
Speculative Memory Programming for Secure Computation
Alice Yeh

University of California, Berkeley
External collaborator: Sam Kumar

Introduction

Background

Design & Implementation Results & Evaluation

References

Secure computation enables computing on 
encrypted data, with a popular use case being secure 
multi-party computation, which allows parties to 
collaboratively compute on their shared data without 
any party learning the private inputs of another. 
However, one major barrier to its adoption is the high 
memory overhead, which can lead to prohibitively 
slow computation once systems run out of memory.

Speculative Execution
Speculative execution is an optimization where the 
CPU operates on instructions out of order to fetch and 
compute data that may be needed later. Previous 
works have used speculative execution to parallelize 
data fetching to speed up operations [1].

MAGE [KCP21]
MAGE is an execution engine that can efficiently run 
SCs at speeds close to machines with unbounded 
physical memory. However, MAGE requires DSL 
programs for its planner and planning itself takes time 
proportional to program execution [2].

3PO [BGK+22]
3PO builds on MAGE's idea in the context of far 
memory. A prominent idea is an in-kernel tracer that 
generates a “tape” of page accesses, which can be 
used to determine pages to prefetch [3].

Architecture

Making Speculation Efficient Using Oblivious Allocation

In order to be efficient, the speculative 
thread needs to have a small memory 
footprint and to run quickly. We 
observe, however, that it doesn’t need to 
be correct, as long as its memory access 
patterns are consistent. Therefore, our 
idea is to create a content-oblivious 
region for ciphertext allocation in the 
speculative run and map this region to 
just one physical page.

Passing Hints to the OS about Future Page Accesses

In the speculative run, we record a 
“tape” of page accesses, and in the 
main run, we pass hints to the OS 
about these page accesses using 
the madvise syscall. This informs to 
the OS to read in pages that will be 
needed and to mark pages as 
unused when they are no longer 
needed. We validated that hint-
passing using madvise does not 
significantly worse performance 
using MAGE.

Oblivious allocation stack, consisting of the oblivious allocator 
and an integration layer that allows developers to easily 

annotate their libraries to mark objects for oblivious allocation.

Running a memory program with madvise syscalls through 
MAGE’s interpreter to benchmark execution times.

One case of secure computation is in fraud detection, where banks 
collaboratively compute on shared data to discover fraud.

Complexity of Oblivious Annotations
We implemented oblivious annotations in three 
major crypto libraries [4, 5, 6] and evaluated the 
complexity of modifying these libraries to 
support oblivious allocation.

Effect of Hint-Passing on Execution Time
We benchmarked execution time for hint-
passing, alongside a system with unbounded 
memory, MAGE, and a system relying on 
classical OS paging.

For all workloads, the hint-passing implementation performs within 2x of 
MAGE. 6 of the workloads perform within 1.5x of MAGE.

Hint-passing successfully reduces the time spent blocked, compared to 
classical OS paging.

[1] F. Chang and G. A. Gibson. Automatic I/O hint generation through speculative execution. 3rd USENIX
Symposium on Operating Systems Design and Implementation, 1999.
[2] S. Kumar, D. E. Culler, and R. A. Popa. MAGE: Nearly Zero-Cost Virtual Memory for Secure Computation.
15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21), pages 367–385,
2021.
[3] S. K. E. A. A. O. A. P. S. R. S. S. Christopher Branner-Augmon, Narek Galstyan. 3PO: Programmed
Far-Memory Prefetching for Oblivious Applications. 2022.
[4] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit: Efficient MultiParty computation toolkit. https://github.com/emp-toolkit, 
2016.
[5] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. Cryptology ePrint Archive, Paper
2020/521, 2020.
[6] Microsoft SEAL. https://github.com/Microsoft/SEAL, 2020.


