Yuwen Zhang, with Mayank Rathee, Raluca Ada
Popa, Henry Corrigan Gibbs.
CS 262A

December 5th 2023

Background

In private aggregation, an analyst wants to compute some aggregate statistic,
such as mean, standard deviation, or sum, over many client inputs. If the analyst
wants to compute heavy hitters — the most frequently occurring client inputs —
special techniques are required. To preserve client privacy, clients secret share
their inputs between two servers, and provide hiding proofs of their well
formedness that the servers need to check.

Problem

1. Existing solutions incur large server-server communication to verify these
well formedness proofs.

We desire a way to efficiently compress multiple proofs into a single
succinct batch proof.

2. Existing solutions for private heavy hitters additionally require all client
submissions to be present before starting proof verification and

aggregation.

We desire a space efficient, streaming friendly way to compute heavy
hitters.

System design

(Server 1 \
Storage
Upload =~ " .
------- T ,:. . batch; |
rCIlent \ L. patchisr |
/‘*.’ Processing ...
> Service g
\\—'l) B partial aggregate EEEEm. > result

’
L 4
-’
*
L 4
L
-’
L
v’

s ’
‘s

testing * ‘ P
Clients invoke the upload service, where they upload their secret

shared proofs and measurements into cloud storage buckets. The
processing service verifies the well formedness of each batch, and
outputs an aggregate.

At midnight in every global time zone, clients submit their inputs to
each server’s upload service.

To ensure that each honest client input ends up in the same batch,
clients tag their submissions with a timestamp. Each server has a fixed
window, where it groups client submissions based on these tagged
timestamps.

Whisper: Private Analytics via Streaming,
Sketching, and Silently Verifiable Proofs

Silently Verifiable Proofs Evaluation
Runtime to Compute Heavy Hitters
106] .] : 1 : I

0 -@— Whisper

v © ©— Whisper (after final batch)

€ © 10°
Gen—>7'[1,7'[2,7'[p“b - g —Q— Poplar

S

gv 10 - —O— -0
Eva =
Fva e e A
Eva 1M 1.25M 1.5M 1.75M

Number of clients

Clients generate two proof shares m, and m,, for each individual
server, as well as a public share i, that verifiers will use generate
succinct vtags. vtags are valid if they sum to O.

Poplar, the current state of the art for computing heavy hitters in our
trust setting, is not streaming friendly, and sees drastic slowdowns as
the number of clients stops fitting in main memory. Our streaming

, friendly approach doesn’t have this issue.
Many of these 0 checks can be batched together using shared

randomness between the servers. Each batch will verify only if every

tag in it is well formed, and will fail otherwise. Communication and Runtime for Common Statistics

)
~ 108 -
. . . . [3
Note: the general idea behind these proofs is broadly applicable to E S 106
O wn]
many zero knowledge proofs on secret shared data. o
Q>) — 104 -
O
Detecting malicious clients "
@ 75 - BEE Whisper (0% mal) B Prio3-c
Each epoch is broken down into P E w:?spef E?-/l% ”;)a” BN Prio3-s
\ - £ 50 - isper (1% ma
{ T — \ chunks that fit into server .
J memory. v 25 -
>
@ Pseudorandom Function g i
. We use a PRF to enforce evenly SumVec SumVec Hist Hist AVQ
mt;emory memory memory memory distributed batches, and to protect 128, 0.1M 1024, 0.1M 1024, 0.1M 8192, 0.1M 64-bit, 1M
et e s Pt : . : Statistic, size, no. of clients
— against malicious clients ' S
\} IOURIesHnY ; - f i These are some commonly deployed statistics — SumVec takes the
T ling pr In : '
= — “ 0 detect falling p OOT> 1h Each vector sum of client measurements, ensuring that the £.. norm of
[5 I - I) I u \ batch, we use a modified version

each measurement is less than some fixed value. Servers take slightly
longer to generate vtags, but save orders of magnitude
communication.

Future Work

End to end cost comparison to prior work, including storage and
networking costs

* Other ways to validate sketches

* Applications of Silently Verifiable Proofs to more Zero Knowledge
Proofs.

of binary search.

Sketching for heavy hitters

Instead of computing exact heavy hitters, we use sketching to
compute approximate heavy hitters. Our approach is very similar to
Count Sketch: each string is hashed to a certain bucket, and some
local aggregation occurs within that bucket. Failure probability
increases as a heavy hitter’s bucket gets more and more non-heavy-
hitter collisions.

