
the domain of general model serving has seen significant
advancements, Notable systems from earlier research in-
clude Clipper (Crankshaw et al., 2017), TensorFlow Serv-
ing (Olston et al., 2017), Nexus (Shen et al., 2019), Infer-

Line (Crankshaw et al., 2020), and Clockwork (Gujarati
et al., 2020). These systems delve into topics such as batch-
ing, caching, and model placement, catering to both individ-
ual and multiple model deployments. In more recent devel-
opments, DVABatch (Cui et al., 2022), REEF (Han et al.,
2022), Shepherd (Zhang et al., 2023a) and AlpaServe (Li
et al., 2023) have explored the ideas of multi-entry multi-
exit batching, preemption, and statistical multiplexing with
model parallelism. Although these systems have made sig-
nificant contributions, they overlook the auto-regressive
characteristics and parameter-efficient adapters in LLM serv-
ing, leading to potential optimization gaps.

8 CONCLUSION

In this work, we propose offline context learning, a new
paradigm to address the long-context challenge by pre-
processing the long context prior to inference through
parameter-efficient finetuning. Our preliminary results on
the QuALITY dataset show that our offline learning method
outperforms in-context learning while processing over 32x
fewer tokens during inference.

To serve the workload of offline context learning, we pro-
pose S-LoRA, a serving system scalable to thousands of
LoRA adaptors on a single GPU. Compared to state-of-the-
art libraries such as HuggingFace PEFT and vLLM (with
naive support of LoRA serving), our serving system S-LoRA
can improve the throughput by up to 4 times and increase the
number of served adapters by several orders of magnitude.
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