
pre�x_vLLM: Optimizing KV Cache Locality for Faster Parallel Language Model Inference
Nikhil Jha, Kevin Wang, Shiyi Cao, William Brandon, Simon Mo, Joseph E Gonzalez, John Kubiatowicz

UC Berkeley

Motivation

  The use of language models for chatbots, code completion, and data analytics has become
extremely popular.

  Existing techniques to accelerate language model inference focus on persisting computed
attention values (a "KV Cache"), which speeds up inference of completion requests that
share a common pre�x.

  These methods persist these caches on a per-request basis, and are not shared between
requests.

  However, many common application use cases often involve issuing requests that share a
common pre�x over a longer time horizon, such data analytics or chat conversations.

  GPU computation is often the bottleneck for language models, so we would like to trade it
for other resources to avoid recomputation when it is possible.

Our Contributions

Scheduler

Application
(e.x. Chat, Code

Complete)

GPU

Executor

RAM

API Server

Slow
Storage

GPU

Executor

RAM

  We add support for persisting K/V caches to any arbitrary storage medium in vLLM[1]. This
involves a new pre�x-aware CUDA kernel.

  We implement and benchmark different caching policies to swap these K/V caches between
GPU RAM, CPU RAM, and local NVMe SSDs.

  We implement two new performance benchmarks for testing the throughput and latency of
LLM serving systems: a realistic chat benchmark and a realistic data analytics benchmark.

  We receive hints from applications where appropriate, and use them to inform the caching
policy. For example, if the application is chat, we should expect that the entire context
window will be sent back when the user replies, and we should attempt to persist the cache
for the whole window.

Code Completion Technique

  Work around improving code completion techniques often revolves around providing more
useful information to the language model. For programming, humans use a language server
in their IDE to get instant feedback about what they are typing. However, this is very
expensive to give to the LLM because of constant backtracking and re-evaluation.

  Since caching pre�xes can cache a lot of existing LLM state, we hypothesized that this
method could become feasible as a result.

  We implemented a robust code completion technique that uses the language server to
provide context to the LLM by injecting information about types, and masking out tokens
that aren't valid via syntactic analysis.

HumanEval Benchmark Speed

No Prefix Cache Prefix Cache

30.2s 26.1s

Data Analytics Benchmark

  The data analytics benchmark is a fairly simple benchmark that takes some data from
Twitter, and pre�xes it with a prompt that asks the language model to determine if the tweet
has a Positive, Neutral, or Negative sentiment. The LLM then outputs two tokens
representing this decision.

  The pre�x for this workload remains resident entirely in GPU memory for the entire duration
of the benchmark, and no swapping is used. As such, this is a good benchmark as a baseline
to make sure that our method does not degrade performance of simpler tasks.

We benchmark various pre�x sizes and language models. All benchmarks were run on an NVidia
A6000 with 48GB of VRAM.

Chat Benchmark

Users

Request

Conversation History

New Input

Prefix Cache

GPU

vLLM

New Output

  The �rst benchmark that uses scraped ChatGPT conversations (via the ShareGPT[2] dataset).
We split this dataset up among a varying number of concurrent "chatters" who each make
requests to the vLLM API server. We record average end-to-end latency for a response to
each request, time to �rst byte, and overall throughput in terms of messages per second.

Limitations

  We accept an increased latency penalty for the cache with the expectation that this will
increase overall throughput. We argue that for many popular LLM applications, the
additional latency of a disk read or even a network call is acceptable.

  For very small language models (smaller than 7B parameters), the increased scheduling
overhead seems to make the requests slower in the serial case. We are planning on
benchmarking the parallel case in our �nal paper.

  Our implementation is very buggy, and often crashes. Part of this is because it is built on an
existing research-quality platform with small bugs that show themselves when it is
modi�ed. We are working on making it more robust so we can collect more benchmark data.

https://github.com/nikhiljha/vllm {nikhiljha, kevwang, shicao}@berkeley.edu, wbrandon@csail.mit.edu, {xmo, jegonzal, kubitron}@berkeley.edu CS262 Project, Fall 2023

https://slice.eecs.berkeley.edu/
https://slice.eecs.berkeley.edu/
https://berkeley.edu/
https://github.com/nikhiljha/vllm

