
Enabling Scalable Heterogeneous
Hardware Integration with Socket IPC

Overview

Design

Case Study: CPU-Vortex GPU (Coarse-grained) Case Study: Many Accelerators (Fine-grained)

Richard Yan, Zekai Lin
CS 262A Fall 2023

Motivation

● A socket library for seamless communication between diverse
hardware simulations.

● Simplify integration of heterogeneous hardware blocks, ensuring
performance and scalability.

● Features a modular, flexible socket-based IPC interface, supporting
both blocking and non-blocking remote procedure calls.

● Increasing heterogeneity in hardware landscape
● Difficult to integrate and evaluate new external IPs
● Simulation not scalable to increasing design size and difficult to

parallelize execution

● Lightweight. A static C++ library of around 300 lines; or C
version with no library dependencies for baremetal

● Intuitive Function Call Interface. (figure 1)
○ Sending: provide target ID, function ID, custom arguments,

and optional data payload.
○ Receiving: provide function ID, blocking/non-blocking

● Flexible Communication. P2P or central server. (figure 2)
● Efficient. Low overhead for coarse-grained and acceptable

overhead for fine-grained message communication

Fig 1 Fig 2

Microbenchmarks

Background & Motivation

Design

Benchmarks

● Gemmini is Berkeley’s Machine Learning hardware accelerator
● It has not been possible to integrate multiple Gemminis for a single CPU,

making it difficult to parallelize large ML workloads like LLM inference
● Simulation time with large workloads is extremely slow, and must resort to

FPGA simulations which are not easily-debuggable (if at all)

● Hardware & supporting software: (figure 14)
○ Many Gemmini+Rocket simulations in independent

processes, each running a “headless” binary that exposes
Gemmini library functions to the IPC interface, special rou-
tines for memory transfers

○ Each “worker” connects as client to central socket server,
an x86 binary, also connected as client, creates and dis-
patches workloads to workers

● ML Workload
○ Different sized transformer encoder layers
○ Multithreaded (parallel) versions cut up large matrix mul-

tiplication into equal sized chunks for each worker, send to
& wait for each worker, then copy memory backFig 14

Background & Motivation
● Vortex is an OpenCL compatible RISC-V GPGPU developed at Georgia Tech
● A full SoC integration of an external GPU and a Rocket CPU in Chipyard is

challenging, but socket-based modular simulation simplifies the integration
● RTL simulation of CPU and GPU is slow. Hardware integration with IPC

enables functional and RTL co-simulation, which considerably reduces
simulation time

Design
● CPU and GPU Co-simulation:

○ Two independent processes that one runs CPU
simulation and another runs GPU simulation.
CPU dispatches the work to GPU using the IPC
interface of the socket library (figure 8)

○ Simulations of CPU and GPU can be either RTL or functional. Spike, a
RISC-V ISA simulator, and Simx, a simulator developed by the Vortex team,
are used for functional simulation of CPU and GPU respectively (figure 9)

○ Monolithic CPU-GPU simulation is modeled as a sum of two individual
hardware simulations, which is compared as a baseline.

● GPU Driver & Softmax Workload:
○ OpenCL GPU driver connects to GPU simulator during device initialization
○ The driver supports data transfer and starting execution with socket API
○ Softmax kernel with different input vector lengths are used for

performance evaluation

Benchmarks

● RTL-RTL Co-simulation:
○ RTL-RTL co-simulation with socket library is more scalable than

monolithic RTL simulation, as the design size of individual simulations is
smaller (figure 13)

○ Cycle numbers obtained using sockets is a slight overestimation with long
vector lengths, but overall predicts true cycle count very well (figure 11)

● Functional-RTL Co-simulation
○ Functional-RTL co-sim reduces simulation time by a factor of 5 (figure 10)

● Functional-Functional Co-simulation
○ Socket library introduces minimal overhead compared to the native

functional integration (x86-Simx) developed by the Vortex team (figure 12)

Fig 15

Test case variables (figure 15):
● Model size
● Serial vs. parallel execution,
● Number of accelerators,
● Functional vs RTL sim,
● Native (baseline monolithic integration) vs Socket (our work)

● IPC Channel: TCP vs. UDF (figure 3)
○ UDF has slightly more overhead (~1.02-1.05x)
○ The difference goes down as message size increases

● Communication Architecture: P2P vs. Server-Client (figure 4)
○ Server-Client has ~1.05x more overhead

● Data Transfer: MMIO vs. PK (figure 5)
○ PK has very large (2x) overhead when message size is small
○ Overhead goes down to 1.08x as message size increases

● More small messages vs. Less large messages (figure 6)
○ High message count (low msg size) gives more overhead

● Blocking call latency (figure 7)
○ Same number of calls and payload, blocking is ~130% slower

Serial RTL Simulation (figure 16):
● About 2-4x overhead with socket
● Scales similarly to native in terms

of # of workers (ratio trendline)

Fig 17
Parallel RTL Simulation (figure 17):
● Some overhead in cycles/real time
● Cycle number by default not

predictive of true cycle count in
monolithic integration

Advantages:
● Allows for true parallelism & correct execution,

vs. emulated numbers for native
● Socket: constant simulation speed scaling, vs.

Native: simulation speed scales linearly to
design size) (figure 18)

● Overhead negated by parallel workers
● Net simulation time gain for large workloads

Fig 16

Fig 18

Fig 20

Functional Simulation (figure 19):
● Similar to VCS simulation but on

larger scale and with more workers
● Parallel simulation also allows for

correct behavior and time gain

Predicting true cycle numbers (figure 20):
● Can fit linear model to log(cycle numbers) to

predict true cycle no. from socket cycle no.
and no. of workers; accuracy 94.9%, R2=0.996

Fig 8

Fig 9

Fig 19

Fig 10 Fig 11

Fig 12 Fig 13

Model Sizes Small Compact Medium Large Bert
of fp32 weights 28,032 111,456 444,096 1,772,928 7,084,800
Hidden dim 48 96 192 384 768
Sequence length 32 48 64 128 512
Expansion dim 192 384 768 1536 3072
Num heads 2 4 4 8 12
Memory usage (MiB) 0.183 0.742 2.725 13.138 69.026

Fig 3 Fig 4 Fig 5

Fig 7Fig 6

