
Whisper: Private Analytics via Streaming, 
Sketching, and Silently Verifiable Proofs

Yuwen Zhang, with Mayank Rathee, Raluca Ada 
Popa, Henry Corrigan Gibbs.
CS 262A

December 5th, 2023

Background
In private aggregation, an analyst wants to compute some aggregate statistic, 
such as mean, standard deviation, or sum, over many client inputs. If the analyst 
wants to compute heavy hitters – the most frequently occurring client inputs – 
special techniques are required. To preserve client privacy, clients secret share 
their inputs between two servers, and provide hiding proofs of their well 
formedness that the servers need to check. 

Problem
1. Existing solutions incur large server-server communication to verify these 

well formedness proofs.

We desire a way to efficiently compress multiple proofs into a single 
succinct batch proof.

2. Existing solutions for private heavy hitters additionally require all client 
submissions to be present before starting proof verification and 
aggregation. 

We desire a space efficient, streaming friendly way to compute heavy 
hitters.

Evaluation
Runtime to Compute Heavy Hitters

System design

Silently Verifiable Proofs

Clients invoke the upload service, where they upload their secret 
shared proofs and measurements into cloud storage buckets. The 
processing service verifies the well formedness of each batch, and 
outputs an aggregate.

At midnight in every global time zone, clients submit their inputs to 
each server’s upload service. 

To ensure that each honest client input ends up in the same batch, 
clients tag their submissions with a timestamp. Each server has a fixed 
window, where it groups client submissions based on these tagged 
timestamps.

Clients generate two proof shares π1 and π2, for each individual 
server, as well as a public share πpub that verifiers will use generate 
succinct vtags. vtags are valid if they sum to 0. 

Many of these 0 checks can be batched together using shared 
randomness between the servers. Each batch will verify only if every 
tag in it is well formed, and will fail otherwise.

Note: the general idea behind these proofs is broadly applicable to 
many zero knowledge proofs on secret shared data.

Detecting malicious clients

Poplar, the current state of the art for computing heavy hitters in our 
trust setting, is not streaming friendly, and sees drastic slowdowns as 
the number of clients stops fitting in main memory. Our streaming 
friendly approach doesn’t have this issue.

Communication and Runtime for Common Statistics

Future Work
• End to end cost comparison to prior work, including storage and 

networking costs
• Other ways to validate sketches
• Applications of Silently Verifiable Proofs to more Zero Knowledge 

Proofs.

Sketching for heavy hitters
Instead of computing exact heavy hitters, we use sketching to 
compute approximate heavy hitters. Our approach is very similar to 
Count Sketch: each string is hashed to a certain bucket, and some 
local aggregation occurs within that bucket. Failure probability 
increases as a heavy hitter’s bucket gets more and more non-heavy-
hitter collisions.

These are some commonly deployed statistics – SumVec takes the 
vector sum of client measurements, ensuring that the ℓ∞ norm of 
each measurement is less than some fixed value. Servers take slightly 
longer to generate vtags, but save orders of magnitude 
communication. 

Each epoch is broken down into 
chunks that fit into server 
memory.

We use a PRF to enforce evenly 
distributed batches, and to protect 
against malicious clients

To detect failing proofs in each 
batch, we use a modified version 
of binary search.


