
Improving Large Language Model Throughput with Efficient Long-
Term Memory Management

Nikhil Jha
UC Berkeley

nikhiljha@berkeley.edu

Kevin Wang
UC Berkeley

kevwang@berkeley.edu

Abstract— Delivering low latency and high through-
put when serving large language models (LLMs) re-
quires the intelligent batching and caching of inputs
and intermediate states. Existing systems optimize in-
ference by storing the key-value cache (KV cache) of
an LLM inference pass over the duration of one re-
quest or multiple parallel requests. However, at longer
time intervals, GPU time is currently required to re-
compute the KV cache between requests. To address
this problem, we propose a system built on top of Page-
dAttention which saves the KV cache over multiple re-
quests. Our contributions include (1) the storage of the
KV cache of the prefixes of prompts (prefix cache), (2)
the ability for the prefix cache to be swapped between
GPU memory, CPU memory, and disk, (3) scheduling
policies that optimize the location of the prefix cache,
and (4) benchmarks that test common workloads with
prompt prefixes such as chat and text analysis. Our
evaluations show that our system improves through-
put by 2x vLLM.

I. Introduction

Large language models such as GPT[1] and Llama[2] have
shown an impressive range of abilities and use-cases, and
have already had a significant impact over people’s lives
and work. Their popularization has led to their deployment
across many applications, and many companies are working
to host and use these models. However, running an LLM, es-
pecially at large scales, is uniquely expensive due to their pa-
rameter counts. High-powered GPUs are required to make
use of the best models, along with supporting infrastructure
for computation, storage, and networking. Therefore, possi-
ble increases in LLM throughput would be very beneficial to
these systems.

Almost all LLMs are based on the Transformer model[3],
specifically the Decoder-only variant. These models receive
an input text (prompt) as a list of tokens, which are groups
of characters or bytes mapped to vectors, and computes an
output text sequentially as tokens as well. This computation
relies in values derived from prior tokens (KV cache), and

thus caching these values would eliminate the need for re-
computation.

Systems such as PagedAttention[4] have been developed
to effectively utilize the KV cache, focusing on increasing the
efficiency within a single request. The focus of this paper is
different: to improve the efficiency, specifically the through-
put, of serving multiple similar requests over time, requests
that have a common prefix. This is a very common use-case
for an LLM, such as in chat interfaces where requests typi-
cally share the same system prompt and occasionally share
the same conversation history, or in data analytics tasks,
where the input text typically contains a fixed prompt fol-
lowed by an item from the dataset.

In this paper, we build on top of vLLM, the reference im-
plementation of PagedAttention, to create prefix caching.
We do this in order to take advantage of the block-level mem-
ory management, existing swapping and scheduling capa-
bilities, and wide support for popular LLMs already present
in vLLM.

vLLM System Architecture (PagedAttention)

In total, our contributions are the following:
• We identify the inefficiencies in current LLM memory

management techniques and quanity their impact on
serving performance.

• We propose prefix caching, the storage of KV caches
for common prefixes over longer spans of time.

• We develop scheduling algorithms for swapping prefix
caches between GPU memory, CPU memory, and disk.

• We design and implement prefix caching on vLLM.

mailto:nikhiljha@berkeley.edu
mailto:kevwang@berkeley.edu

• We create benchmarks that properly evaluate the effi-
ciency of LLMs on chat and data analytics workloads.

• We evaluate vLLM with prefix caching on these bench-
marks and demonstrate that it improves throughput
over state-of-the-art.

II. Background

In this section we describe the concepts which are founda-
tional to prefix caching: the KV cache and PagedAttention.

A. KV Cache

(1)

The core mechanism of a Transformer model is the “self-at-
tention” block, of which a model typically has many that are
computed in parallel (multi-head attention) as well as many
multi-head attention layers that are stacked on top of each
other. The output of an attention block for each token is typ-
ically computed as softmax attention, where query (𝑄), key
(𝐾), and value (𝑉) vectors are computed from the current
and prior tokens.

Attention(𝑄,𝐾, 𝑉) = softmax(
𝑄𝐾⊤

√𝑑𝑘
)𝑉 (2)

Whereas the query is computed from the current token, cru-
cially, the keys and values are derived from each token and
do not change for subsequent tokens. A naive implementa-
tion would recompute them when generating each new to-
ken, thus unnecessarily increasing the amount of computa-
tion that is required by the GPU for every attention block.

A KV cache however, attempts to store the computed keys
and values for future use, and thus for each subsequent to-
ken, only one set of keys and values would need to be com-
puted. The rest of the computation will just be a dot product
between the query and the stored keys, and then the scaling
of each value with the softmax of that dot product.

Another important thing to note is that the KV cache of
a token is position-dependent due to the model’s positional
encoding. This means that tokens that are repeated in a text
cannot share the same KV cache.

B. PagedAttention and vLLM

While the concept of caching reused results from an at-
tention block instead of recomputing them is simple, but
in practice, implementation faces several nontrivial chal-
lenges. Since the KV cache grows to the number and size of
requests, it becomes difficult to store them all in the limited
space available in GPU VRAM, which already also houses
the model weights and other computations. Memory man-
agement techniques are necessary in order to either evict
caches or swap them to another part of the system.

In addition, depending on the decoding algorithm done
during generation, the KV cache may be utilized differently,
causing additional complexity. For example, different beans
in beam search may share varying amounts of the same pre-
fix, and determining what can be shared and where to ac-
cess the shared KV cache, as well as a proper scheduling al-
gorithm that prevents race conditions, is needed in order to
make use of the KV cache well.

PagedAttention[4] attempts to solve these problems by di-
viding the KV cache into blocks, which contain the keys and
values for some fixed number of tokens. These blocks act
similarly to pages in the virtual memory of a process, and
can be swapped between GPU and CPU memory, with a set
number of blocks that live in either regions.

PagedAttention is implemented in vLLM, which also han-
dles request scheduling and batching. This allows vLLM to
preemptively swap cache blocks in and out of GPU mem-
ory in response to the needs of the requests and decoding
algorithms. In addition, vLLM also implements Python in-
terfaces and web APIs for interacting with KV cached LLMs,
with support for a large number of popular self-hostable
models.

Beam Search example (PagedAttention)

III. Memory Inefficiencies in PagedAtten-
tion

PagedAttention effectively solves one of the largest areas
of inefficiency in LLM inference, and has achieved state-
of-the-art in this area. However, one limitation of this algo-
rithm is that it only considers the usage of the KV cache in a
short time span, that of a single request, or at most, multiple
requests that share prefixes in the same batch.

A. Text Analysis Workloads

However, in many applications of LLMs, the prefix of re-
quests may be shared in longer time spans, from a few sec-
onds to even hours or days. For example, one common task
given to LLMs is text analysis. Here is an example prompt
one may use for this task.

Classify the sentence as positive or negative.
Think step-by-step, and provide reasoning why the

text is identified as positive or negative.
For example,
Sentence: ‘Same S##t, different day’
Sentiment: negative
and
Sentence: ‘This product has changed my life, I am

so much more productive now’
Sentiment: positive
Sentence: {{sentence}}
Sentiment:

Observe that a large amount of prompt text does not change
between requests, and that this part is at the start of the
prompt, and thus its keys and values are also the same be-
tween requests. In text analysis situations, the dataset is typ-
ically too large to process in a single batch, so it is streamed
to the LLM in smaller batches. As a result, vLLM will waste
GPU operations each batch on recomputing the prompt tem-
plate’s KV cache.

B. Chat Workloads

Another common task for an LLM is chat. In this work-
load, the LLM and the user take turns generating and send-
ing text to each other. Upon each request, the LLM uses a
system prompt that is shared between all chats as well the
entire history of the current chat in order to provide a con-
textful response. This creates an opportunity to reuse the KV
cache between requests in a chat.

By the nature of chat, requests in a single conversation
are received synchronously and disjointly, and thus vLLM
is again incapable of reusing the KV cache. In addition, the
time between requests is unbounded. The user may choose
to respond immediately, or come back to the chat after any
amount of time. Any system that attempts to share a KV
cache between requests in a chat workflow will need to have
the capability of swapping the cache to a more persistent
storage, as well as employ a scheduler that is able to reason
with larger sets of data at longer time horizons, both of
which vLLM lacks.

C. Latency versus Throughput

One disadvantage of storing the KV cache in a more per-
sistent medium is latency. Swapping cache from disk to GPU
memory is slow, and is likely orders of magnitude slower

than recomputing the cache. This will result in a higher la-
tency per request.

However in a GPU-constrained system, this would re-
duce the amount of computation required by the GPU per
request, and thus increase the throughput. This is advanta-
geous in a text analysis workload, where speed is measured
in the amount of time it takes to process the entire dataset,
as well as a chat workload, where a single GPU could be ca-
pable of serving even more requests.

Additionally, higher throughput means fewer queued re-
quests at any moment, which could possibly result in lower
latency as a request could be queued earlier. Moreover, the
one-time cost of reading from disk is small compared to the
entire LLM inference run required in a request, so in all, the
latency impact should be minor.

IV. Methods

In this section, we describe the concepts of prefix caching
and scheduling. In the subsequent section, we describe the
specifics of implementing these concepts in vLLM.

A. Prefix Cache

A prefix cache is the KV cache for a contiguous set of in-
put tokens starting from the first token, and it is uniquely
defined by that set of tokens.

As the keys and values depend on their position as well as
the previous tokens, it is not possible to generate a reusable
cache for a non-prefix.

Prefix caches, just like PagedAttention KV caches, are
stored in cache blocks of fixed size. The difference is that pre-
fix caches do not follow the same scheduling pattern as regu-
lar KV cache. KV cache blocks can be reallocated when there
are no actively running requests that use them, whereas pre-
fix caches may persist past an initial usage. Its lifecycle, in-
stead, is dictated by a scheduler specific for prefixes.

B. Prefix Scheduling

The prefix scheduler swaps prefix caches between three
tiers of storage: GPU memory, CPU memory, and disk. Addi-
tionally, it also evicts prefixes from the cache when needed.
Higher tiers generally swap incrementally down to lower
tiers (GPU to CPU, CPU to disk), but when swapping up,
prefixes are always swapped directly to GPU memory, in or-
der to use the prefix in an upcoming request.

The prefix scheduler is generalized so that any scheduling
algorithm may be used to schedule prefixes. Currently, the
Least Recently Used, First-in-first-out, and randomized al-
gorithms are implemented for the scheduler.

V. Implementation

We implement a number of new features in vLLM.

1. Swapping prefixes from GPU to CPU
2. Swapping prefixes between CPU and Disk
3. New scheduling policies to prioritize prefixes that are

already on the GPU or CPU (previously only FCFS
was supported)

4. New swapping policies (LRU, FIFO, Random)
5. A prefetching strategy for swapping disk to CPU and

CPU to GPU ahead of time

A. Existing Implementation Bugs

Previously, vLLM could only persist caches on the GPU
memory, and never evict them. This was designed for work-
loads where there is exactly one prompt, and is still a work-
in-progress feature which has a couple bugs.

For example, the vLLM prefix kernel can only handle pre-
fixes of a certain block size. For the purposes of this paper,
we don’t implement any methods to retrieve prefix caches
smaller than the size of a single block. However, the API sur-
face assumed that the user would know the block size and
would crash if you specified a prefix size not an even multi-
ple of the block size. We implemented logic to transparently
truncate this.

B. Prefix Storage

(3)

When a request comes in, we calculate the size of the prefix
based on the particular application it is for (e.x. for analytics,
the user knows what the prefix is). We then make a request
to vLLM’s block allocator to get a list of blocks that are on
the same hardware device. Prefixes are currently always ini-
tialized on the GPU, since they need to be filled on the GPU
and are useless until the Attention computation has been
done at least once with the prefix. In the diagram above, the
blue blocks represent segments of GPU data memory. They
do not need to be contiguous, and will be loaded from in the
correct order when executing an attention computation in-
volving them.

C. Swapping Implementation

To implement CPU swapping, we stored a centralized
limit of the number of prefixes that should be allowed on
each device: CPU and GPU. vLLM already partitions its
memory space into blocks as part of its PagedAttention op-
timizations, so we could also have limited this by the num-

ber of blocks. We chose to limit it by number of prefixes so
that comparisons across language models got apples-to-ap-
ples comparisons in terms of swapping behavior, as larger
language models will have larger block sizes, and so count-
ing the number of prefixes that get swapped is a clearer sig-
nal of swapping behavior.

When the scheduler wants to issue a swap, it writes down
the swap it wants (a mapping of block IDs on the CPU to
block IDs on the GPU, and vice versa for swapping out), and
sends it to the GPU worker. The GPU worker issues an asyn-
chronous copy via cudaMemcpyAsync() between the CPU and
the GPU. This creates a CUDA event, which is saved for later
by the CUDA runtime. The attention computation checks to
see if there is an outstanding event, which means that the
memcopy has not finished, and stalls until it is finished.
Achieving good performance with this method therefore re-
lies on scheduling and swapping in a manner that minimizes
the total amount of time the system is in this stalled state.

The scheduler then calls the vLLM Block Manager to free
the blocks that were swapped from, which does not require
any operation other than to account that they are free and
may be reallocated to future uses. The block manager is also
responsible for acquiring the blocks to swap to when some-
thing needs to be evicted. At first we implemented swapping
by retrieving from the GPU just in time for the request to be
executed, but this ended up being too slow. See the prefetch-
ing and scheduling sections for the optimizations we applied
to fix this.

D. CPU Swapping Details

We realized later that counting prefixes instead of blocks
was a mistake, because when it comes time to swap in a

prefix, both the size of the prefix and the number of prefix
counts need to be checked, and so it’s possible that some
number of prefixes less than the maximum amount speci-
fied. It also requires maintaining an entirely separate state
table from the existing table in vLLM. In the final version of
this system that makes it into vLLM we will likely rewrite
this logic to limit the number of prefixes based on the num-
ber of available blocks.

Another consideration was that when two requests need
to be swapped in, two separate memory requests may be is-
sued. We solved this by adding a lock onto each prefix that
is cleared once a swap is complete.

E. Disk Swapping

To implement disk swapping, we extended the vLLM block
manager, the vLLM GPU worker, the vLLM cache engine,
and the vLLM CUDA kernel to support blocks on disk. One
complication is that the KV cache blocks are in torch tensors,
which torch requires that they live in memory. We could
have serialized out the torch tensors and tried to load them
back in, but we wanted to avoid any unneccesary overhead
from the filesystem. We eventually settled on using mmap to
memory map some blocks from disk into the CPU’s address
range.

By using mmap, as far as torch was aware, these KV caches
were actually on CPU memory (just very slow). This signif-
icantly simplified the amount of work needed to be done,
as a lot of the code from the CPU cache block management
could be reused.

Another complication is that although CUDA is perfectly
happy to copy memory from the host to the host (i.e. from
CPU memory to Disk), it needs the memory to be pinned
for it to trust that it can do it asynchronously while a kernel
is running. This led to a slowdown in performance until we
decided to pull in a separate C runtime to do the swapping
entirely separate from CUDA. This increased the complexity
of the swapping algorithm considerably, and we are hoping
that there exists a workaround in CUDA to avoid this.

F. Prefix Scheduling

The existing scheduling method in vLLM is first-come-
first-serve (FCFS). However, if we have cached prefixes, it
makes more sense to prioritize prefixes that are on the GPU
if any exist, and prioritize prefixes that are on the CPU before
going to the GPU. As a result, we created two new schedul-
ing algorithms, fastest prefix first (FPF) and Relaxed-FPF.

1) Fastest-Prefix-First (FPF):
This is an unfair scheduling algorithm that tries to fill the

GPU with requests that match prefixes already on the GPU
at all costs, no matter how much later those requests came.
Although this leads to starvation in cases of high utilization
of the vLLM server, it guarantees maximum throughput, be-
cause if there is something that can be executed fastest with-
out waiting for swaps, it will get executed.

2) Relaxed-Fastest-Prefix-First (Relaxed-FPF):
This is a more fair scheduling algorithm that is more akin

to a weighted FCFS. It computes a priority for each request,
where 𝑁 is the distance that the prefix is away from the GPU.
For example, the GPU is 0, the CPU is 1, the Disk is 2, and
the prefix not being computed yet is 3.

(current_time − arrival_time) ∗ (4 − 𝑁) (4)

G. Prefetching

We also implement a prefetcher for the blocks to make
sure that the caches on each device are loaded with useful
caches. In the case where there are many more requests in
the queue than capacity to serve them, the prefetcher looks
ahead at the next 𝑁 requests (where 𝑁 is based on system
capacity, in terms of CPU memory, GPU memory, GPU ca-
pability, and Disk space). If there are prefixes currently in the
cache that are not used, and upcoming requests that need
those prefixes, the prefetcher evicts the unneeded prefixes
and immediately tries to swap in the prefixes that are about
to be used.

Before we implemented the prefetcher, the performance
of the system got worse the more swapping we did past the
baseline of only storing the KV caches in the GPU. This
leads us to believe that the swapping system (FIFO, LRU,
etc.) is significantly less important than the prefetcher hav-
ing enough information to swap prefixes in as early as pos-
sible.

Below is a chart of LLaMA-7B running on an RTX 3090
with 16GB of RAM. The performance degrades even below
baseline when disk swapping is added. The cache eviction
policy being used is LRU, and FCFS scheduling is being
used.

VI. Case-Study: LSPDojo

We built LSPDojo, a framework for language models to take
advantage of powerful static analysis tools by interacting
with language servers, therefore allowing them to generate
code with cor- rect syntax and typing and free of halluci-
nated functions. While current methods for large language
model (LLM) program synthesis largely involve calling for
the model to predict the next token, given only the prompt
and the previously generated tokens as information. Tech-
niques such as beam search are also used in some cases in
order to traverse more of the search space, but they still rely
entirely on the model’s ability to determine how to continue
a sequence without any external information, something
that humans will even have a hard time doing.

LSPDojo is implemented as a client to vLLM server that
uses static analysis features on a developer’s local machine
(i.e. IDE autocomplete, diagnostics, etc.) to constrain the
(possibly incorrect) outputs of the language model into
something definitely correct. Many of these techniques in-
volve repeating a prefix many times to the same language
server, which can be accelerated via this K/V cache opti-
mization.

A. Tree Search Method

In the tree search method, the LLM generates N solutions.
If the language server detects no errors, the solution is sub-
mitted. Otherwise, for each error, the code is cut off at the
line of the error and the incorrect line as well as the error is

inserted as a comment. Then, the LLM is asked to provide
N solutions that complete the cut-off solution. This results a
breadth-first search across all the errors in the program.

1: function Tree-Search-Pseudocode(prompt, N)
2: 𝑞 ← {prompt}
3: while |𝑞| > 0 do
4: p ← pop (𝑞)
5: gen ← vLLM (𝑝,𝑁)
6: for 𝑖 ∈ [0,𝑁) do
7: gen ← gen[𝑖]
8: lsp𝑖 ← LSP (gen𝑖)
9: if notHasErrors (lsp𝑖) then
10: return gen𝑖
11: else
12: for (err, line) ∈ lsp𝑖 do
13: 𝑝′ ← gen𝑖 :line + err
14: push (𝑞, 𝑝′)

Note in this pseudocode that the entire context of the pro-
gram is sent back and forth to the serving server (line 5),
which means that the K/V cache prefix can be reused.

VII. Benchmarks

In this section, we explain the two new benchmarks pre-
sented in this paper, as well as results from these bench-
marks on our modified version of vLLM.

A. Text Analysis Benchmark

Text analysis workloads typically consist of a small set of
templates, with textual data inserted into a template for each
request.

For this benchmark, we simulate this workload by first
generating a set of 𝑛 unique prefixes to use as the template
prefixes. We then send 𝑘 > 𝑛 requests, each with a randomly
chosen prefix along with a randomly generated body. These
requests are either sent batched, to measure latency, or indi-
vidually, to measure throughput.

B. Chat Benchmark

LLM chat conversations typically start with a hidden sys-
tem prompt which instructs the model, and then a back-and-
forth conversation between the user and the LLM.

1. System: {system_prompt}
2. User: {input_1}
3. Model: {output_1}
4. User: {input_2}
5. Model: {output_2}
6. …

For our chat benchmark, we use ShareGPT[5], a realistic
LLM chat dataset used to train the Vicuna language model.
Each request contains a randomly sampled user input from
the dataset, prepended by a system prompt which we use as
the prefix.

Unlike the text analysis benchmark, where requests are
passed directly into the model’s Python object, the chat
benchmark makes requests to vLLM’s API server. This al-
lows us to simulate a more realistic chat session which has
network latencies and which the user and the model are
running on different processes.

C. Benchmark Results

In this benchmark we measure the throughput of each of
the serving methods, where a set of 128 unique prefixes are
given, whereas each cache only has a certain amount of
space. The GPU has space for 8 prefixes, the CPU has space
for 32 prefixes, and the disk has space for 128 prefixes. The
requests are streamed into the vLLM queue and the overall
performance is recorded. All models above are using Fastest-
Prefix-First scheduling, and the LRU caching eviction policy.
The results for FIFO and Random cache eviction policies are
(within some small amount of noise) identical to this bench-
mark.

For the text analysis benchmark we record the overall miss
rate for all caches.

We record that, as expected, latency goes up the more the
cache is hit. What is unexpected is that this benchmark
shows that the GPU cache latency also increases. However,
existing benchmarks that have been posted to GitHub for
this feature show latency decreasing. We were not able to
figure out why this is.

For the chat benchmark, both latency and throughput are
virtually unchanged. This is expected, as we were not able to
incrementally grow our prefix matrixes. See the related work
section.

VIII. Discussion

Text analysis benchmarks show a strong increase in
throughput as well as a small increase in latency, which is
to our expectations. Additionally, the miss rate decreases
as more storage locations are available, which makes sense
since those locations add additional cache blocks to our pool.
For a larger model like WizardCoder-15b, this is especially
noticeable, indicating that prefix caching can potentially
benefit larger models even more.

However, the latency and throughput measurements for
the chat benchmark run counter to our priors. Latency and
throughput both decrease, meaning that there is better la-
tency and worse throughput when a prefix is specified. This
may be because of additional unaccounted overhead in net-
work bandwidth, which reduced the load on the GPU by
throttling requests. Further analysis is needed to determine
the root cause.

IX. Related Work

A. Model Serving

Deep neural network serving is an active area of research,
with a diverse set of solutions tackling a wide set of prob-
lems. Foundational works in this field include TensorFlow-
Serving[6], an easy and flexible general-purpose model
server, Clockwork[7], which attempts to produce determin-
istic performance from models, and Clipper[8], which com-
bines techniques such as caching, batching, and model se-
lection to reduce latency and improve throughput and accu-
racy.

These systems are all generalized, which means they can
effectively serve any deep learning model. However, this also
means they do not take advantage of the autoregressive na-
ture of the Transformer model, and thus cannot make the
same types of optimizations as one which does.

B. Transformer Serving

The popularity of the transformer architecture has led to
a number of systems that are developed for specifically serv-
ing them. These solutions range from kernel optimizations
[9] to batching [10], [11] and parallelization [12], [13].

These techniques are largely orthogonal and can be used
in conjunction with KV and prefix caching.

C. PagedAttention

The primary work that this paper is based off of is Page-
dAttention[4].

X. Future Work and Limitations

Swapping to disk works best when the request volume
is so high that swapping can happen in parallel with the at-
tention computation, so that the caches can always be kept
hot and GPU utilization can be maximized. In cases where
request count is low, the system starts needing to stall for
swaps to complete. Since compute operations are generally
orders of magnitude cheaper than bandwidth, this nearly al-
ways slows down the overall latency and throughput of the
system. We should explore ways to abort a load that ended
up being bad and recompute it at the last minute.

One thing we originally hoped to have as part of this paper
is the ability to query parts of prefixes. This would be espe-
cially useful for the chat benchmark that we wrote, but did
not end up running the full suite of benchmarks for against
our method because we needed this optimization for it to
work well. We want to implement this with a trie, so that all
possible prefixes could be queried instead of an exact prefix.

We also need to find a way to swap between the Disk and
the CPU without resorting to a new C program and with-
out CUDA, as to avoid the penalty for copying to unpinned
memory. Alternatively, we could find a way to mark the
memory of a memmapped region as pinned, although this
might interfere with other optimizations NVidia has done.

Finally, one thing that we wish to do is to test our system
on larger models and more intense workloads. Real-world
systems such as GPT-4 have tens to hundreds of billions
of parameters, and serve many thousands of requests per
minute. We anticipate that these circumstances are where
prefix caching will do the most good.

XI. Conclusion

In this paper we introduce prefix caching, an effective way
to eliminate redundant KV cache computations over longer
time spans than what is currently possible with PagedAtten-
tion. Additionally, we provide an implementation of prefix
caching built on top of vLLM, as well as benchmarks that
measure the efficiency of models for different workloads
that would benefit from a prefix cache.

Our results show that for text analysis workloads, caching
the prefix significantly increases model throughput. Thus,
implementing a prefix cache could result in large improve-
ments to the efficiency of the system for these types of work-
loads.

Acknowledgement

Thank you Professors John Kubiatowicz and Joseph Gon-
zalez for advising this project during the course of CS 262A.
Thank you to Shiyi Cao for writing the GPU prefix caching
kernel and taking your time to explain all the concepts we
were confused about. Thank you Simon Mo for for bringing
us into the fold of vLLM and always being helpful when we
needed it! Thanks to William Brandon for giving us the idea
for this project.

References

[1] OpenAI, “GPT-4 Technical Report”, arXiv:2303.08774, 2023.

[2] K. S. P. A. A. A. Y. B. N. B. S. B. P. B. S. B. D. B. L. B. C. C. F. M. C. G. C.
D. E. J. F. J. F. W. F. B. F. C. G. V. G. N. G. A. H. S. H. R. H. H. I. M. K.
V. K. M. K. I. K. A. K. P. S. K. M.-A. L. T. L. J. L. D. L. Y. L. Y. M. X. M.
T. M. P. M. I. M. Y. N. A. P. J. R. R. R. K. S. A. S. R. S. E. M. S. R. S. X. E.
T. B. T. R. T. A. W. J. X. K. P. X. Z. Y. I. Z. Y. Z. A. F. M. K. S. N. A. R. R.
S. S. E. T. S. Hugo Touvron Louis Martin, “Llama 2: Open Foundation
and Fine-Tuned Chat Models”, arXiv:2307.09288, 2023.

[3] N. P. J. U. L. J. A. N. G. Ł. K. Ashish Vaswani Noam Shazeer and I.
Polosukhin, “Attention is all you need”, Advances in neural information
processing systems, vol. 30, 2017.

[4] S. Z. Y. S. L. Z. C. H. Y. J. E. G. H. Z. I. S. Woosuk Kwon Zhuohan Li,
“Efficient Memory Management for Large Language Model Serving
with PagedAttention”, arXiv:2309.06180, 2023.

[5] W.-L. Chiang et al., “Vicuna: An Open-Source Chatbot Impressing
GPT-4 with 90%* ChatGPT Quality”. [Online]. Available: https://
lmsys.org/blog/2023-03-30-vicuna/

[6] K. G. J. H. L. L. F. L. V. R. S. R. Christopher Olston Noah Fiedel and J.
Soyke, “Tensorflow-serving: Flexible, high-performance ml serving”,
arXiv:1712.06139, 2017.

[7] “Serving DNNs like Clockwork: Performance Predictability from the
Bottom Up”, 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020.

[8] G. Z. M. J. F. J. E. G. Daniel Crankshaw Xin Wang and I. Stoica, “Clip-
per: A Low-Latency Online Prediction Serving System”, 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17),
2017.

[9] Z. Y. J. X. Y. M. W. C. W. H. F. Y. L. Z. Lingxiao Ma Zhiqiang Xie and L.
Zhou, “Rammer: Enabling holistic deep learning compiler optimiza-
tions with rTasks”, Proceedings of the 14th USENIX Conference on Oper-
ating Systems Design and Implementation, 2020.

[10] “TurboTransformers: an efficient GPU serving system for transformer
models”, Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2021.

[11] G.-W. K. S. K. Gyeong-In Yu Joo Seong Jeong and B.-G. Chun, “Orca: A
Distributed Serving System for Transformer-Based Generative Mod-

els”, 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022.

[12] M. Z. A. A. A. C. L. D. L. E. Z. J. R. S. S. O. R. e. a. Reza Yazdani
Aminabadi Samyam Rajbhandari, “DeepSpeed Inference: Enabling
Efficient Inference of Transformer Models at Unprecedented Scale”,
arXiv:2207.00032, 2022.

[13] A. C. J. D. J. B. A. L. J. H. K. X. S. A. Reiner Pope Sholto Douglas and
J. Dean, “Efficiently Scaling Transformer Inference”, arXiv:2211.05102,
2022.

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

	Introduction
	Background
	KV Cache
	PagedAttention and vLLM

	Memory Inefficiencies in PagedAttention
	Text Analysis Workloads
	Chat Workloads
	Latency versus Throughput

	Methods
	Prefix Cache
	Prefix Scheduling

	Implementation
	Existing Implementation Bugs
	Prefix Storage
	Swapping Implementation
	CPU Swapping Details
	Disk Swapping
	Prefix Scheduling
	Fastest-Prefix-First (FPF)
	Relaxed-Fastest-Prefix-First (Relaxed-FPF)

	Prefetching

	Case-Study: LSPDojo
	Tree Search Method

	Benchmarks
	Text Analysis Benchmark
	Chat Benchmark
	Benchmark Results

	Discussion
	Related Work
	Model Serving
	Transformer Serving
	PagedAttention

	Future Work and Limitations
	Conclusion
	Acknowledgement
	References

