
Enabling Scalable Heterogeneous Hardware
Integration Co-simulation with Socket IPC

Ruohan Yan
UC Berkeley

Berkeley, California
Email: yrh@berkeley.edu

Zekai Lin
UC Berkeley

Berkeley, California
Email: zekailin00@berkeley.edu

Hansung Kim
UC Berkeley

Berkeley, California
Email: hansung kim@berkeley.edu

John Kubiatowicz
UC Berkeley

Berkeley, California
Email: kubitron@cs.berkeley.edu

Yakun Sophia Shao
UC Berkeley

Berkeley, California
Email: ysshao@berkeley.edu

Abstract—Amidst the challenges of an increasingly heteroge-
neous hardware landscape, the integration and evaluation of new
hardware intellectual properties (IPs) remain a significant prob-
lem, constrained by complexity and inefficiency. In the first half
of this paper, we introduce a simple and intuitive abstraction of
procedure calling using socket inter-process communication (IPC)
across hardware blocks, designed to address these challenges. We
present a lightweight implementation in C++ and evaluate various
design choices.

In the second half of this paper, we perform two in-depth
case studies of hardware integration using the proposed library.
The first case study showcases a CPU-GPU co-simulation. We
demonstrate the modularity of the communication scheme by
showing mix-and-match capabilities through combinations of
functional and Register-Transfer Level (RTL) simulations, and
show up to 3.1× faster simulation, with only 5% cycle inac-
curacy in large kernels. In the second case study, we examine
a many-accelerator co-simulation executing a transformer en-
coder workload, showcasing communications on fine granularity,
parallelization capabilities, and simulation scalability. We show
parallel simulations enabled around 15-35% faster simulation
time over an approximated monolithic SoC integration baseline
with 8 workers, and true cycle numbers can be predicted with
94.9% accuracy.

Our findings indicate that our socket-based hardware com-
munication library significantly eases the integration process for
simulation. We believe it facilitates faster design iteration through
accurate true cycle time prediction, single-component testing, and
efficient simulation.

I. INTRODUCTION

The contemporary computer architecture landscape has
entered a renewed phase of rapid development. Traditional
architectures like CPUs and GPUs are seeing more significant
development efforts as new products enter the market, with
an emphasis on more parallelism and increased heterogeneity.
On the CPU side, AMD has fitted the datacenter-oriented
4th generation EPYC with up to 128 cores [1], while the
newly announced Ventana Veyron V2 boasts up to 192 cores
at 16 cores per cluster [12]. Growing heterogeneity in the
newer System-on-Chips (SoCs) has been a general trend,
driven by the diverse requirements of modern computing,
such as artificial intelligence (AI). For instance, SambaNova

Systems has designed a novel dataflow architecture to more
efficiently inference very large models [20]. Tenstorrent has
been pursuing a similar goal as well [21]. Apple’s recently
released M3 Max contains a ray tracing accelerator, a 16-core
neural engine, and a number of media encode and decode
engines [3]. Examples like Cerbras’ WSE-2, which is a neural
network accelerator 56× larger than the largest GPU [9] show
scaling and heterogeneity in one package.

As such, there is a growing need to simulate different
novel architectures from various vendors, and in a scalable
way. Traditionally, this requires modifying each hardware
design extensively to ensure compatibility in terms of memory
system, clocking, and instruction sets, among others. In the
end, all components are merged into a single large monolithic
design for simulation, iteration, and performance modeling.

This process not only incurs significant engineering costs,
but the end result is slow to simulate due to the large size of the
design, impeding verification [14]. Especially, this monolithic
simulation is undesirable if only a single component in the
design, such as an accelerator, is being iterated on during
development while others are kept unchanged, as the increased
simulation time might slow down the iteration speed and make
it harder to efficiently explore the design space. This is also
true for integrating an external IP, where the designer might
be concerned more with correctly interfacing the IP with the
rest of the system, rather than the fidelity of its simulation.

Previous work has attempted to tackle this problem by
enabling co-simulation, where the individual components of
a larger design are simulated in discrete simulation instances,
and the framework implements communication methods be-
tween the instances to correctly interface the designs and
construct a larger system. However, the proposed frameworks
either have limited support for simulation backends [19],
necessitate the use of a specific implementation environment
for the target design [18], or use point-to-point communica-
tion methods that are hard to scale [5], requiring significant
engineering effort to apply to a diverse set of target IPs.

In this paper, we propose a novel co-simulation framework

1



with a specific focus on scalability and low effort of inte-
gration. Our framework features a simulator-agnostic socket-
based inter-process communication scheme and a correspond-
ing software library that can be easily adapted to different
hardware IPs, and a server-client architecture for better scala-
bility to larger designs. Specifically, our key contribution can
be summarized as follows:

• We propose a co-simulation framework that enables
scalable, coherent integration of discrete hardware sim-
ulations into a larger design, without requiring major
modification in the design components.

• We showcase that our co-simulation framework supports
the mix-and-match of different simulation backends, en-
abling useful tradeoffs between simulation speed and
fidelity.

• We propose a server-client architecture for message pass-
ing that enables scaling out to larger designs with multiple
simulation endpoints.

• We demonstrate in two separate case studies that our
co-simulation framework can be easily integrated into
software only, can achieve speedup over corresponding
monolithic simulations, and make segregated design iter-
ation possible while maintaining correctness.

The rest of the paper is structured as follows. In Section
II, we provide background and motivation for the framework
and the case studies. In Sections III, IV, and V, we outline
the design and implementation of the library, followed by
benchmarks. In Sections VI and VII, we present two de-
tailed case studies: a CPU-GPU co-simulation, and a many-
accelerator integration. In Sections VIII and IX, we discuss
further research directions and conclude our work.

II. BACKGROUND & MOTIVATION

A. Related Work on Co-simulation Frameworks

Previous work has explored the design space of co-
simulation frameworks that enable the modeling of a larger
hardware design by integrating multiple discrete simulations
of individual hardware models into a single coherent co-
simulation. These frameworks mainly differ in terms of sim-
ulation backends they support, modifications required to ac-
commodate existing IPs into the framework, and choice of
communication medium between the simulations.

Muñoz-Quijada et al. [19] propose a framework that en-
ables the co-simulation of a software model and an FPGA-
accelerated RTL simulation through the use of UNIX-named
pipes. While it allows co-simulation without major modi-
fication in the design, the framework only supports FPGA
environments for the high-fidelity RTL simulation, whereas
our approach allows for mix-and-match of different simulation
backends. Similarly, CFC [18] enables coherent co-simulation
of full SoC designs through inter-process communication,
while supporting multiple simulation backends not limited
to FPGAs. However, CFC relies on the Chisel HDL and
ChiselTest testing environment, requiring the user to package
every non-Chisel IP into a Chisel black box module and set

up its own ChiselTest environment. In contrast, our framework
is agnostic to any specific HDL environment, allowing the
integration of external IPs without additional packaging efforts
through the software workload or simulation runtime. This
is showcased in our CPU-GPU co-simulation case study in
Section VI.

Switchboard [5] is an open-source framework that simi-
larly allows communication between distinct hardware models,
which may be implemented in FPGA, RTL simulation or
software, in order to simulate a bigger design. Its choice of
simple shared-memory queues as the communication medium
allows for fast inter-process communication and relatively low
effort of integration of existing IPs. However, it only supports
point-to-point connections between the models, making it hard
to scale the model organization to multiple endpoints. Fur-
thermore, Switchboard requires hardware changes to connect
to a Verilog model, whereas our approach can optionally be
implemented in the software stack only.

B. Co-simulation of CPU and GPU

To demonstrate how an efficient co-simulation framework
can aid in the development and simulation of a large-scale
hardware design, we include a case study of modeling a
System-on-chip that integrates CPU and GPU cores in Sec-
tion VI.

We integrate Vortex [22] as the target GPU design into the
SoC. Vortex provides an open-source Verilog implementation
of a GPGPU design, as well as a complete OpenCL software
stack based on PoCL [13]. The project mainly focuses on
FPGA as the hardware environment whereas implementation
on an ASIC platform is left as future work. Vortex sup-
ports two simulation backends: SimX, a C++-based cycle-
approximate architectural simulator, and cycle-accurate RTL
simulation using software Verilog simulators such as VCS or
Verilator.

For the CPU design, we leverage Rocket [4], a Chisel-based
open-source in-order core generator. Rocket supports multiple
simulation backends, ranging from the ISA-level functional
model, Spike [7], to VCS or Verilator-backed RTL simulations,
to FPGA-accelerated FireSim [15] simulations. Rocket’s wide
range of support for different backends makes it an ideal target
for demonstrating our co-simulation framework’s capabilities
of mix-and-matching different backends across the design
components.

Chipyard is an agile framework for designing and evaluating
full-system hardware developed at Berkeley. It is composed
of a collection of tools and libraries designed to provide an
integration between open-source and commercial tools for the
development of systems-on-chip [2]. A full SoC integration of
the external Vortex GPU and the Rocket CPU in the Chipyard
framework is very challenging. However, the use of a socket-
based IPC for co-simulation of a Vortex GPU and a Rocket
CPU greatly simplifies the integration, as major modifications
of the Vortex GPU are not required.

Co-simulation based on inter-process communication also
enables mixing functional and RTL simulations. Mixing func-

2



tional and RTL simulations greatly reduces the time of a single
design iteration of a particular hardware module in the system-
on-chip. In the case of GPU and CPU integration, if we only
want to iterate the design of GPU, running RTL simulation on
GPU and functional simulation on CPU not only reduces the
time cost of CPU simulation, but also accurately simulates the
GPU design.

In Section VI, we attempt to model the SoC integration of
a Rocket CPU and a Vortex GPU by running two simulation
processes and using socket-based IPC to transfer data between
the two hardware units. Simulations of CPU and GPU can be
either RTL or functional. On the CPU side, RISC-V proxy
kernel [6] loads the host binary that is statically linked with a
PoCL runtime and a modified Vortex GPU driver. The GPU
driver transfers data and starts GPU execution using the socket
library interface, which makes socket syscalls to the proxy
kernel. The proxy kernel captures the syscalls and forwards
them to the Front-End SerVeR (FESVR) that does the actual
inter-process communication on the host system. Once the
data and commands are received from the process running
CPU simulation through socket IPC, the process running GPU
simulation starts the execution. It transfers the data back to the
CPU process after execution completes.

C. Co-simulation of Heterogeneous Accelerators

Efficient co-simulation also becomes important in the con-
text of multiple accelerators integrated into a single SoC
design. A prominent application use case for such configu-
ration is large language models (LLMs). With growing model
sizes of LLMs [24], it has become desirable to parallelize
the inference of a large model across multiple hardware
accelerators, making modeling such a workload in simulation
a compelling objective.

In Section VII, we attempt to model this use case by
simulating ML workloads running on multiple instances of
Berkeley’s machine learning accelerator generator, Gemmini
[11]. Gemmini is a full-stack, full-system Deep Neural Net-
work (DNN) accelerator, written in Chisel [8] and is part of the
Chipyard ecosystem [2]. Its main execution block consists of a
systolic array, making matrix multiplication highly performant.
It interacts with a CPU through the RoCC interface [4],
comprised of a command interface for custom instructions
from the CPU, as well as a Tilelink [10] memory system
interface. A typical matrix multiplication lifecycle starts with a
memory load into its internal scratchpad, followed by multiple
preload and compute instructions, and finally a memory store
writes compute results from the internal scratchpad to the
external memory system. The source code of Gemmini, in
Chisel, compiles down to Verilog files, which can then be
simulated in RTL simulators. Furthermore, the Spike RISC-V
ISA simulator [7] has been extended with a functional model
of Gemmini.

At the present time, we are aware of two efforts to
integrate multiple Gemmini’s into one design. MoCA [16]
is able to support multiple accelerators in one SoC, but is
limited to having each accelerator run a different workload.

AuRORA [17] uses dedicated manager and client nodes in
the hardware design to facilitate a virtualized acquire/release
system for the accelerators. We believe for workload simula-
tion and performance modeling, our approach is much simpler
than AuRORA, although AuRORA has the benefit of being
synthesizable.

The specific workload we aim to run is a Transformer en-
coder. Transformers are a revolutionary sequence architecture
in the field of deep learning due to their effectiveness in
various tasks such as natural language processing (NLP) [23].
The encoder in a transformer is responsible for processing
the input data into a higher, more abstract representation. It
does this through a series of layers, each comprising two key
components: a self-attention mechanism and a feed-forward
neural network. In our evaluation, we focus on only one of
such layers due to simulation time constraints.

III. SYSTEM DESIGN

A. Goals

We will first outline some guiding objectives for our design.
1) Lightweight. The interface should be easy to adopt

in existing systems with a minimal footprint, with an
emphasis on portability and few dependencies.

2) Intuitive. The interface should require minimal prereq-
uisite knowledge of other libraries and/or protocols, and
should be immediately understandable.

3) Flexible. The interface should adapt to different commu-
nication scenarios, including design hierarchies, hard-
ware interactions, and modeling requirements. This
lends well to the heterogeneous hardware landscape.

4) Performant. The interface should be efficient enough to
not be prohibitively slow to obtain useful performance
insights. It should ensure scalability, i.e. simulation
performance should scale well with design sizes.

B. Design

The communication scheme consists of two functions only:
send and receive. send takes the destination of the
request, the function name to call on the destination remote
simulation, a set of agreed-upon arguments, and an optional
data payload. receive takes the function name to receive,
a buffer to store received data, and importantly whether the
receive call is blocking or non-blocking. In a blocking
receive call, the call doesn’t return until a request of the
supplied function name arrives at the caller’s socket, and
therefore each blocking call guarantees one request to process.
In a non-blocking call, the call should return with a request if
there is one readily available with the correct function name,
but should not wait for one to become available. Since a
socket connection is bidirectional, any component dialed into
the socket communication channels may initiate a send or a
receive.

Figure 1(a) showcases an example: the Emperor hardware
block may transmit an “Execute Order 66” to the clone trooper,
something the Emperor knows the clone trooper understands,
with destination, function name, and arguments correctly set.

3



(a) Peer-to-peer (b) Server-client

Fig. 1. Communication schemes & examples

On the clone trooper’s side, its software runtime could be
periodically checking if there are any new “Execute Order”s
in a non-blocking way and act accordingly. 1

We believe this send/receive interface is simple yet versatile
enough to handle a lot of situations. For example, when a
large amount of data is to be transferred unidirectionally, each
individual transmission can be done asynchronously, which
means the sender does not wait for any confirmation from the
receiver (sends only). However, if data hazards are present,
or transaction level synchronization is required, the sender
may choose to call receive itself with blocking enabled
after sending the request. The receiver, after the request has
been received, may choose to send a response to indicate the
request completion. In essence, a reverse direction request may
be used in place as a response, enabling synchronous remote
procedure calls.

To create a connection, hardware blocks can connect in
either a peer-to-peer fashion as shown in Figure 1(a), where
there is a notion of a server and a client, or if, many hardware
blocks are to be simulated, connect as clients to a dedicated
central server as shown in Figure 1(b). In both cases, the server
should be started first for the clients to connect to. In a peer-
to-peer setup, the destination in send calls is not relevant, but
they carry more weight in a server-client setup, as is the case
in the example.

IV. IMPLEMENTATION

We implemented the interface in the form of a C++ library,
supporting IPC through either TCP or Unix domain sockets
(UDS). A dedicated socket message forwarding server is also
written in C++, which receives messages from one client and
forwards them to the intended destinations.

To establish a connection, a client would call
init_client with a TCP port or a UDS path, along
with an intended endpoint ID, which is used to identify the
destination of a message. In a peer-to-peer connection, this
ID is ignored by the server, but in a central server setup, the
dedicated server will assign the next available endpoint ID if
the intended ID is not available.

A. Sending

In our implementation, function names are integers, there-
fore in a send call, both the destination (endpoint ID) and the

1For context, in Star Wars, execute order 66 is what Emperor Palpatine (the
main antagonist) issued to the clone troopers (imperial army) to turn against
and eliminate the Jedis (the good guys).

function name (function ID) are specified as integers. Every
request is divided into packets of 1024 bytes. The first packet
of a request contains a header, which contains the size of the
entire request in bytes, the source endpoint ID, the destination
endpoint ID, and the function ID. send requires the argu-
ments and payload to be stored in std::vector<char>’s;
however it is less intuitive to manually marshal and unmarshal
arguments to and from a vector, therefore we provide two
template functions that do the marshaling automatically. The
advantages of using a vector lie in safer memory management,
as well as the implicit size argument supplied alongside the
vector itself.

B. Receiving

Receiving in our implementation is two-phased. An internal
fetch first downloads all complete outstanding messages,
regardless of function ID, from the socket and stores it in
a std::dequeue; then, the library looks through received
messages to find the desired function name to process. As
an added optimization, the search is first done once before
fetching, and the first found message is popped and directly
returned to avoid expensive socket accesses. The nature of
this decoupled fetch and search procedure enables message
receiving to be coalesced, beneficial when the sending side
has a large amount of data or commands to push through.
In a blocking receive, the fetch and search procedures
alternate until one desired message is found; in a non-blocking
receive, only one iteration is performed (search-fetch-
search).

C. Message forwarding server

We intend the dedicated message forwarding server to
run locally on the Linux (x86) host, where the simulation
processes are in, for best performance. When a connection
request is received from a client, a new socket is created for
the connection, and a new thread is spawned for each client.
Each thread listens to and reads from its client, storing socket
writes to a local buffer; when the buffer is full, or no more
messages are arriving, the buffer is flushed to the destination
buffer by writing to the corresponding socket. A mutex lock
is acquired to ensure no race conditions exist if a socket has
multiple writers. No partial messages may be in the buffer
when flushing, therefore messages arrive without corruption.

Errors are handled as gracefully as possible in the forward-
ing server, including disconnections. As a result, the server
can persistently stay in the background and cater to requests
as clients come and go. In fact, during the evaluation tests
for the second case study, the server stayed on for the entire
duration.

V. MICROBENCHMARKS

For the microbenchmarks, the RTL simulations uses the
Rocket chip [4] simulated using Synopsys VCS, and the
functional counterpart uses Spike [7]. The software stack for
RISC-V CPU cores mainly consists of a Front-End SerVeR
(FESVR), and an optional proxy kernel [6]. FESVR can

4



be considered as a simulation runtime, whereby it manages
simulation lifecycle events like binary loading and termination,
as well as provides utilities such as file IO syscall handling
(on the Linux host) and printing. FESVR code runs mostly
in the Linux host system. The proxy kernel is an optional
lightweight kernel that provides virtual memory, user mode
execution, and basic syscalls to a single application binary,
which runs single-threaded. In particular, socket syscalls are
delegated through FESVR to the Linux host system syscall.

In our testing, we evaluate three test cases with the proxy
kernel: peer-to-peer UDS, peer-to-peer TCP, and server-client
UDS. In every case, we vary the message sizes and message
counts to understand performance under different communi-
cation patterns. In the blocking test cases, we record the time
taken to send data of a certain size back and forth, fully
receiving the previous message before sending the next one. In
the non-blocking test cases, we record the time for one side to
completely send all test messages, wait for the opposite side
to fully receive, and repeat for the other direction.

Fig. 2. RTL simulation, TCP vs. UDS (lower=TCP better)

Fig. 3. Functional simulation, TCP vs. UDS (lower=TCP better)

Fig. 4. RTL simulation, P2P vs. Server-client (lower=Server better)

Figures 2, 3, and 4 show our microbenchmark results.
Looking at the raw values, the time cost scales directly
with more messages and larger message sizes. In particular,
when the message size is small, time scales sublinearly with
message count, but the relationship approaches linear as data

size increases, where payload transmission time appears to
dominate and the overhead is amortized. This trend seems
to be present for each configuration. Furthermore, it seems
like due to the per-message fixed cost, increasing message
size does not produce a proportional time penalty, which
incentivizes fewer larger messages compared to more smaller
messages. For a total payload size of 10240B, transferring
160 messages takes 4.4× the time compared to 10 messages
for non-blocking; the number is 6.1× for blocking.

In figure 2, we compare TCP versus UDS as the IPC
socket channel. It seems that TCP is slightly more efficient in
RTL simulations by about 2%-6%. For functional simulations
shown in 3, non-blocking messaging lends well to TCP, but
UDS is a lot more efficient if the major pattern of commu-
nication is synchronous. Finally, we look at the overhead of
using a server-client setup. To our surprise, the server-based
communication scheme was slightly more efficient in smaller
test cases. In general, for non-blocking test cases, the server
had up to 8% overhead, but for blocking test cases the server
added about a 30%-50% overhead. The difference may be
explained by the request coalescing capabilities built into the
server with the buffer fill-then-flush paradigm.

VI. CASE STUDY: CPU-GPU

A. Overview

This case study investigates the co-simulation of a Rocket
CPU and a Vortex GPU in the Chipyard framework using our
socket-based hardware communication library. It shows the
integration of the CPU and GPU does not require extensive
modifications to the design of the two hardware modules.
Co-simulation of the CPU and GPU is also more scalable
than the simulation of the monolithic SoC, as only the cor-
responding module is simulated in each individual process.
Finally, modular simulation allows us to iterate the design
of a particular module with cycle-accurate simulation, while
running a functional simulation for another module.

(a) Software stack (b) Co-simulation
Fig. 5. System design of CPU-GPU co-simulation

B. System Design & Implementation

Figure 5 shows that the co-simulation of CPU and GPU uses
the peer-to-peer communication setup with two simulation
processes. GPU simulation process acts as a server listening
for the connection from the CPU simulation process. The
CPU simulation runs a 64-bit binary linked with the PoCL
runtime, a modified Vortex driver communicating with the
GPU process, and the socket library itself. The socket library
makes socket syscalls to the proxy kernel, and the syscalls are
then translated to host system syscalls by FESVR.

5



Each simulation runs a single Vortex GPU core or a single
Rocket CPU core. The simulations of CPU and GPU can be
either RTL or functional. Spike, a RISC-V ISA simulator, and
Simx, a simulator developed by the Vortex team, are used for
functional simulations of CPU and GPU respectively.

The workload used for the co-simulation of CPU and GPU
is softmax. The softmax kernel code is written in OpenCL C
Language, which can be compiled to a RISC-V binary by the
PoCL runtime. Softmax workload works well for GPU sim-
ulation because of its nonlinear operation of exponentiation,
which is complex enough to fully explore the general purpose
cores of Vortex GPU. For the evaluation, we ran simulations
with variable input vector length for the softmax kernel to test
the scalability of our socket-based co-simulation setup.

1) CPU stack: The size of the host binary is about 7 MB.
All libraries are linked to the host code statically, including the
PoCL runtime, GPU driver, and the socket library. However,
the PoCL runtime linked to the host code does not contain
the LLVM library and cannot compile the OpenCL C code to
RISC-V binary on the fly. Instead, an offline PoCL compiler is
used to compile the kernel code to PoCL binary; the program
during execution only reads this binary and translates the
binary to a format that can be executed on Vortex GPU.

In simulation, the Rocket core first loads the proxy kernel,
which then loads and executes the host binary. Proxy kernel
is necessary because PoCL runtime makes filesystem syscalls
for caching PoCL binaries and the socket library makes
socket syscalls for inter-process communication with the GPU
simulation server. The proxy kernel receives the syscalls and
forwards them to FESVR, which delegates the syscalls to the
Linux host system.

The Vortex GPU driver used by the PoCL runtime was
modified to communicate with the GPU using the socket
library. Specifically, when the GPU device is initialized in
the host program, the driver as a client connects to the
GPU simulation server. For clEnqueueWriteBuffer and
clEnqueueReadBuffer operations specified in OpenCL,
the corresponding upload and download operations trans-
fer the data through socket inter-process communication. The
GPU driver can also start the GPU execution and wait
for the execution to finish using the socket library.

2) GPU stack: GPU simulation is launched first as a
server. To enable socket-based co-simulation, the Host-Target
Interface (HTIF) in FESVR is modified and linked with the
socket library. After the host binary running in the CPU
simulation initializes the GPU driver and connects to the
GPU simulation server, the GPU simulation starts to listen
and process the incoming requests with the function calls
receive and send.

There are also 4 types of requests defined in HTIF that
match to message types in the GPU driver. They are write,
read, run, and wait. For every tick of the simulation, HTIF
calls socket receive for all types of requests in a non-
blocking way. The corresponding operations are done if HTIF
receives the requests. The communication scheme between the
CPU simulation and the GPU simulation is defined as follows:

Memory addresses Usages

0x7c000000 Execution finished MMIO register
0x7fff0000 Kernel launch parameters
0x80000000 Kernel binary
0xc0100000 Heap region for operand data
0xffffffff Stack region (grows downwards)

TABLE I
PHYSICAL MEMORY MAP OF VORTEX GPU

1) Upload parameters and operands: The arguments and
operands required by the kernel are uploaded to the GPU
simulation server through write requests. HTIF then
writes the data to the appropriate regions in Table I.

2) Upload kernel binary: The kernel binary is uploaded
similarly, which is then written to the memory address
0x80000000.

3) Start execution: When HTIF receives the run request,
it resets the GPU core to start kernel execution.

4) Wait for execution to finish: After receiving a wait
request from the CPU process, FESVR continuously
checks for execution completion through an MMIO
register. It sends back an acknowledgment after the GPU
finishes.

5) Download data: When receiving a read request, HTIF
reads the destination buffer in the heap and sends it to
back to the CPU process.

C. Evaluation

1) Baseline: Because of the difficulty of a full SoC inte-
gration of a Rocket CPU and a Vortex GPU, we emulated this
setup by running and adding the results of two independent
simulations. One simulation contains a Rocket core running
the host binary and a dummy Vortex core that does nothing.
Another simulation contains a Vortex core running the kernel
binary and a dummy Rocket core that does nothing. We ensure
that the design sizes of the two independent simulations are
as large as the size of a full SoC monolithic simulation of
CPU and GPU. Adding the two simulations together would
approximate the monolithic simulation as our baseline.

2) Experiment setup: In the experiment, we test two cases
of co-simulation with the socket library. The first case runs
RTL simulations for both CPU and GPU. The second case
runs a CPU functional simulation and a GPU RTL simulation.
The length of the input vector to the softmax kernel is used
as a variable to validate the scalability and cycle accuracy of
the co-simulations.

We created a host binary that repetitively dispatches the
same softmax kernel to the GPU with different input vector
lengths, ranging from 32 to 4096. We then recorded the real
time and the cycle counts of code execution for both CPU and
GPU RTL simulations. For the cycle count of CPU simulation,
we subtracted the number of cycles spent inside the socket
library. The real time and the cycle counts from co-simulation
are then compared against those of the monolithic simulation.

3) RTL-RTL co-simulation: This case shows that RTL-
RTL co-simulation using the socket library is more scalable
than a full SoC monolithic simulation. At the same time,

6



the cycle counts obtained from co-simulation are consistent
with those from the monolithic simulation. As co-simulation
does not require extensive modifications to the RTL designs
of the hardware modules, this approach is more favorable for
simulating a diverse set of IPs with fast design iterations.

Fig. 6. Real time comparison: RTL-RTL co-simulation

a) Real time: Figure 6 shows the comparison of sim-
ulation time between the monolithic simulation and RTL-
RTL co-simulation. There is a constant time overhead of
initializing the PoCL runtime and the GPU driver, but the
relationship between input vector length to the softmax kernel
and simulation time is linear. The most important observation
in the figure is that the simulation speeds of the socket-
based co-simulations are 2.38× to 3.13× that of the monolithic
simulations. This suggests that the co-simulation of individual
cores with smaller design sizes is much more scalable than a
full SoC simulation with a large design size.

Fig. 7. Cycle count comparison: RTL-RTL co-simulation

b) Cycle time: Figure 7 shows that socket-based co-
simulation also approximates the cycle count of the monolithic
simulation. The cycle count of GPU in the co-simulation case
is about 1.3x larger than in the monolithic simulation case
when the vector length is small, but the overestimate reduces
to 5% as the vector length increases, amortizing the overhead.
For the CPU cycle count, the inaccuracy is largely within 5%
with occasional outliers.

4) Functional-RTL co-simulation: This test case shows that
the mix-and-match capabilities of the socket library enable
useful tradeoffs between fidelity and the speed of simulation.
Functional CPU and RTL GPU co-simulation allows fast
design iterations on the GPU core without spending a large
portion of time RTL simulating the CPU core.

a) Real time: Figure 8 shows the comparison of sim-
ulation time between the monolithic simulation and the
Functional-RTL co-simulation of CPU and GPU. Because the
CPU process is running a functional simulation using Spike,

Fig. 8. Real time comparison: Funct-RTL co-simulation

Component Lines of Code

PoCL runtime modification 110
GPU driver modification 43

Proxy kernel modification 191
FESVR modification 342
Softmax kernel code 22

Softmax host side library 263

TABLE II
LINES OF CODE FOR THE CPU-GPU CASE STUDY

it greatly reduces the time needed for simulating the SoC. Co-
simulation is about 30x faster when the input vector length is
small. As the vector length increases, this factor goes down
and stabilizes at around 10x. This large speedup in simulation
time is expected as we are not simulating the Rocket CPU
design at all. Functional-RTL co-sim demonstrates one use
case of the socket library that when we only want to iterate the
RTL design of a single hardware module in the SoC, we can
replace other hardware modules with functional simulators,
which significantly speeds up the design iteration time.

Fig. 9. Cycle count comparison: Funct-RTL co-simulation

b) Cycle time: Figure 9 shows the comparison of GPU
cycle counts between the monolithic simulation and functional
CPU & RTL GPU co-simulation. CPU and total cycle counts
are excluded because the functional simulator Spike does not
simulate the RTL design of the Rocket core and is not cycle-
accurate. The ratio trendline shows an amortization pattern
similar to the functional-RTL co-simulation, with inaccuracy
decreasing to within 5% as vector length increases. This shows
the effectiveness of cycle modeling, even when one side of the
simulation is functional.

5) Lines of code: Lines of code required to conduct this
case study is shown in Table II.

7



VII. CASE STUDY: MANY ACCELERATORS

A. Overview

This case study investigates the practical application and
efficacy of our socket-based hardware communication library
in a scenario involving multiple instances of an ML accelera-
tor. The primary focus is on executing a transformer encoder
layer workload, which is representative of a realistic use case
for such accelerators. In particular, we attempt to offload the
workload in a parallel way to simulate a potential accelerator
load balancing use case for larger transformer models. Com-
pared to the CPU-GPU integration, this case study focuses on
finer granularity communication, enabling parallelization, and
ensuring scalability in a simulation environment.

B. System Design & Implementation

In this case study, we use the server-client communication
setup, as described previously in Section II. The simulation
consists of a dispatcher running in the Linux host (x86), and
many independent VCS simulation processes each simulating
a Gemmini instance, or worker. The x86 dispatcher is respon-
sible for offloading matrix multiplication in the self-attention
and feed-forward networks, and each worker, running at its
own pace, executes the matrix multiplication received through
the socket communication layer. Both sides of the task are
connected as clients to the central message forwarding server.

Due to our focus on the accelerators only, we have removed
the unsupported non-linear operations, namely Softmax and
LayerNorm, from the computation. If we include their CPU
implementations, we are able to verify our computation results
in all simulations with the results obtained from the Pytorch
TransformerEncoderLayer implementation.

1) x86 dispatcher: The dispatcher is responsible for divid-
ing up the end-to-end transformer workload into evenly-sized
chunks for each accelerator. We use a naive splitting scheme,
which divides the resultant matrix (the C matrix) in a matrix
multiplication along the longer axis. The rationale behind this
scheme is to simplify the reassembly process of the whole
output matrix, as each worker does not write to overlapping
memory regions in the DRAM.

The dispatcher is compiled with the Gemmini library rou-
tines; however, instead of initiating RoCC instructions, which
is undefined on x86, the instructions are translated into socket
procedure calls on remote workers. To summarize the possible
procedure calls initiated by the dispatcher:

1) mvin, intended for Gemmini to load in operands from
DRAM into its scratchpad. For the dispatcher, the rele-
vant operands in DRAM are copied into the socket send
payload buffer along with mvin parameters as argu-
ments. Together, they are sent over the IPC channel to
the worker processes, where the actual RoCC instruction
for mvin is issued. This call can be non-blocking, since
the dispatcher does not require a response before issuing
the next command.

2) mvout, intended for Gemmini to store matrix mul-
tiplication results from its scratchpad to DRAM. The

dispatcher sends a request to a worker for it to mvout
into its local memory, which is then retrieved over IPC.
The received data is stored into the dispatcher’s local
memory for reassembly, to be used in the next operation.
This call is blocking, since the resultant matrix must be
received and written to DRAM to avoid data hazards.

3) fence, intended for Gemmini to wait for memory
operations to finish. The dispatcher requests all workers
to fence locally, and blocks to wait for all responses
to arrive back before proceeding.

4) rdcycle, intended for Gemmini to read the hardware
cycle number for performance statistics. The dispatcher
relays the cycle number from the worker.

5) Other RoCC instructions. The entire instruction is sent
over IPC as-is. This category includes config com-
mands and execution commands like preload and
compute. They do not lead to data hazards, and hence
to optimize for performance, these calls are all non-
blocking.

A key observation is that the communication happens on
an instruction level, which calls for frequent transactions on
the IPC channel. Hence, we believe it is a good example of a
finer granularity integration.

The dispatcher is also able to perform the inference under
serial or parallel execution. Serial execution indicates workers
receive workloads one by one, with one worker active at a
time. This serves as a baseline for parallel execution, where
for one matrix multiplication, all workers receive their chunks
at the same time and are able to process in parallel. By starting
a separate thread for each worker, this scheme simulates a
multi-tenant SoC environment using thread-parallelism in the
x86 host. The threads are joined by the end of one matrix
multiplication, after which the process starts again.

2) Gemmini workers: Each worker, as previously stated, is
its own simulation process, thereby having independent archi-
tectural and micro-architectural states. The worker hardware
simulated consists of a Rocket core and a Gemmini attached
to it. The Rocket core runs a custom binary that communicates
with the socket library, receiving requests to process on
the local Gemmini instance and sending results through the
IPC channel as needed. Importantly, each worker does not
operand and result matrices in DRAM persistently; instead,
the dispatcher is the one true source of “DRAM”, as if they
were integrated into one memory system. As an optimization,
before transmission, strided data is packed contiguously to
reduce communication overhead.

3) Bare-metal socket library: The proxied syscall overhead
generated by the high frequency of commands during com-
putation led to us using a bare-metal version of the socket
library, instead of the proxy kernel. The bare-metal library
uses MMIO to talk with FESVR RISC-V simulation runtime,
which acts as a bridge to the Linux host system. Specifically,
Gemmini writes send and recv calls, including its argu-
ments and payloads, into a predetermined physical memory
location. These memory regions are monitored by FESVR,
which delegates the send and recv calls to the Linux host

8



system. This has the added benefit of enabling the binary to
run in a physical address space in a bare-metal simulation, as
opposed to a virtual memory space using the proxy kernel,
avoiding unnecessary address translation overhead.

C. Evaluation

1) Baseline: Due to the difficulty of integrating multiple
Gemmini’s to parallelize an ML workload, we have emulated
a baseline for comparison. The baseline hardware is a single
design with one Rocket and one Gemmini minimum. For test
cases with more than one worker, we modify the generated
SoC Verilog code to include more instances of Gemmini;
however, to ensure forward simulation progress, the outputs
of the extra “dummy” Gemminis are cut off, meaning they do
not cause external microarchitectural and architectural state
changes. To ensure they are not optimized away by the
simulator, each dummy instance receives the same instructions
as the real Gemmini, but with different memory inputs.

In the serial execution case, the single working Gemmini
runs each divided chunk of matrix multiplication in sequence.
In the parallel execution case, only one worker’s worth of
workload is being run on this instance, as if it is part of multi-
ple working workers. This is with the expectation that the other
instances would have finished in a similar timeframe. Due to
the lack of synchronization and parallelization overheads, the
baseline is a slight underestimate.

Model Sizes Small Compact Medium Large Bert (func only)

No. fp32 parameters 28,032 111,456 444,096 1,772,928 7,084,800
Hidden dimension 48 96 192 384 768
Sequence length 32 48 64 128 512

Expansion dimension 192 384 768 1536 3072
Number of heads 2 4 4 8 12

Runtime memory (MiB) 0.183 0.742 2.725 13.138 69.026

TABLE III
ENCODER LAYER PARAMETERS FOR DIFFERENT SIZES TESTED

2) Experiment setup: In our experiments, we test a combi-
nation of different variables:

• Functional or RTL simulation;
• Size of the transformer encoder layer, with possible

configurations shown in Table III;
• The number of workers, which can be 1, 2, 4, 8 or 12.

The 12-worker case is reserved for functional simulations
only, due to time constraints;

• Serial or parallel execution.
In terms of metrics collected, we recorded the real time,

which is the wall clock time it takes to run the encoder layer
computation workload simulation from start to finish, as well
as the cycle time, which is the number of cycles required to
execute the computation. We subtracted the number of cycles
spent inside the socket library by timing entrances to and exits
from library function calls.

3) Results and analysis: Figure 10 shows the real time
comparisons of serial execution using our socket-based IPC
integration (socket) versus the baseline (native). The reason
for a non-parallel test case is to demonstrate the raw overhead
added by using an intermediate layer of IPC. Using sockets,
the simulation time is around 2× to 4.5× that of the native

Fig. 10. RTL simulation results running serial execution

version. The smallest test case clocks in at around 28 minutes
for native, and the largest test case reaches just over 122.5
hours with sockets. The overhead likely stems from latencies
in MMIO, socket communication, and fencing. The results
show further opportunities for optimization; however, such an
overhead is a reasonable tradeoff for a working integrated
simulation that produces the correct results.

Fig. 11. RTL simulation results running parallel execution

Figure 11 shows the real time comparisons of parallel
executed test cases. With only 1 worker, the test cases degrade
to the 1 worker serial test cases, albeit with added threading
overhead. As the number of workers increases, the socket-
linked integration scheme approaches the simulation time of
the monolithic baseline, and in some cases overtakes; the
downward trend is present in all model sizes we tested,
showcasing the scalability of the library. For the compact
model size, the 8-worker socket version required 83.7% of
the simulation time compared to the native counterpart. For
the large model size, the 8-worker socket to native time ratio
was 85.8%. Finally, for the medium model size, the 4-worker
number was 95.3%, and for 8-worker it was 65.4%, indicating
a 34.6% speedup.

Fig. 12. Simulation time per cycle

We can more visibly see the root of the efficiency in Figure
12. As evident in the graph, the unit cycle simulation time for
the native integration simulation time scaled up as the design
size increased with more workers, compared to a much more

9



constant scaling with the independent simulation processes
linked together with socket IPC. At 8 workers, the average
native simulation speed equates to 24.7 KHz, whereas our
simulation speed is 43.3 KHz.

Fig. 13. Functional simulation results

Figure 13 shows the real time comparisons of both serial and
parallel test cases when simulated in a functional simulator.
We observe similar trends to the RTL simulations. For serial
test cases, the simulation time is roughly around 4.5× that
of native, ranging from 3.4× up to one case at 6.5×. We
suspect the larger ratios are due to the socket communication
libraries taking a larger portion due to the faster computation
speeds a functional simulator is able to sustain. There is no
baseline per se for parallel test cases, since it is not possible
to simulate more workers in a single functional environment.
However, we can still observe the downward trend of real time
required when the number of workers increases in a socket-
based integration.

We wish to point out that the task of parallel accelerator
utilization inside a monolithic multi-tenant SoC, itself an
active area of research, has generally been a very challenging
objective in the first place as previously discussed. Our work
obtained the simulation time gain based on a much simpler
yet more performant alternative.

Fig. 14. Linear regression predicting true cycle numbers

For effective performance modeling, we recorded the cycle
figures from each socket IPC test case; in each case, even
with the cycles spent in the library deducted from the total,
the cycle numbers ended up being larger than that of a native
implementation. However, the strong correlation we observed
between the two sets of figures shows that one still may be
used to predict the other. Using the 16 data points we obtained
from the parallel test cases, we fitted a simple linear regression
model. The independent variables are log(number of workers)
and log(socket cycles), and the predicted dependent variable
is log(native cycles). Shown in Figure 14, our model predicts

Component Lines of Code

Native transformer encoder inference 599
Socket-enabled encoder inference (dispatcher) 759 (+160)

Gemmini worker binary 138
Gemmini worker FESVR MMIO interface 154

Bare-metal socket library 312

TABLE IV
LINES OF CODE FOR THE MANY-ACCELERATORS CASE STUDY

the true cycle numbers (non-log) with an accuracy of 94.9%,
indicating that the IPC abstraction is a powerful tool for
performance estimation during design iteration.

Finally, we show the lines of code required to implement
each of the components in this case study in Table IV.

VIII. FUTURE WORK

We realize that the current socket IPC performance, es-
pecially in the finer communication granularity cases, still
requires more optimization. In addition, it is evident that some
additional functionality would greatly enhance the usefulness
of our work as a performance modeling and design iteration
tool, and therefore we have compiled a few future directions.

1) Shared memory based IPC. A potential shared memory
based IPC implementation of the socket library could
greatly outperform the current Unix domain file and
TCP based implementations, decreasing the design size
threshold to break-even on simulation time.

2) Quantum-based synchronization control. To allow for
finer cycle-level synchronization control, instead of a
transaction-level synchronization control like our cur-
rent design, an adjustable simulation quantum could be
incorporated into the protocol. This may enhance the
cycle count accuracy approximated from the simulation,
and provides a tunable knob to trade accuracy with
simulation performance.

3) Memory latency and bandwidth modeling. At the current
stage, the characteristics of the hardware-to-hardware
communication depends almost solely on that of the
underlying IPC channel. This may not be sufficient
for integrating for example a large memory system, or
modeling specifically attaching a core to a particular
level of cache. Adding latency and bandwidth constraints
between two endpoints may allow for more usage sce-
narios.

IX. CONCLUSION

In this paper, we showed a simple yet capable socket-based
hardware communication framework. Through a CPU-GPU
co-simulation and a many-accelerators integration case study,
we demonstrate our design supports simulating heterogeneous
architectures in a scalable and performant way. We show
significant simulation time reduction while retaining close
cycle number approximation, enabling accurate performance
modeling and fast design iteration.

10



REFERENCES

[1] AMD. Amd epyc™ 9004 series processors, 2023.
[2] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar

Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao,
Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chipyard:
Integrated design, simulation, and implementation framework for custom
socs. IEEE Micro, 40(4):10–21, 2020.

[3] Apple. Apple unveils m3, m3 pro, and m3 max, the most advanced
chips for a personal computer, 2023.

[4] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, 4:6–2, 2016.

[5] Zero ASIC. Switchboard: An open source high-performance communi-
cation platform. 2023.

[6] RISC-V International Association. Risc-v proxy kernel and boot loader,
2023.

[7] RISC-V International Association. Spike risc-v isa simulator, 2023.
[8] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
Chisel: Constructing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221, 2012.

[9] Inc Cerebras Systems. Wafer-scale engine: The largest chip ever built,
2021.

[10] Henry Cook. Productive Design of Extensible On-Chip Memory Hierar-
chies. PhD thesis, EECS Department, University of California, Berkeley,
May 2016.

[11] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao,
John Charles Wright, Colin Schmidt, Jerry Zhao, Albert J. Ou, Max
Banister, Yakun Sophia Shao, Borivoje Nikolic, Ion Stoica, and Krste
Asanovic. Gemmini: An agile systolic array generator enabling system-
atic evaluations of deep-learning architectures. CoRR, abs/1911.09925,
2019.

[12] Ventana Micro Systems Inc. Ventana introduces veyron v2 — world’s
highest performance data center-class risc-v processor and platform.
2023.

[13] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle
Raiskila, Jarmo Takala, and Heikki Berg. pocl: A performance-portable
opencl implementation. International Journal of Parallel Programming,
43:752–785, 2015.

[14] Shriyanshi Kapoor, Kota Naga Srinivasarao Batta, and Jatin Nagpal.
Emulation: Accelerating simulation for rapid verification of modern
processor-based subsystems. In 2023 3rd International Conference on
Intelligent Technologies (CONIT), pages 1–8, 2023.

[15] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanović. FireSim: FPGA-
accelerated cycle-exact scale-out system simulation in the public cloud.
In Proceedings of the 45th Annual International Symposium on Com-
puter Architecture, ISCA ’18, pages 29–42, Piscataway, NJ, USA, 2018.
IEEE Press.

[16] Seah Kim, Hasan Genc, Vadim Vadimovich Nikiforov, Krste Asanović,
Borivoje Nikolić, and Yakun Sophia Shao. Moca: Memory-centric,
adaptive execution for multi-tenant deep neural networks. 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023.

[17] Seah Kim, Jerry Zhao, Krste Asanovic, Borivoje Nikolic, and
Yakun Sophia Shao. Aurora: Virtualized accelerator orchestration for
multi-tenant workloads. 56th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2023.

[18] Ryan Lund. Design and application of a co-simulation framework for
chisel. 2021.

[19] Maria Muñoz-Quijada, Luis Sanz, and Hipolito Guzman-Miranda. Sw-
vhdl co-verification environment using open source tools. Electronics,
9(12):2104, 2020.

[20] SambaNova Systems. Sambanova announces next generation datascale
system, setting a world record for time-to-train performance. 2022.

[21] Tenstorrent. Cards, 2023.

[22] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim
Hyesoon. Vortex: Extending the risc-v isa for gpgpu and 3d-graphics.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 754–766, 2021.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[24] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang,
Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong,
Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun
Nie, and Ji-Rong Wen. A survey of large language models, 2023.

11


