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Abstract—We present Whisper, a system for privacy-preserving
collection of aggregate statistics. Like prior systems, a Whisper
deployment consists of a small set of non-colluding servers;
these servers compute aggregate statistics over data from
a large number of users without learning the data of any
individual user. Whisper’s main contribution is that its server-
to-server communication cost and its server-side storage costs
scale sublinearly with the total number of users. In particular,
prior systems required the servers to exchange a few bits
of information to verify the well-formedness of each client
submission. In contrast, Whisper uses silently verifiable proofs,
a new type of proof system on secret-shared data that allows
the servers to verify an arbitrarily large batch of proofs by
exchanging a single 128-bit string. This improvement comes
with increased client-to-server communication, which, in cloud
computing, is typically cheaper (or even free) than the cost of
egress for server-to-server communication. To reduce server
storage, Whisper approximates certain statistics using small-
space sketching data structures. Applying randomized sketches
in an environment with adversarial clients requires a careful
and novel security analysis. In a deployment with two servers
and 100,000 clients of which 1% are malicious, Whisper can
improve server-to-server communication for vector sum by
three orders of magnitude while each client’s communication
increases by only 10%.

1. Introduction

Private-aggregation systems make it possible to compute
aggregate statistics about a population of devices, while
revealing no information—beyond the aggregate statistic
itself—about any device’s data. These systems make it pos-
sible to privately collect information on user behavior [3],
public health trends [7], [52], and device telemetry [69] at
million-user scale.

In this paper, we focus on private-aggregation systems
based on multi-party computation techniques [2], [9], [17],
[32], [34], [36], [38], [44], [48], [49], [56], [62], [67], [68].
These systems require a small set of infrastructure providers
(“servers”); the systems protect client privacy as long as an
adversary cannot compromise all servers. Deployments of
private aggregation at Apple [3], Google [7], Mozilla [69],
and others [38] use this approach.

In a run of one such private-aggregation protocol, each
user splits its data using a cryptographic secret-sharing
scheme, and sends one share to each server. In addition,
each user sends the servers a zero-knowledge proof attesting
that its secret shares are well-formed. After receiving the

data submissions and validity proofs from a large number
of clients, the servers verify each proof, and then aggregate
the valid submissions to compute the statistic of interest.

An annoyance in prior systems [2], [9], [32], [36], [38],
[56] is that the servers must exchange messages to check
each client’s validity proof, so the server-to-server commu-
nication cost is linear in the number of clients. When the
number of clients is in the millions, this server-to-server
communication cost is significant.

More recent systems [17], [58], [68] support computing
the “heavy-hitter” statistic: each client holds a string and the
statistic computes the set of most popular client-held strings.
This statistic is useful when the universe of possible client
submission is large—for example, when computing the set
of URLs that most often cause a user’s browser to crash.

When computing heavy hitters, existing multiparty-
computation-based systems [17], [58], [68] require the
servers to store an amount of secret state that grows linearly
with the number of clients. When the client submissions
arrive in a stream [1], the servers cannot begin processing
the first client submission until the last submission arrives.
As a result, as the number of client uploads increases, the
servers’ memory and storage requirements balloon.

We present Whisper, a system for the privacy-preserving
collection of aggregate statistics that has server-to-server
communication and server storage costs that are sublinear
in the number of users. Whisper provides these efficiency
properties while supporting the computation both of simple
arithmetic statistics and of heavy hitters. Whisper operates in
the same deployment model as existing systems [32], [36],
[58] (Figure 1) and provides the same privacy property: if
there is at least one honest server, no adversarial coalition
of malicious clients and servers can learn any information
about honest clients’ data, beyond what the aggregate statis-
tics themselves leak.
Silently verifiable proofs. To reduce server-to-server com-
munication in Whisper, we introduce silently verifiable
proofs, a new type of zero-knowledge proof system on
secret-shared data [16]. In a silently verifiable proof system,
the verifiers can verify a batch of proofs by exchanging a
single field element. This batch verification is possible even
when the provers are mutually distrusting and when each
prover is proving a different statement. Clients in Whisper
use silently verifiable proofs to convince the servers that
their data submissions are well formed; the servers can check
arbitrarily large batches of proofs using only a few bits of
server-to-server communication.

Most of the work to develop the cryptography behind
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Figure 1: Whisper’s server architecture. Clients split their
data using a secret-sharing scheme and send one share to
each server. The servers process submissions in batches.

Silently Verifiable Proofs was finished before this class.
We will provide a brief overview of their syntax and and
construction, but we will mostly focus on the systems-level
consequences of their use.

Privately streaming heavy hitters. To avoid needing to
store per-client state in our private heavy-hitters computa-
tion, we use a small-space sketching data structure [72]. In
doing so, we give up on computing the exact heavy hitters,
and instead settle for a good approximation—we expect this
trade-off to be acceptable in many applications. Outside of
this class, we formally bound the effect that a malicious
client can have on the final computation of the heavy hitters.

We implement Whisper on top of ISRG’s libprio-rs
library [39]. In our evaluation where two servers aggregate
1024-sized vectors across 100,000 clients of which 1% are
malicious, each server in Whisper only sends 0.2 MB com-
pared to 415 MB for state-of-the-art Prio3 [39]. In achieving
this, our per-client communication increases to 303 KB
from 274 KB for Prio3. This trade-off is most appealing
in cloud deployments, where ingress is free and egress is
costly. We estimate up to 3× reduction in server operating
costs for certain statistics. We additionally evaluate our
system’s performance over the Android privacy preserving
exposure notification, a collection of 14 prio-style aggregate
statistics originally When the same servers compute heavy
hitters over a stream of 1.75 million client uploads, our
baseline Poplar [17] overruns the 64 GB memory at the
servers and takes four days to finish, while Whisper takes
about two hours and recovers all the heavy hitters with
probability at least 0.999, while taking only 15 secs to finish
after receiving the last upload. Streaming the heavy hitter
computation in Whisper comes at a 14-17× increase in client
communication over Poplar, however, it stays under 500 KB.

2. System Overview

In this section, we outline Whisper’s system architecture,
capabilities, and security properties.

2.1. System Model

A Whisper deployment consists of two or more logical
servers, and a large number of clients. All the communica-
tion happens over TLS-protected network channels.
Servers. Each logical server in Whisper server runs in its
own administrative domain, separate from all other servers
in the system. A logical Whisper server can consist of a
large number of physical servers or cloud instances. For
conciseness, we use “server” to refer to a logical server.
We assume that all participants in the system have the
cryptographic public keys of each server in the system. The
servers jointly compute the same set of aggregate statistics
on the users’ data. There are 𝑣 servers (𝑣erifiers).
Clients. Each client holds a piece of private data; the servers
compute aggregate statistics over all clients’ data. Clients in
Whisper communicate with each of the Whisper servers and
do not communicate with other clients. We assume that the
clients have a means to authenticate to the servers [5].

2.2. Architecture

Whisper computes aggregate statistics in a sequence of
time epochs: at the end of each epoch, the servers publish
a set of aggregate statistics computed over the data of the
clients participating during the just-completed epoch. The
protocol flow in each epoch works in the following three
steps, depicted in Figure 1.
Step 1: Client data submission. Each client authenticates
to the Upload Service at each server, which associates this
client with an id. The client uploads an encoding of its
private data with a silently verifiable proof of valid encoding
by sending a single message to each server.

The Upload Service associates each message with a
specific batch of submissions, a batch corresponding to a
time interval. We need to ensure that each client uploads to
the same batch on each server. A malicious client can try
to upload in 𝑣 different batches at the 𝑣 servers to cause
𝑣 times more work for the servers. At the same time, we
do not want the “silent” servers to communicate per client
to reach consensus. To prevent this issue, Whisper has each
client first submit its upload to the first server. This server
will verify that this client id has not uploaded already in
the epoch. It will assign this message to a batch and will
return a signed acknowledgment 𝜎ack that covers the batch
identifier and the client id. The client will then upload to
the other servers to the same batch by presenting 𝜎ack. This
guarantees that every client input belongs to the same
Step 2: Server data validation and aggregation. After
receiving client submissions, the servers check that they
are well formed using the silently verifiable proof in each
submission. To keep the server state from growing, Whisper
servers verify client submissions in batches as they arrive
within the epoch. The Processing Service processes each
batch. It first tests the validity of the submissions in the
batch by running the batch-verification routine of the silently
verifiable proofs. In the optimistic case—when all clients in
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a batch are honest—the entire validity check requires the
servers to exchange a single short (128-bit) field element. If
any proof in the batch is invalid, the servers will identify
the failing proof via group-testing techniques [41]; they will
discard the corresponding malformed submissions. These
steps require interacting with the corresponding Processing
Service on the other servers. It then aggregates the values
in the batch into a running partial aggregate.
Step 3: Publishing the aggregate statistic. After the
servers process all input batches, the Processing Service
combines the resulting aggregate with the aggregates on the
other servers to obtain the aggregate statistic.

2.3. Supported statistics

The configuration of a Whisper deployment specifies
which aggregate statistic 𝑓 the system will compute in each
epoch. Following prior private-aggregation systems [17],
[32], [36], Whisper supports any aggregate statistic that can
be computed via a verifiable additive encoding of the client’s
data [32], [54]. We discuss additive encodings in more detail
in §4. Using encoding techniques from prior work [22],
[30], [32], [44], [67], [73], Whisper supports the following
aggregation functions:
• Basic statistics: sum, mean, variance, stddev, min/max

(over small domains)
• Counting: frequency count, approximate frequency
• Boolean operations: and, or
• Machine learning: linear regression, 𝑟2 coefficient

As one of our technical contributions, we show that
Whisper can also support computation of approximate heavy
hitters (popular strings) §5.

In many cases, Whisper reveals to the servers slightly
more information about the client inputs (𝑥1, . . . , 𝑥𝑛) than
the aggregate statistic 𝑓 (𝑥1, . . . , 𝑥𝑛) itself. For example, for
sum, there is no extra leakage, while private-aggregation
schemes for variance additionally leak the mean for effi-
ciency [32]. In this case, as in prior work, we define the
leakage 𝑓 (𝑥1, . . . , 𝑥𝑛) of the encoding to capture this extra
information. In all cases in Whisper, the leakage function is
symmetric in its inputs—so the leakage reveals no informa-
tion about which client 𝑖 held which private input 𝑥𝑖 .

2.4. Security properties

Whisper’s security properties are similar to existing
privacy-preserving systems for collecting aggregate statis-
tics. We describe these properties in more detail in Sec-
tions 4.2 and 5; we sketch them here. All of the security
properties are relative to an aggregate statistic 𝑓 and an
associated leakage function 𝑓 .
• Privacy. As long as one server is honest, no server or

malicious client learns any information about the hon-
est clients’ data 𝑥1, . . . , 𝑥𝑛, except what can be inferred
from the aggregate statistic 𝑓 (𝑥1, . . . , 𝑥𝑛) and the leakage
function 𝑓 (𝑥1, . . . , 𝑥𝑛). All the statistics 𝑓 that Whisper
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Figure 2: Silently verifiable proofs with batch verification.

supports and their leakage functions 𝑓 are symmetric in
their inputs, and therefore, the output reveals no informa-
tion about which client submitted which input.

• Correctness against malicious clients. If all the servers
are honest, then a small set of malicious clients can
only affect the aggregate statistic 𝑓 by misreporting their
private data. When 𝑓 computes heavy hitters, we allow
malicious clients to introduce some small additional error
in the output with low probability.
For privacy, it is important that “enough” honest clients

participate in each epoch. This ensures that 𝑓 (𝑥1, . . . , 𝑥𝑛)
and 𝑓 (𝑥1, . . . , 𝑥𝑛) don’t reveal any private information about
honest clients’ inputs. For example, if there is a single honest
client in an epoch, the output can trivially leak the client’s
data. Noising the aggregate statistic to provide differential
privacy [43], [67] gives some protection in this case. To
limit the number of malicious clients, as in prior works [16],
[17], [32], [67], we assume that the servers employ Sybil-
protection mechanisms [5], [6], [38], [75].

We assume that pairwise authenticated and encrypted
channels exist from clients to servers and between the
servers. We make no synchrony requirement and the ad-
versary can observe all network links.

3. Silently Verifiable Proofs on Secret Shares

A silently verifiable proof system is a new type of zero-
knowledge proof system on secret-shared data that allows
a set of verifiers to check an arbitrarily large batch of
proofs, from independent provers, with verifier-to-verifier
communication cost constant in the batch size.

We first recall the definition of a zero-knowledge proof
on secret-shared data [16]. Such a proof system is a protocol
that takes place between:
• a prover, holding an input 𝑥 ∈ F𝑛, for a finite field F and

input size 𝑛,
• many verifiers, where each verifier holds an additive

secret share of the input 𝑥.
The protocol allows the prover to convince the verifiers that
the input 𝑥 satisfies a public predicate—i.e., that the input 𝑥
is in some language L ⊆ F𝑛—while revealing nothing about
the input 𝑥 apart from the fact that 𝑥 ∈ L.

We consider a flavor of zero-knowledge proofs on secret-
shared data that has a very simple communication pattern:
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1) the prover sends each verifier a single message,
2) the verifiers each broadcast a single message to the other

verifiers, and
3) each verifier runs some computation on these received

messages to determine whether to accept or reject the
proof.

Many existing proof systems have this structure [16], [32],
[36]. In practice, a designated verifier receives the messages
from all verifiers and decides to accept or reject the proof.

A silently verifiable proof system is a special zero-
knowledge proof on secret-shared data in which the verifiers’
decision of whether to accept or reject the proof is a linear
function of the broadcasted messages. As we discuss in §3.2,
silently verifiable proofs allow verifiers to check a large
batch of proofs at once, with minimal verifier-to-verifier
communication.

3.1. Definition

We provide an informal definition of silently verifiable
proof systems in the information-theoretic setting. That is,
we require the proof systems to be secure against com-
putationally unbounded prover and verifiers. Later on, we
will consider computationally-secure variants of these proof
systems—in that setting, we consider infinite families of
languages L = {L𝜆}∞𝜆=1, we require all algorithms to run
in time poly(𝜆), and we prove security against adversaries
that run in time poly(𝜆).

Our definition of zero-knowledge proofs on secret-shared
data closely follows those in prior work [16], [32], [36]. The
key differences are:
1) our proofs have a “public part” that the prover sends to

all verifiers, in addition to a per-verifier “secret part,” and
2) we only consider non-interactive proof systems—in

which the prover sends a single message to each verifier.

Notation. Throughout, for a natural number 𝑛, we use [𝑛]
to denote the set {1, . . . , 𝑛}.
Syntax: Zero-knowledge proof on secret-shared data.
For a finite field F, input size 𝑛, tag size 𝑞, and language
L ⊂ F𝑛, a 𝑣-verifier zero-knowledge proof system on secret-
shared data consists of the following algorithms:
Gen(𝑥1, . . . 𝑥𝑣) → (𝜋1, . . . , 𝜋𝑣 , 𝜋

pub). Takes as input 𝑥𝑖 ∈ F𝑛

corresponding to every verifier 𝑖 ∈ [𝑣] and outputs 𝑣

private proofs 𝜋𝑖 and one public proof 𝜋pub.
Eval(𝑥𝑖 , 𝜋𝑖 , 𝜋pub; 𝑟) → vtag𝑖 ∈ F𝑞 . Takes as input the 𝑖-th

verifier input 𝑥𝑖 , private proof 𝜋𝑖 , the public proof 𝜋pub,
and a random tape 𝑟. Returns a proof tag vtag𝑖 of size 𝑞.

Ver(vtag1, . . . , vtag𝑣) ∈ F. Takes as input the 𝑣 verification
tags and checks whether to accept or reject the proof. By
convention, output 0 ∈ F indicates acceptance.

Silent verification. We say that the proof system is silently
verifiable if the verification predicate Ver computes a linear
function (over field F) of the verification tags it takes as
input. The tag size 𝑞 is one and Ver checks that the (scaled)
verification tags sum to zero, both follow from the linearity.

A zero-knowledge proof system on secret-shared data—
whether silently verifiable or not—must satisfy the following
completeness, soundness, and zero-knowledge properties.
Completeness. Completeness states that verification will
always succeed if 𝑥 ∈ L and all the parties are honest.
Soundness. Soundness states that a prover trying to prove
that 𝑥 is in the language L for 𝑥 ∉ L will fail the verification
for 𝑣 honest verifiers.
Zero knowledge. Informally, any strict subset of the veri-
fiers does not learn any information about the prover’s pri-
vate input 𝑥. In our private analytics use case, this property
guarantees that the client leaks no information about its
private data to an adversarial coalition of up to 𝑣 − 1 out of
the 𝑣 servers.
Efficiency metrics. The most important efficiency metric
in a silently verifiable proof system is the proof size—the
number of bits that Gen outputs. The proof size dictates the
number of bits that the prover must send to the verifiers
during one interaction. Server compute is also an important
efficiency metric. This quantity is largely dependent on the
properties of the underlying non-silent proof system.

3.2. Features of silently verifiable proofs

We now quickly mention two useful properties of silently
verifiable proofs:
Batch checking. A set of verifiers can check an arbitrarily
large batch of silently verifiable proofs at the same com-
munication cost as checking a single proof. Recall that, to
verify a silently verifiable proof, the verifiers
• each compute a verification tag from their input, and
• check that their verification tags sum to zero.

To verify a batch of 𝐵 proofs, the verifiers compute the
verification tags for each of the 𝐵 proofs as before. Rather
than broadcasting the verification tags for each proof sepa-
rately, the verifiers can agree on a shared random test vector
𝑡 ∈ F𝐵. Each verifier 𝑖 publishes the inner product of their 𝐵
verification tags (as a vector in F𝐵) with the shared random
vector 𝑡 (Figure 2). If any set of verification tags in the batch
sums to a non-zero value, then the combined verification tag
will be non-zero with probability at least 1 − 1

|F | .
Zero-knowledge against malicious verifiers. By definition,
silently verifiable proof systems provide zero-knowledge
even if a subset of the verifiers is malicious. In fact, this
strong privacy guarantee comes for free because each verifier
just sends a single message. Provided that the prover is
honest, the messages that honest verifiers send are inde-
pendent of the error that malicious verifiers introduce in
their messages. Therefore, malicious verifiers can learn no
additional information about the client’s private input by
deviating from the prescribed protocol.

3.3. General construction: silently verifiable proofs

To sketch how our silently verifiable proofs work, con-
sider a prover who wants to prove that its input 𝑥 lies in some
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Proof Prover to Verifier to verifier
system verifier All good 𝑑 bad

Non-silent |𝜋 | 𝑝𝑞 𝑝𝑞

Silent |𝜋 | + 𝑣 + 𝑞 1 𝑑 log2
𝑝

𝑑

TABLE 1: Communication in field elements for silently
verifiable proofs and the underlying non-silent proof system.
There are 𝑝 provers and a small set of 𝑣 verifiers. The
non-silent proof system has tag size 𝑞. Entries represent
the comm. from each prover to each verifier, and verifier to
verifier comm. to verify the batch of 𝑝 proofs. The proofs
are either all honestly generated or 𝑑 out of 𝑝 are malicious.
𝑂 (·) notation is suppressed for readability.

language L. Each verifier holds a secret share of the input
𝑥. Furthermore, say that we have a zero-knowledge proof
system ΠL on secret-shared data for the language L in which
the verifiers communicate with each other over a broadcast
channel (existing protocols satisfy this property [16], [36]).

To generate the silent proof, the prover locally simulates
the execution of all of the parties (prover and verifiers)
running the protocol ΠL. The prover then sends to each
verifier (1) a transcript of all messages that the simulated
verifiers exchanged via the broadcast channel and (2) the
view of each verifier in the simulated protocol. To check the
proof, the silent verifiers only need to check that (a) their
transcripts of the simulated broadcast channel are identical
and (b) their simulated views are correct according to the
protocol ΠL. The verifiers can locally generate secret shares
of a test value that is zero if and only if both of these checks
pass (with high probability). To check a batch of proofs at
once, the verifiers can publish a random linear combination
of each proof’s test value and accept if the resulting value
sums to zero. We depict this construction in Figure 3.

For specific zero knowledge proof systems on secret
shared data, we give silently verifiable proof constructions
with particularly small proof sizes.
Constant-degree languages. Languages with a constant
degree (typically 𝑑 = 2) define the valid submissions for
many statistics like (vector) sum, mean, variance and
frequency count. For these languages, prior work [16]
constructs and implements [39] zero-knowledge proofs on
secret-shared data with proof size 𝑂 (

√
𝑀), where 𝑀 is the

number of multiplication gates in the valid predicate. Using
these non-silent proof systems, we can generate silently
verifiable proofs with proof size 𝑂 (

√
𝑀).

Language of vectors of Hamming-weight one. In private-
aggregation applications, the client must often prove to the
servers that it has given them secret shares of a vector of
Hamming-weight one. This arises, for example, when com-
puting the frequency count and approximate frequency
statistics [32], and sketching data structures for statistics
like heavy hitters (§5). Prior work on arithmetic-sketching
schemes [17]–[19] gives protocols that a set of verifiers
can use to test that a secret-shared vector has Hamming-
weight one, while communicating only a constant number of

field elements. We can compile this protocol into a silently
verifiable proof.

4. Collecting Aggregate Statistics

Here, we give a short overview on how we use silently
verifiable proofs to compute aggregate statistics.

4.1. Preliminaries: Additive encodings

We recall additive encodings, as used in Prio [32] and
other private-aggregation systems [17], [20], [36], [44], [58],
[61], [62], [67], [73]. For an input space X , an output
space Y , and number of inputs 𝑛, let 𝑓 : X 𝑛 → Y be an
aggregation function. For a finite field F and encoding length
ℓ, a private additive encoding for 𝑓 consists of three efficient
algorithms:
• Encoder 𝐸 (𝑥) → 𝑒. Outputs an encoding 𝑒 ∈ Fℓ of input
𝑥 ∈ X .

• Verifier 𝑉 (𝑒) → {0, 1}. Verifies an encoding 𝑒 ∈ Fℓ .
• Decoder 𝐷 (𝑒) → 𝑦. Outputs the decoding 𝑦 ∈ Y of its

input 𝑒 ∈ Fℓ .
We want to use these three functions to compute 𝑓 in a

privacy preserving way. Intuitively, many clients will each
encode their input 𝑥𝑖 ∈ X using 𝐸 (𝑥) to get 𝑒𝑖 , and an
honest client’s encoding will verify under 𝑉 (𝑒). We can
then sum up encodings 𝑒1, 𝑒2, . . . 𝑒𝑛 to get a sum 𝑠, and we
can run 𝐷 (𝑠) on that sum to compute our original function
𝑓 (𝑥1, 𝑥2, . . . 𝑥𝑛). The servers additionally learn some limited
leakage from the encodings and the sum, we omit this
discussion here for brevity.

4.2. Private-aggregation scheme

Building blocks. The private-aggregation protocol with 𝑛

clients and 𝑣 servers for the function 𝑓 works over a finite
field F and requires two building blocks:
• A private additive encoding (𝐸,𝑉, 𝐷) over F with input

space X , output space Y and encoding length ℓ for the
aggregation function 𝑓 with leakage 𝑓 .

• A silently verifiable proof system (Gen,Eval,Ver) over
F for the language L = {𝑒 | 𝑉 (𝑒) = 1 and 𝑒 ∈ Fℓ } with
𝑣 verifiers, where ℓ is the encoding length and 𝑉 is the
additive-encoding verifier.

Protocol. At a high level, the protocol proceeds as follows:
Each client 𝑖 ∈ [𝑛] performs the following steps:
• On input 𝑥𝑖 , generate an additive encoding 𝑒 ← 𝐸 (𝑥𝑖) ∈
Fℓ of the input. Split the encoding into 𝑣 additive shares:
𝑒 = 𝑒1 + · · · + 𝑒𝑣 ∈ Fℓ .

• Generate a silently verifiable proof that the encoding is
well formed: (𝜋1, . . . , 𝜋𝑣 , 𝜋

pub) ← Gen(𝑒1, . . . , 𝑒𝑣).
• For each server 𝑗 ∈ [𝑣], send (𝑒 𝑗 , 𝜋 𝑗 ) to server 𝑗 . Send
𝜋pub to all servers.

Next, each server 𝑗 ∈ [𝑣] performs the following steps:
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Figure 3: Overview: Constructing silently verifiable proofs from zero-knowledge proofs on secret-shared data. Given a zero-
knowledge proof Π on secret-shared data, the prover, in its head, 1 initializes each verifier’s view, and 2 simulates their
interaction as per Π to generate the broadcast view. 3 It sends to each real verifier their initial view and the simulated
broadcast view. 4 Each verifier locally verifies a part of the simulation to generate a share of the final decision.

• For each client 𝑖 ∈ [𝑛], generate a verification tag vtag𝑖 ∈
F to verify that client 𝑖’s submission is valid.

• Take a random linear combination (using randomness
shared across all servers) of the 𝑛 verification tags
(one per client) to construct a batched verification tag
vtag★

𝑗
∈ F. Send this tag to the first server.

Finally, the servers perform the following steps:
• The first server checks that

∑
𝑗∈[𝑣 ] vtag

★
𝑗
= 0 ∈ F and

broadcasts the result to all the other servers.
• If the check fails, the servers jointly employ group testing

(§4.3) to identify the failing proofs and weed out the
malformed inputs.

• Each server 𝑗 ∈ [𝑣] adds its shares of each (valid)
encoding to generate a share 𝑒★

𝑗
∈ Fℓ of the sum of

encodings. Server 𝑗 sends 𝑒★
𝑗

to the first server.
• The first server computes the sum 𝑒★← ∑

𝑗∈[𝑣 ] 𝑒
★
𝑗
∈ Fℓ

and computes the final output out ← 𝐷 (𝑒★) ∈ Y , i.e.,
the aggregate statistic over the clients’ secret inputs.

As mentioned in §2.2, the servers in this protocol can verify
the submissions in batches of size 𝑛𝑏 each and locally
aggregate their shares of passing submissions as they go.
In the end, each server 𝑗 ∈ [𝑣] sends its 𝑒★

𝑗
to the first

server.

Efficiency. The server storage while running the protocol is
essentially just a vector in Fℓ . The server-to-server commu-
nication depends on the number of malicious clients, which
we discuss in §4.3.

4.3. Finding failing proofs

In our private-aggregation protocol, when malicious
clients submit invalid proofs, the servers’ batch-verification
check fails. To identify the failing proofs with little server-
to-server communication, we draw from the rich for group
testing literature [40], [41]. There exist two general classes
of group testing algorithms: adaptive and non-adaptive. Non-
adaptive group testing algorithms perform a constant number
of batch tests, and are guaranteed to catch up to a fixed
number of malicious clients. Though these asymptotics seem
attractive, since malicious clients can selectively upload to

different servers in a given epoch, a direct application of
non-adaptive methods would first acquire verifiers to reach a
consensus on the contents of each batch. This would require
a large amount of communication between the verifiers.

Whisper uses the generalized binary-splitting algo-
rithm [41], [57], an adaptive group testing algorithm. Instead
of using some pre-determined testing plan, adaptive group
testing algorithms change their tests based on the results
of previous tests. Though this requires more rounds of
communication, it allows us to gracefully handle malicious
clients that only upload to one server.

With a rough estimate on the upper bound of the number
of “defective” uploads 𝑑 in each batch of 𝑛𝑏 clients, the
servers first split the batch into 𝑑 non-overlapping sub-
batches of 𝑛𝑏/𝑑 clients each and compute vtag★

𝑖
for 𝑖 ∈ [𝑣]

for each such batch. They exchange these verification tags to
find which batches contain defective uploads. For each de-
fective batch, they binary search for defective clients within
each batch in parallel. They continue this binary search
until they are left with defective singleton batches—these
are the malicious clients. This requires 1 + log 𝑛𝑏

𝑑
rounds of

server interaction and 𝑂 (𝑣𝑑 log 𝑛𝑏
𝑑
) field elements in total

communication per batch of 𝑛𝑏 clients.
In order for the servers to form consistent sub-batches

even in the presence of malicious clients, we leverage each
client’s unique id (from §2.2). During setup, the servers will
share a key for a pseudorandom function, and use it to map
each id to a random and deterministic sub-batch. All future
splitting is done based on this PRF output, which allows for
graceful detection of clients with asymmetric uploads.

5. Sketching for heavy hitters

The heavy-hitters aggregate statistic takes as input a set
of 𝑛 strings, each 𝐿 bits long. It returns the set of strings
that appear more than a certain number of times in the input.
Prior work [17], [68] has proposed custom protocols for
efficient computation of exact heavy hitters. A limitation of
these protocols is that they require 𝑂 (𝐿) rounds and they
do not support streaming computation (i.e., the servers must
store and repeatedly compute over all client submissions).
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In this section, we consider the relaxed problem of
computing approximate heavy hitters—we tolerate a small
probability of failure in outputting the heavy hitters. The
benefit is that we get a streaming-friendly protocol with
round complexity constant in the string length 𝐿.

Our approach, following prior work on private aggrega-
tion [67], is to use linear sketches [25], [29], [30], [63], [72].
We apply a simplified version of Pagh et al’s sketch [72]
to approximate heavy hitters, allowing server computation
to be polynomial in the string length 𝐿.
Notation. In this section, all arithmetic happens over a
finite field F with size |F|, which we assume to be Z𝑝 =

{0, 1, . . . , 𝑝 − 1} for a prime modulus 𝑝. We treat elements
{1, . . . , ⌊ 𝑝2 ⌋} as positive and {𝑝−⌊ 𝑝2 ⌋, . . . , 𝑝−1} as negative.
The value −𝑥 represents the field element 𝑝− 𝑥. We use the
total ordering −⌊ 𝑝2 ⌋ < · · · < −1 < 0 < 1 < · · · < ⌊ 𝑝2 ⌋.

5.1. Building block: Bucketed string counting

Our private-heavy-hitters construction uses the private-
aggregation scheme of §4 as a subroutine. In particular, we
instantiate that private-aggregation protocol with an aggre-
gation function that we call “bucketed-string-counting.”

The aggregation function is parameterized by a num-
ber of buckets 𝐵, number of client inputs 𝑛, and a string
length 𝐿. Each client holds a pair of a bucket ID in
{1, . . . , 𝐵} and an 𝐿-bit string 𝜎. For each bucket 𝑏 ∈ [𝐵],
the aggregation function puts the “average” of the strings
in bucket 𝑏. That is, if we view each string as a vector
�̂� ∈ {−1, 1}𝐿 ⊆ F, then for each bucket 𝑏 ∈ [𝐵], the
aggregation function sums up the values in each bucket.
Private-aggregation for bucketed string counting. We
provide a simple additive encoding (𝐸,𝑉, 𝐷) for bucketed
string counting with encoding length ℓ = (𝐿 + 1) · 𝐵 and no
leakage. Informally, the validity predicate ensures that the
client only inserted a string into a single bucket (i.e., that
there is only one bucket-aligned run of non-zero values) and
that the string is encoded in {−1, 1}𝐿 . This is instantiated
using the sum additive encoding.

We use arithmetic sketching [18], [19] to construct
silently verifiable proofs for the language of valid encod-
ings. The encoding and the proof system then, via the
private-aggregation protocol of Section 4.2, yield a private-
aggregation scheme for bucketed string counting.
Optimization in the two-server case. We spent a large
portion of this semester trying to apply these arithmetic
sketches to heavy hitters. The sketch of [19] turned out to be
our most promising candidate. Later improvements to their
sketch such as [18] optimized for server-server communica-
tion, but silently verifiable proofs dramatically reduce this
cost regardless of the sketch details. Ultimately, verifiable
distributed point functions (VDPFs) [19], [37] proved more
optimal for the two server case. A verifiable DPF gives
a succinct way to secret share a weight-one vector. The
verifiability property means that two servers, each holding a
purported succinct share of a weight-one vector, can tell that
their shares are well formed by performing an equality check

Heavy hitters protocol. The scheme is parameterized
by a number of clients 𝑛, a string length 𝐿, a number
of buckets 𝐵, a hash function 𝐻bucket : {0, 1}𝐿 → [𝐵],
a hash function 𝐻sign : {0, 1}𝐿 → {0, 1}, and a heavy-
hitter threshold 𝑇 .

Client input preparation. Given a string 𝑥 ∈ {0, 1}𝐿
as input:
• The client hashes the string to get a bucket ID 𝑏 and

sign bit 𝛽:

𝑏 ← 𝐻bucket(𝑥) ∈ [𝐵] and 𝛽← 𝐻sign(𝑥) ∈ {0, 1}.

• If 𝛽 = 0, the client complements its bitstring 𝑥 ← 𝑥.
• The client participates in the secure-aggregation

protocol for bucketed string counting using input
(𝑏, 𝛽∥𝑥) ∈ [𝐵] × {0, 1}𝐿+1.

Output decoding. The output of the secure-aggregation
protocol is, for each bucket, (1) the number of strings
in that bucket and (2) the sum over F𝐿+1 of all strings
in that bucket. This output-decoding procedure recovers
the set of approximate heavy hitters from this output.

Initialize a set 𝐻 = ∅ of heavy hitters. Then, for each
bucket 𝑏 ∈ [𝐵] containing at least 𝑇 strings:
• Let 𝑠 ∈ F𝐿+1 be the sum of the strings in bucket 𝑏.
• “Round” 𝑠 to a bitstring �̂� ∈ {0, 1}𝐿+1 by mapping

each value in {−𝑛, . . . , 0} ⊆ F to 0 and all other
values to 1.

• Parse (𝛽, 𝜎) ← �̂� ∈ {0, 1} × {0, 1}𝐿 .
• If 𝛽 = 0, complement the bits of 𝜎: 𝜎 ← �̄�.
• Add 𝜎 to the set of heavy hitters 𝐻.

Finally, output 𝐻 as the set of heavy hitters.

Figure 4: Our protocol for approximate heavy hitters.

on a short string. As with our silently verifiable proofs, it
is possible for the servers to batch-verify a large number
of VDPFs by exchanging a short string. VDPFs thus can
replace silently verifiable proofs in the two-server setting
for heavy hitters.

At a high level, a VDPF’s concrete efficiency comes
from its use of AES hardware instructions. These kinds of
optimizations are not available when working with finite
fields, though there is some future work to explore SIMD
instructions for finite field operations.

5.2. Our heavy-hitters protocol

In our protocol (Figure 4), each client first hashes its
input string 𝑥 ∈ {0, 1}𝐿 into one of 𝐵 buckets, where 𝐵 is
a protocol parameter. The client and servers then run the
private-aggregation protocol for bucketed string counting to
compute the “average” of the strings in each bucket.
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Figure 5: Server-to-server communication and time of each
server for verification and aggregation of common statistics.
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Figure 6: Communication and proof generation time per
client for common statistics.

If there were no collisions—i.e., if two clients have
distinct strings they hash to distinct buckets—then the output
of the bucketed string counting function would exactly give
the set of all heavy hitters. However, since multiple distinct
strings may fall into the same bucket, we need to recover
heavy hitters despite collisions.

The delicate part of the analysis is showing that, for the
purposes of finding heavy hitters, these collisions do not
matter too much. That is, if a string is a heavy hitter, it is
unlikely that it will fall into a bucket containing so many
non-heavy-hitters that we cannot recover the original heavy
hitter. Not only do we need to consider honest collisions,
we also need to consider malicious clients who deliberately
choose to upload strings that collide with heavy hitters,
preventing the true heavy hitter from being recovered. This
analysis is omitted for brevity. To recover a heavy hitter from
a bucket, we just round each bit of the bucket’s counter either
up or down to determine whether the corresponding bit of
the string is either 0 or 1.

6. Evaluation

We implement Whisper in Rust on top of the libprio-rs
library [39]. Implementations of both Whisper and the com-
parison systems are multithreaded. For heavy hitters, we im-
plement our two-server optimization (§5) that uses VDPFs
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Figure 7: Verification communication per server with an
increasing number of clients for Hist 1024.

and given their compatibility with rings Z2𝑘 for 𝑘 ∈ N, our
heavy hitters code runs over Z216 and Z232 (depending on the
number of clients) for faster arithmetic. We use SHA-256 to
batch multiple verification tags for VDPFs. Our VDPF code
borrows from Poplar’s codebase [31]. To be sound against
adversaries that run in time at most ≈ 2128, for general
statistics, we perform two parallel runs with 128-bit field
each, and for heavy hitters, we set 𝜆 = 128 for VDPFs.
Evaluation setup. We use two servers to mirror existing de-
ployments [3], [7], [52], [69]: one in Iowa (us-central1-a)
and the other in Virginia (us-east4-c). Both have 32 vCPUs
and 64 GB memory. We use a 2021 MacBook Pro as a client.

For our exposure notification benchmarks, we additionally
instantiate Google Cloud Storage buckets local to both of
these locations to store client submissions.
Metrics of success
Silently verifiable proofs reduce server-server communica-
tion, while increasing client-server communication and, in
the general case, server compute. To illustrate this point, we
measure these quantities, and to show that this tradeoff is
often worthwhile, we additionally measure the dollar cost
of running a private analytics service using our framework,
using common cloud pricing models.

6.1. General statistics

Baseline. We first compare with the state-of-the-art system
Prio3 [39], [58]. For some statistics, Prio3 has a “chunk-
size” parameter that trades client-to-server communication
for server-to-server communication. We call the client-
optimized configuration Prio3-c and the server-optimized
configuration Prio3-s. We compare with both.

Statistics. We consider three main statistics supported by
Prio3: vector sum (“sumvec”), frequency count (“hist”),
and mean (“avg”). For vector sums, we consider vectors of
size 128 and 1024, and 16-bit entries. For frequency count,
we consider 1024 and 8192 bins. We compute means over
64-bit values.

Server performance. Figure 5 shows the server-to-server
communication and server time (after submissions are re-
ceived) for Whisper and Prio3. Increasing the number of
malicious clients barely affects Whisper’s server time. How-
ever, as we discuss in §4.3, finding 𝑑 malicious clients
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requires communication 𝑂 (𝑑 log 𝑛
𝑑
), and therefore, server

communication increases as the number of malicious clients
increases. The server-to-server communication remains up to
three orders of magnitude lower than the Prio3-c baseline.
The communication-cost improvement comes at an average
cost of roughly a 1.4× increase in server time.

Client performance. Figure 6 compares Whisper with Prio3
on client communication (encoding + proof size) and client
time (proof generation). Whisper has roughly 1.4× more
client communication than Prio3-c. As the size of the statis-
tics increases, the increase in our client communication
relative to Prio3 goes down. Our client time is at most a
few milliseconds and about 2-3× higher than baseline.

Server-optimized Prio3. Whisper improves server-to-server
communication by up to two orders of magnitude over Prio3-
s. Whisper outperforms Prio3-s in both client and server
communication, and the server time is comparable.

Dollar cost. Using Google Cloud’s pricing model [50], [53],
we estimate up to 3× reduction in the cost of running the
servers (about 2× reduction on average) over our baseline.

Silently verifiable proofs. Figure 7 shows batch verifiabil-
ity of our silently verifiable proofs. When the number of
malicious clients is fixed, verification communication stays
constant as clients increase. Prio3’s proof verification com-
munication scales linearly with clients. Our batch verifica-
tion comes at some increase in proof size, proof generation
time, and proof verification time (Figures 5 and 6).

6.2. Heavy hitters

Baseline. We compare with Poplar [17], the state-of-the-art
system for private heavy hitters in the two-server setting.

Parameters. We sample 256-bit client inputs from a Zipf
distribution with parameter 1.03 and support 10,000, as in
Poplar’s evaluation [17]. We configure Poplar as in their
evaluation. For Whisper, we set the parameters such that the
probability of finding all the heavy hitters is at least 0.999.
We consider two heavy hitter thresholds 1% and 0.1% of the
total number of clients. When using the 1% threshold, we
use a sketch with 256 buckets and 14 sketching instances.
When using the 0.1% threshold, we use 1024 buckets and
17 sketching instances.

We set the number of malicious clients as half the heavy
hitter threshold, and to maintain our success probability,
we double the number of buckets in our experiments with
malicious clients. For our streaming experiment, we form
batches of 3,000 clients. Each batch is verified, performing
group testing if necessary to sanitize malicious clients, and
then aggregated into the small heavy hitters sketch before
processing the next batch.

Streaming. Figure 8 shows server runtime to process large
streams with millions of clients. Poplar cannot stream its
computation and keeps all submissions in memory. At
around 1.5M clients, its memory usage exceeds the server’s
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Figure 9: Server-to-server communication and time of each
server to compute heavy hitters.

memory, and swapping to disk degrades the system perfor-
mance. Mitigating this slowdown would require using larger,
more expensive servers. Whisper uses streaming to avoid
this slowdown. Moreover, with the fixed batch size, Whis-
per’s server time after the last submission is independent of
the stream size.

Other metrics. Whisper’s server time is lower than Poplar in
most cases (Figure 9) and server-to-server communication is
lower by one to two orders of magnitude (Figure 9). This
translates to up to 3.8× reduction in the dollar cost to run
the servers based on Google Cloud’s pricing model [50],
[53]. However, the client communication in Whisper is 14-
17× larger than in Poplar, and the client is around 2×
slower. In absolute terms, our client communication is less
than 500 KB for both the heavy-hitter thresholds. Moreover,
historically, cloud providers don’t charge for ingress com-
munication. When the probability of heavy-hitter recovery
is 0.9, client communication is 7-10× higher than Poplar.

6.3. Exposure Notifications benchmark

To better understand our system’s performance in a real
world deployment, we measure our performance with a real-
istic suite of prio-style aggregate statistics, used in 2020 for
Apple and Google’s exposure notification private analytics
application [52]. We simulate 1 million client uploads into
two Google Cloud Storage Buckets, located in the same
physical regions as their associated processing servers. We
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tics over 1 million clients

evaluate Whisper with 0, 0.1, and 1% simulated malicious
clients. We do not distinguish between different malicious
behaviors – all client deviations from the protocol that we
could think of result in the same kind of detection, and the
same effect on the eventual group testing pattern.

Workload In 2020, Google and Apple collaborated to collect
private aggregate statistics over mobile phone users, in order
to document the spread of Covid. Google’s open source code
[51] collects 14 different statistics, concerning dates of expo-
sures, vaccination status, and frequency of exposures. Most
of these were expressed as Prio3 Histograms, containing less
than 100 buckets. The vast majority of the computation was
spent computing a single histogram of 1152 buckets.

Server Performance Similar to the Prio3 benchmarks, Whis-
per’s server-server communication was 2-5 orders of mag-
nitude lower than the base implementation. This high com-
munication proved to bottleneck server performance as well
– relative to the baseline, our code was much faster for this
workload than the simple Prio3 workloads, having at most
about a 15% difference. Though Whisper’s submissions
were 2x larger than Prio3’s, the additional storage cost was
almost negligible. We instantiated the upload service using a
512MB memory / 0.33 vCPU Google Cloud Function. The
cost of running this service was the same for both Whisper
and Prio3 approaches. Overall, we see between 1.5x-3.5x
cost savings.

7. Related Work

Single-server model. There is a rich literature on sys-
tems for private collection of aggregate statistics via local
differential privacy [4], [10], [11], [24], [67], often using
sketching algorithms as Whisper does. These systems pro-
vide an incomparable privacy property to Whisper: we aim
for an MPC-style privacy property—nothing leaks beyond
the aggregate statistic—while these systems provide user-
level differential privacy (and they do leak information about
each user’s data beyond the aggregate statistic itself). A
secondary distinction is that these systems do not necessarily

protect correctness against malicious clients [4], [10], [11],
[15], [24], [28], [42], [60], [67], [78]; adding such defenses
can be expensive [12], [15], [44], [62], [65]–[67], [70].
Private heavy hitters. Mix-net [26], [71] and other anony-
mous communication systems [33], [46], [47] can be used
to compute heavy hitters from the multiset of clients’ strings
while providing anonymity, however, the entire multiset of
the client inputs leaks in the process. In the distributed-
trust setting, existing protocols incur high server-to-server
communication [8], [14], [59], cannot compute heavy hitters
over a stream leading to large server-side storage [68] or
both [17]. Star [35] considers a different setting with an
aggregation server with a separate randomness server and
doesn’t hide the identity of clients with the same input.
Except for Plasma [68], the server egress in all these works
scales linearly with the number of clients. Plasma works in
a different threat model than Whisper assuming an honest
majority among three servers which can be challenging to
find in the real-world [64]. Moreover, Plasma and the two-
server state-of-the-art Poplar [17] cannot stream heavy hitter
computation leading to large server storage and require the
servers to interact over multiple rounds.
Differentially private aggregate statistics. There is a long
line of work [4], [10], [11], [21], [23], [24], [45], [74], [77]
on computing aggregate statistics over randomized responses
collected from the clients. The noise added by the clients
provides differential privacy, however, it leads to a loss in
the accuracy of the output and makes it challenging to filter
malformed submissions. Moreover, noisy submissions from
each client don’t completely hide all private information.
Whisper and related systems [2], [17], [32], [68] provide
a different privacy guarantee where only the output and
a modest leakage function are seen by the servers, and
the accuracy of the output is preserved. However when
the leakage from the output is a concern, Whisper can
easily be extended to use differential privacy where, similar
to [17], [27], [32], [67], the noise is added directly to the
aggregate [76]. This maintains higher accuracy compared to
local differential privacy. Zhu et al. [28], [78] develop a trie-
based heavy hitters protocol where subsampling the clients
provides meaningful differential privacy without requiring
additional noise. Prochlo [13] requires a trusted shuffler.
Batch verifiable proofs on secret-shared data. Zero-
knowledge proofs on secret-shared data supporting batch
verification are implicit in recent work by Hazay et al. [55]
where the proof sizes are at least linear in the size of the
predicate. Our silently verifiable proofs provide batch veri-
fication with sublinear-sized proofs for structured languages
common in private analytics. For the language of one-hot
vectors, verifiable distributed point functions [37] offer batch
verification and succinct key sizes.
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