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Abstract
We present a system of hierarchical Routing Information
Bases (RIBs) for the GDP, optimizing for reduced adver-
tisement traffic, scaled numbers of DataCapsule servers,
and increased DataCapsule availability as servers go
offline and later reappear online. The scalability of GDP
hinges on the scalability of its routing system. Previous
work [5] implements secure delegated routing with a
single global RIB, but routing with a hierarchy of RIBs is
better suited for massive scale and better models of real-
world nested trust domains. We address the challenges
that arise due to the data-centric, location-agnostic guar-
antees of the GDP, as well as its flat namespace and
security focus.

Keywords: Information-centric networking, Global Data
Plane

1 Introduction
The evolution of network architectures and the pro-
liferation of data-centric applications have led to the
emergence of the Global Data Plane (GDP), an innova-
tive infrastructure aimed at revolutionizing how data
is stored, accessed, and routed in a distributed network
environment. The GDP is distinct from traditional net-
work models, most notably the Internet, due to its focus
on data-centric, location-agnostic communication and a
flat namespace, which facilitates seamless data mobility
and security.
In recent years, with the exponential growth of data

generated by applications ranging from Internet of Thin-
gs (IoT) devices to large-scale cloud services, the need
for an efficient, scalable, and secure routing mechanism
within the GDP has become increasingly critical. Tradi-
tional routing systems, typically designed for location-
based, hierarchical IP networks, are not well-suited for
the unique challenges presented by the GDP. These chal-
lenges include routing in a flat namespace, ensuring data
availability in a dynamic environment with mobile data
sources, and maintaining security and trust across di-
verse administrative domains.

Our work presents a novel approach to routing within
the GDP framework, addressing these challenges head-
on. By introducing a system of hierarchical Routing

Information Bases (RIBs), we propose a solution that sig-
nificantly enhances the scalability and efficiency of data
routing in the GDP. Our approach leverages the notion
of trust domains, providing a structure that naturally
aligns with real-world administrative and organizational
boundaries. This hierarchical structure allows for more
effective management of routing information, reducing
the overhead associated with route advertisement and
discovery, especially in a network with a large number
of DataCapsule servers.

A key contribution of our work is the development of
source-based routing protocols and innovative routing
data structures that optimize for reduced advertisement
traffic. This is critical in a network where the location
of data can frequently change and the number of data
items (DataCapsules) can be vast. We also address the
challenges of routing failure and data mobility by intro-
ducing robust failure protocols and meta-DataCapsules.
These mechanisms ensure that the network can dynam-
ically adapt to changes, maintain data availability, and
efficiently update routing paths when servers go offline
or reappear.

The rest of this paper is organized as follows: Section
2 provides background on the GDP and related works,
laying the foundation for our contributions. In Section
3, we detail the design of our hierarchical RIBs, includ-
ing the routing data structures and algorithms. Section
4 describes our implementation and simulation setup.
We evaluate our system in Section 5, discussing the per-
formance benefits and potential areas for improvement.
Finally, we conclude in Sections 6 and 7 with an outline
of future work, and a summary of our contributions.

2 Background and Related Works
2.1 Global Data Plane
The Global Data Plane (GDP) [5] is an infrastructure
that provides storage and routing capabilities to sup-
port DataCapsules. The GDP is a distributed system of
storage nodes (DataCapsule servers) and routing nodes
(GDP routers) that enables location-independent com-
munication between clients and DataCapsules based on
a DataCapsule’s unique name.
The GDP network is organized as a graph of Trust

Domains (TDs) which are administrative domains like
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organizations that operate parts of the GDP infrastruc-
ture. TDs enable communication restrictions to trusted
portions of the network as dictated by DataCapsule own-
ers. The GDP includes a routing fabric made up of GDP
routers that enable communication between various en-
tities using flat addresses, rather than IP’s host-centric
communication. This makes the GDP an information-
centric network. Some key differences of the GDP from
IP routing:

• Routes and looks up flat, location-independent
names rather than IP addresses, which are tied to
specific hosts or locations. This allows mobility
of DataCapsules, as well as routing to the closest
of several replicas of a DataCapsule.

• Uses strict cryptographic delegations and certifi-
cates (e.g. AdCerts, RtCerts) to control routing
permissions rather than open routing tables. This
provides built-in security.

• Maintains routing state in separate, distributed
database services called Routing Information Bases
(RIBs) rather than individual routers. This allows
independent verification of routes.

• Organizes trust domains and routing domains
hierarchically to enable policy control and scala-
bility in routing

Currently, the GDP has secure, delegated routing with
only one RIB. Our contribution provides such routing
with a hierarchy of RIBs, adapting to scale and nested
trust domains. We also add optimizations that minimize
network traffic.

2.2 DataCapsules
DataCapsules are a standardization for storing data,
similar to shipping containers. DataCapsules’ design
separates security (authentication, confidentiality, and
integrity) from trust in service providers and other plat-
forms, allowing the Global Data Plane to harness the
computing and storage of a much wider array of ma-
chines.

Each DataCapsule has a unique 256-bit name, and im-
mutable metadata that includes a public signature key
belonging to the DataCapsule’s owner. DataCapsules
can only be written to by their owner, and each DataCap-
sule has only a single owner. For a given DataCapsule,
the owner can generate an AdCert, a signed certificate
that allows a specific DataCapsule server to host the
DataCapsule. When a DataCapsule-server connects to a
GDP router, it advertises its own name, and the AdCerts
of all the DataCapsules the server is delegated to serve.

Our contribution introduces meta-DataCapsules (see
section 3.2), a DataCapsule that each server has, contain-
ing all of the server’s hosted DataCapsules. This allows
for a variety of optimizations that minimize traffic.

2.3 NDN Routing
Named data networking (NDN) [1] is a proposed data-
centric Internet architecture, where packets carry a uni-
que name identifying the data they contain. NDN rout-
ing protocols propagate the reachability of data names,
similar to IP routing protocols propagating the reachabil-
ity of IP addresses. Unlike IP, NDN routing protocols are
themselves NDN applications, with routing updates be-
ing named and secured NDN data packets. This provides
built-in security.
Each request is carried in an Interest packet. The

forwarding module of a given NDN node contains a
Pending Interest Table (PIT), a Forwarding Information
Base (FIB), and a Content Store (CS). NDN has a state-
ful forwarding plane because of the PIT, which records
interests and upcoming data. This state allows NDN
to do routing and forwarding directly based on appli-
cation data names, without separation between name
resolution and packet forwarding.
The CS is the first place the node checks for a Data

upon receiving an Interest.
While FIB entries in IP routing only have one next

hop, NDN FIBs can have multiple next hops, supporting
multipath forwarding. This is possible because the PIT
checks the nonce in the packet of each NDN request to
detect and stop any possible looping.
The stateful forwarding plane in NDN changes the

requirements and importance of routing protocols com-
pared to IP. The FIB is only one input, not the sole input,
for forwarding decisions. In NDN, the strategy layer
sits between the FIB and actual packet forwarding. This
allows the forwarding strategy to be based on more than
just routing protocol updates, providing more flexibility.

We compare our contribution with NDN:

• Similar to an NDN routing protocol, our contri-
bution implements routing for a data-centric net-
work with a flat namespace that lacks prefixes
and other intuitive ways to build a hierarchy.

• Our design adds a cache, updated as requests flow
through the network, that serves as the first place
to check for routing information, similar to NDN
nodes’ Content Stores.

• NDN has native security; our contribution has
some native security provided by DataCapsule
design.

• Unlike NDN, our contribution does not have a
stateful forwarding plane.

• Scalability is also a concernNDN routing attempts
to address. Small NDN networks may not need a
routing protocol, instead self-learning their data
availability.

• NDN routing is for general, all-purpose applica-
tions, and names can be user-constructed, with
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meaning (not cryptographically secure). On small
local networks, NDN names need not be globally
unique. Routing on the GDP is for requests for
DataCapsules, which have standardized, random,
globally unique names.

2.4 FOGROS2-SGC
FogROS2 [2] is an extension of the Robot Operating
System (ROS2), a software platform for robotics appli-
cations, that provides robots easy access to cloud (and
fog) computing.
FogROS2-SGC (Secure Global Connectivity) builds

on Fog-ROS2 to allow robots to connect across physi-
cal space and untrusted infrastructure. FogROS2-SGC
extends GDP, using its location-independent routing
for globally unique identifiers in a flat namespace, but
for identifying and routing between robots instead of
DataCapsules.
In FogROS2-SGC, each router has its own RIB. We

decouple this in our implementation; our overlay router
and switches are stateless. Since FogROS2-SGC builds on
top of GDP’s location-independent routing, and our con-
tribution is a hierarchical implementation of that rout-
ing, it could potentially be compatible with FogROS2-
SGC, and help with scaling.

2.5 DNS
Domain Name System (DNS) is a hierarchical naming
system and a vital part of Internet infrastructure. DNS
lookups are used to translate internet domain names to
IP addresses, which have prefixes with meaning.
Unlike DNS, GDP has a flat namespace. However,

we implement a multi-level lookup table for addresses
similar to DNS. We abstract away the addresses from the
user, so the data-centric, location-independent nature
of GDP routing is preserved.

2.6 SDN Controllers
Software-Defined Networking (SDN) [3] separates the
forwarding process, on the data plane, from routing,
on the control plane. The control plane is made up of
SDN controllers, which can follow a hierarchical design.
The data plane is made up of network devices such as
routers.
Our contribution uses a two-layer routing and for-

warding (switching) framework, similar to SDN. Similar
to GDP’s original routing scheme, SDN’s first control
plane design involves a single controller, which pro-
duced scalability problems for SDN, and led to different
multi-controller schemes being suggested.

(a) (b)

Figure 1. The example trust domain configuration in (a)
is translated into a hierarchy of RIBs, with one RIB cor-
responding to one TD. Solid lines in (b) represent parent-
child relationships, while dotted lines represent peering
RIBs. Peering RIBs are directly connected through over-
lay switches, but have no nested TD relationship.

3 Design
In this section, we detail the data structures of the RIBs,
our routing and failure protocols, and modifications
made to DataCapsule servers for interacting with hi-
erarchical RIBs. We also introduce a per-server meta-
DataCapule for updating RIBs and detecting offline serv-
ers.

3.1 Routing
We construct our hierarchy based on nested trust do-
mains and use the definition of peering in [4] to create
gossip links between peering TDs that do not have a
parent-child relationship. Parent-child relationships are
reserved exclusively for nested TDs, where the encap-
sulating TD is the parent of the TD that is encapsulated.
Figure 1 shows a simple translation of a TD configura-
tion to a network topology.
Our routing scheme employs source-based routing,

as in [4], to reduce the statefulness of switches. We also
abstract away inter-domain RIBs by treating each TD
as having a single RIB for simplicity - in practice, this
is clearly unrealistic, but simple extensions to the pre-
sented algorithms can adjust for multiple RIBs within
a single trust domain. In source-based routing, a client
that wants to reach DataCapsule D sends a routing re-
quest to an RIBwithin its TD. The RIB returns the path of
trust domains a packet must be routed through in order
to reach the DataCapsule D, which the client can then
embed in all packets sent to D. See Figure 2. Network
switches can then simply look at the packet header to
learn which TD to forward the packet to next. Switches
employ protocols like OSPF to efficiently forward pack-
ets within trust domains.
Note that dealing with routing through trusted TDs

is out of the scope of this paper. We assume all TDs to
be trusted in our protocols and leave integration with
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Figure 2. An overview of the source-based routing pro-
tocol. Client C wants to reach DataCapsule DC, which is
within RIB4’s TD. Note that the DataCapsule server that
hosts DC is not pictured. The blue arrows represent the
path of client C’s initial routing request, which returns
the routing path of TD 3 –> TD 2 –> GLOBAL –> TD4.
The green arrows depict the routing path being sent
back to the client, and the orange represents a packet
that the client is then able to send to DC.

trusted routing algorithms to future work. We also as-
sume that Trust Domains are static and do not consider
the case in which RIBs must be moved.

3.1.1 Routing Data Structures. Each RIB in our hi-
erarchical scheme contains two key data structures: the
ServerStore and the DCStore. Both are hash tables with
cache-like functionalities, with the ServerStore hashed
on the server name and the DCStore hashed on the Dat-
aCapsule name. The hash keys in the DCStore are not
unique, as a single DataCapsule name may correspond
to multiple replicas with distinct routing paths. Servers,
however, are unique. A single ServerStore entry con-
tains information about that server’s mDC checksum
(see section 3.2), a list of all DataCapsules hosted by that
server that are also within the DCStore, and valid and
LRU bits. A single DCStore entry contains information
about the DataCapsule’s next hop and server, as well as
a TD path constructed through advertisement and valid
and LRU bits.

The TD path is similar to the notion of an AS path in
BGP, where each trust domain that a packet must pass
through to get from DataCapsule to a RIB is treated like
an autonomous system. Maintaining this TD path pre-
vents routing loops: if a RIB receives an advertisement
for an entry that already contains that RIB’s name in it,
then it discards the entry. A RIB adds its name to the the
end of the TD path before forwarding an advertisement
to its parent RIB. We also use the length of this path as
a metric for route selection, as this number is an upper

bound on the number of trust domains we must route
through in order to reach the destination DataCapsule.

The next hop field is also updated during the advertise-
ment. When a DataCapsule is advertised to an RIB, the
RIB can see the TDs that the advertisement has already
passed through, including the DataCapsule’s home TD.
The RIB can then select the RIB within the trust domain
closest to the home TD that it shares a connection with.
RIBs also periodically gossip with other peering RIBs,
disseminating updates to its DCStore and ServerStore
across the network.

3.1.2 Routing Algorithm. To best illustrate our rout-
ing protocol, we use an example where a client in TD
A intends to route data to DataCapsule 1 (dc1) in TD G.
The client sends a routing request to TD A’s RIB (ribA),
which begins the recursive construction of the routing
path.
ribA searches its DCStore for dc1, which may yield

multiple matches. To refine the selection, we filter these
matches to retain only those instances where dc1’s valid
bit is set to 1. Should no valid entries emerge from this
filter, we escalate the routing request to ribA’s parent.
If we are currently in the global RIB, there is no parent
to forward the request to and we thus return a failure
message back to the client.
With the remaining valid entries, we retrieve the as-

sociated server names in the RIB’s ServerStore and once
again filter out DataCapsules with invalid servers. This
step is where the value of the ServerStore lies - when a
server becomes invalid, either through manual updating
or missed heartbeat messages, only a single bit has to be
flipped in the RIB in order to prevent further routing to
the server. The alternative is to invalidate each DataCap-
sule in the DCStore hosted by that server, which would
require a linear scan over the entire DCStore since it
is hashed by the DataCapsule name. This could lead to
us sending an incorrect routing path back to the client,
where the error would only be caught when a packet
attempts to reach the offline server, requiring another
round-trip of a routing request and reply.

If there are any remaining DCStore entries, we choose
the one with the shortest TD path as the optimal path,
add the current RIB’s name to the routing path, and
forward the request with the updated routing path to
best match the entry’s stored next hop. The next hop,
another RIB, will then repeat the process. Once the next
hop is the same as the current RIB, we know that the
DataCapsule is hosted by a server within the RIB’s trust
domain, and at this point, we can send the routing path
back to the client.

If no route can be found at any point in the algorithm,
a failure message is returned to the client. The client
may resend a routing request to retry. Figure 3 shows
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a detailed example of how requests flow through the
hierarchy.

3.1.3 Routing Failure. DataCapsules may be mobile
and the information in RIBs may be temporarily stale,
so it is likely that a packet fails somewhere along the
routing path. Once again, we turn to an example to
illustrate failure protocols.
Suppose a routing failure transpires at a switch lo-

cated within TD C while routing towards a DataCapsule
in TD F, as a result of the next hop’s sudden invalidity. In
this instance, the switch queues the packet for re-routing
and enters the incorrect routing path embedded in the
packet’s headers in a failure hash. Let’s say that this path
is [TD A→ TD C→ TD H→ TD F]. The hash’s value
is initially null to indicate that re-routing is currently in
progress. If this path already exists in the hash, it indi-
cates a prior failure along the same route. In this case,
we will wait for the re-routing to complete or use the
updated value for the hash key as the corrected routing
path. A timestamp accompanies each entry in the hash,
allowing for its eventual removal after a specified time
interval.

Re-routing is a simple matter of querying the current
TD’s associated RIB for a routing path to the intended
destination. The RIB handles this as any other routing
request and sends the new route back to the server. If
this route is the same as the previously failing one, the
RIBs have yet to be updated about the failure state in the
next hop. The switch periodically resends the routing
request until a new path is obtained. In cases where no
route can be established or the resends time out, the
switch sends a failure message back to the client.
Assuming the discovery of a new path—say, [TD C

→ TD D → TD B → TD E → TD F]—this new path is
appended to the existing valid path, resulting in [TD A
→ TD C→ TD D→ TD B→ TD E→ TD F]. The newly
formed full path is then added to a failure correction
hash, where the key signifies the new path and the value
represents the previous one. This mechanism ensures
that subsequent packets bearing the key’s routing path
have successfully adopted the corrected route. Similar to
the failure hash, each entry in the failure correction hash
is accompanied by a timestamp. Upon the expiration
of a predetermined time interval, these entries, along
with their corresponding entries in the failure hash, are
systematically removed.
Subsequently, the re-routing queue is monitored for

packets bearing the old routing path, which are then
rerouted with the new path. Employing the reverse of
the initial valid path, we transmit the newly established
routing path back to the client. Assuming successful
receipt and subsequent adoption of the new path by the

Figure 3. • A replica of DC1 is stored under RIB3. A
request is sent to update RIB3, which also forwards up
to the global RIB 4. An ACK is sent backward along the
same route. • RIB3 gossips with RIB2, so if RIB2 GETs
DC1 later, it can directly go to RIB3 instead of going up
to RIB4. • RIB1 GETs DC1, defaulting to querying its
parent, RIB5, which queries the global RIB4. •RIB4 sends
a request (containing best route from RIB1 to DC1) to
RIB1. • RIB4 sends a request to update caches backward
along GET’s route. RIB1’s cache is updated with RIB4
as the next hop for DC1. If RIB5 had a direct connection
to RIB3, its cache would be updated with its next hop as
RIB3.

user, we reference the key’s value to remove the old
path from the failure hash.

3.1.4 RIB Cleanup. Our routing scheme ensures ef-
ficient control of the routing table’s size by leveraging
valid bits. Specifically, we employ a mechanism inspired
by an LRU (Least Recently Used) cache, which priori-
tizes the removal of invalid entries over valid ones. This
process operates in the background. When an entry is
removed from the Server Store, we access the entry’s
associated DataCapsule list and eliminate each listed
DataCapsule from the DataCapsule Store.

3.2 Meta-DataCapsule
In order to easily detect changes in a server’s set of
hosted DataCapsules and to minimize advertising traffic,
each server has a meta-DataCapsule (mDC) that con-
tains all of the server’s hosted DataCapsules in a hash
table hashed on the owner’s public key. Additions, dele-
tions, and modifications of DataCapsules in the server
are received and verified by the server and then pushed
to the mDC. The server’s corresponding RIB is notified
of changes through periodic heartbeat messages, which
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(a) (b)

Figure 4. Figure (a) shows certificate-related traffic in the current server implementation, while (b) shows how
aggregation by the DataCapsule owner reduces the number of messages that need to be sent. This is particularly
important when we need to re-validate the entire server, such as after a server crash, as this traffic flows upwards
through the hierarchy, and certificate validation takes a nontrivial amount of time.

contain a checksum of the server’s mDC and are ver-
ified against the last checksum for that server in the
RIB’s Server Store. If the heartbeat checksum does not
match the RIB’s stored checksum, the RIB can query
for updates. Changes to the server’s DataCapsule set
that have not already been propagated to the RIB are
stored in a server-side buffer, which is serialized and
sent to the RIB upon query and is then cleared. Using
checksums and heartbeats instead of sending updates
as they happen allows for RIBs to quickly detect when
servers are offline, anticipate future updates, and mini-
mize advertising traffic.
It is much easier to aggregate certificates within the

mDC than across the entire server, allowing for several
additional optimizations to advertising traffic. Because
we hash on the owner’s public key, it is simple for us
to aggregate certificates for a single owner within the
trust domain, allowing us to minimize the number of
certificates that must be sent to and verified by the RIB
as shown in Figure 4. This is particularly beneficial when
large numbers of DataCapsules are owned by the same
entity, for this turns the certification of n DataCapsules
into a single verification by the network.

We also reduce advertising network traffic and verifi-
cation latency by batchingmultiple AdCerts into a single
RIB-bound request, which allows the RIB to verify the
certificates in parallel. We are able to do this batching

because of the server-side buffer, which enables us to see
new DataCapsules or certificates requiring verification
and send them in a single message to the RIB.

4 Implementation
We implemented the routing algorithm, including cus-
tom RIB, switch, and DataCapsule structures, in roughly
1100 lines of C++ code. We then simulated a multi-
hierarchical network as a proof of concept. We use the
ZeroMQ library for packet transmission and simulate
latency through the "sleep" syscall.

4.1 Network Hierarchy
Through a Python script, we generate network hierar-
chies into configuration files for a hierarchical network
simulation, using the NetworkX library. The network
consists of routers, switches, and clients organized in
a hierarchical structure. The script establishes peer re-
lationships and latency values for routers, assigns ad-
dresses to network entities, and generates configuration
files. It models the interconnections between routers,
switches, and clients, creating a structured environment
for testing and experimentation in network simulation.
The resulting configurations capture the simulated net-
work topology, enabling further analysis and evaluation.

There are some downsides to using a simulation-
based approach for evaluation, such as difficulties in
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modeling realistic network latencies and traffic conges-
tion. The latencies presented in the evaluation are meant
to explain relative overheads incurred by various routing
components and do not necessarily reflect real-world
times. However, they provide valuable insight into the
tradeoffs made by our approach, and a real-world im-
plementation remains as future work.

4.2 Simulation
We initialize the components of the network through
another Python script, which parses the generated hi-
erarchy and runs corresponding C++ binaries. The C++
processes talk to each other through the ZMQ interface.
We mark the time difference between routing requests
and responses, in milliseconds, for further evaluation.

5 Evaluation
We evaluate our hierarchical routing implementation on
several network topologies with different hierarchical
levels. As stated in Section 4.3, our evaluation will be
based on a simulated network. Each GDP router and RIB
are independent processes that communicate with one
another through the ZMQ interface. The benchmarks
are ran on a Microsoft Azure VM with a 2-core 4-thread
Xeon 8272CL 2.6GHz processor. Our main metrics are
determining how much overhead multi-level RIBs incur
based on latency and how multi-level RIBs reduce the
number of requests sent to the global RIB.

5.1 Multi-level Hierarchy Overhead
Hierarchical routing will obviously incur higher latency
than flat routing. We evaluate how much overhead is
incurred when we introduce multi-level RIBs. Figure 5
shows a breakdown of how much overhead is incurred
within the RIBs (control plane) and the GDP routers
(data plane). For our test, the network is built as follows.
A n-level hierarchy represents a full binary tree with
height n. We measure the latency of an average GET
request between two random clients across several net-
works structured as an increasing n-level hierarchy for
𝑛 = 1, 2, 3. From Figure 5, we see that there is a linear
increase in latency as we increase the height of the tree
of RIBs in both the times for finding the route to a Dat-
aCapsule and the time for forwarding a packet to the
DataCapsule. This indicates that the overhead incurred
by introducing multi-level RIBs is linear with respect to
the number of levels and is not too severe.

5.2 Mini-Benchmark
Our mini-benchmark workload consists of 𝑥 randomly-
generated PUT requests and 2𝑥 GET requests. Each PUT
request puts a random DataCapsule name into a local
DataCapsule-server. The sender of each PUT request is
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Figure 5. Average Message RTT latency for increasing
hierarchical levels including both time to fetch the route
from RIBs and forwarding packets through GDP routers

randomly assigned to a client who connects to its nearest
GDP router. Like in the earlier subsection testing aver-
age GET request latency, the types of network structures
we will test our benchmark on are n-level hierarchical
RIBs, which is essentially a full binary tree of height n
where each node represents a RIB. Furthermore, each
RIB represents a Trust Domain or subdomain (a Trust
Domain within a Trust Domain). Within each Trust Do-
main, there are 4 GDP routers. For intradomain routing,
the GDP routers use a learning protocol similar to OSPF.
During the router’s start-up, it exchanges link state ad-
vertisements (LSAs) with neighbor routers in order to
build a complete topology of the routers within its local
Trust Domain. In our evaluation of the mini-benchmark,
we do not include the router initialization/start-up time.

After all 𝑥 PUT requests have been assigned to ran-
dom clients, we let each client send the request(s) to
their nearest GDP router. Once the DataCapsule name
has been advertised and propagated to the local RIB,
parent RIBs, and any of its peering RIBs, we kick off the
second phase of our mini-benchmark. Each of the 2𝑥
GET requests randomly requests one of the 𝑥 DataCap-
sule names that have been put into DataCapsule-servers
distributed across the network during the first phase.
Again, the sender of each GET request is assigned to
a random client in any Trust Domain. Once each GET
request is assigned to a client, we let all clients send their
queued GET requests all at once to their closest GDP
router. We measure the time it takes from this point to
the point where all GET requests have been responded
to and reach back to the sending clients. We evaluate
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Figure 6. Benchmark completion times for multiple
network topologies with increasing number of multi-
level RIBs

n-level hierarchical networks of 𝑛 = 1, 2, 3 with this
benchmark.
Figure 6 shows the completion times for each addi-

tional level added to the hierarchy. The x-axis labels
are the workload formatted as {𝑥}𝑃2{𝑥}𝐺 , indicating 𝑥
PUT requests and 2𝑥 GET requests. We did not expect
the 3-level hierarchy to have such high completion times
for the 1000P/2000G workload. We hypothesize the cost
of process context-switching can be attributed to its
completion time. In the future, we expect to test our im-
plementation with actual routers or multiple machines
to eliminate the overhead of process context-switching
when testing on a single machine.

Figure 7 highlights a key benefit of multi-level RIBs,
taking most of the load of GET requests going to the
global RIB and handling them at local RIBs. For this met-
ric, we re-run the benchmark and measure the number
of route requests going to the global RIB and test our
hierarchical implementation against flat routing. In the
hierarchical case, the global RIB is the root node in our
n-level tree of RIBs. During this run, we use destination-
based routing for both the hierarchical case and flat
routing case to ensure a fairer evaluation. Initially, all
routers have empty FIBs, requiring a request to its local
RIB to figure out the routing path and to update its FIB.
In the case of flat routing, the local RIB will always be
the single global RIB. From Figure 7, we can see that
multi-level hierarchical RIBs effectively act as a multi-
level cache, keeping the number of global RIB requests
low as the workload increases.
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Figure 7. Number of Global RIB queries for multiple
network topologies with an increasing number of multi-
level RIBs compared to typical flat GDP routing with
one Global RIB

5.3 Meta-DataCapsule
As discussed in section 3.2, we introduce the meta-Data-
Capsule to facilitate network communication and cer-
tificate verification. Our improvements provide most
benefit when the distribution of DataCapsules across
owners is non-uniform, such that a few owners own
most of the DataCapsules. This allows us to aggregate
certificates for these DataCapsules in the mDC. Figure
8 shows the speedups gained as more DataCapsules
within a server come to be owned by a single owner.
We still see a slowdown as more DataCapsules have to
be sent across the network, but we no longer have to
perform cryptographic verification for each one.

We can get similar speedups through batched certifi-
cate updating in a single packet and subsequent parallel
processing by the network, although this has far more
limited returns due to constraints on the network band-
width and parallelism within RIBs.

6 Future Work
6.1 FIB Route Aggregation
In IP routing, RIBs can perform route aggregation to
reduce the size of the routing table. In our case, this is
not possible in an efficient manner because we must
check individual valid bits and delegation certificates.
We can, however, make use of aggregation in FIBs, which
describe a subset of RIB entries. We can perform back-
ground route aggregation where we go through RIB
entries and see which valid entries have the same next
hop.

Note that we do not include delegation certificates in
the FIB: if, for some reason, a certificate is not correct and
the route is accessed through the FIB (so the error goes
unnoticed at this RIB), it will still be caught by a later
RIB. The amortized efficiency is still improved, assuming
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Figure 8. The line labeled "No Certificate Aggregation"
shows the time taken to verify x DataCapsules under
the current implementation, where every DataCapsule
is sent to the RIB and its advertisement certificate is veri-
fied by the network. The second line shows the speed-up
gained as these x verifications are replaced with a single
certificate due to shared ownership.

that delegation certificate inconsistencies are not too
common. This was not implemented in our existing
code, but the potential improvements in latency warrant
further work in this direction.

6.2 Real-world Evaluation
Our simulation-based evaluation may fail to account for
the latencies and failures induced by the much more
complex real-world network. We plan to migrate and
further evaluate the algorithm’s latency and reliability
under real-world IOT, an example being FogROS.

6.3 Dealing with RIB Failure
Because crashes are inevitable and trust domains are
modeled after real-world service providers, it is possi-
ble for RIBs to go offline or be moved. This alters the
structure of an established hierarchy and requires the
construction of new parent-child relationships, as well
as updates that facilitate a consistent view of the net-
work.

6.4 Heartbeat Messages
Our contribution’s heartbeat mechanism could be de-
veloped further to have varying time intervals between
heartbeat messages for different connections between
RIBs. Specifically, longer intervals the further up the
hierarchy would ensure that a short outage followed by
a rapid recovery did not have to propagate all the way
up the hierarchy.

6.5 Intra-TD and Distributed RIBs
Our current routing protocol focuses solely on inter-TD
routing, which is unlikely to reflect large real-world TDs.

Our protocols can be extended to support having mul-
tiple RIB servers within a single TD, as well as having
multiple distributed nodes per RIB to support locality
and larger routing tables. Using a distributed hash for
RIB servers becomes more important as we go upwards
in the hierarchy, where the size of the routing table
naturally increases. Currently, we limit the size of all
RIBs by having a fixed cache size and evicting invalid
or least-recently-used entries, which can lead to cache
misses when we are forced to evict valid routes.

7 Conclusion
We present a novel system of hierarchical routing in-
formation bases (RIBs) for the Global Data Plane (GDP),
designed to optimize for reduced advertisement traffic,
scalability with a large number of DataCapsule servers,
and increased DataCapsule availability during server
outages. We address the challenges of data-centric, loca-
tion-agnostic guarantees, flat namespace, and security
focus inherent to the GDP. Our key contributions in-
clude:

• Hierarchical RIBs: Building upon the nested trust
domain structure of the GDP, we introduced a
hierarchical system of RIBs that improves scala-
bility and reduces routing overhead compared to
a single global RIB.

• Source-based routing: We implemented a source-
based routing protocol with valid bits and TD
paths to efficiently route data packets across trust
domains.

• Meta-DataCapsules: We introduced meta-Data-
Capsules on servers to efficiently detect changes
in hosted DataCapsules and minimize advertising
traffic.

• Failure protocols: We designed protocols for han-
dling routing failures and re-routing packets to
ensure data availability even when network er-
rors occur.

By implementing this hierarchical routing system, the
GDP can effectively scale to support a vast number of
DataCapsules and ensure reliable data access for users
across diverse trust domains. This paves the way for
a decentralized, secure, and scalable data storage and
retrieval infrastructure for the future.
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