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Abstract—Randomized singular value decomposition (SVD),
a subroutine of large-scale principal component analysis, has
been well developed in distributed computing. However, not
everyone has access to high performance clusters. Fortunately,
the relatively recent introduction of serverless computing offers
the potential to close the accessibility gap. Therefore, we present
an experimental study on randomized SVD for serverless systems.
Prior works on serverless linear algebra suffer from high commu-
nication cost due to the lack of efficient collective communication
primitives. To solve this issue, we integrate a newly proposed
serverless message interface into a loosely coupled randomized
SVD algorithm. Our evaluations demonstrate that high perfor-
mance linear algebra kernels can be executed in the serverless
setting with comparable performance and significantly better
accessibility when compared to supercomputers. Furthermore,
the long job queuing times associated with high performance
clusters are completely bypassed by our approach. We believe
that the increased accessibility our prototype demonstrates, along
with its fast invocation time, show that the previously mentioned
problems associated with high performance serverless computing
can be overcome and provide benefit to users.

I. INTRODUCTION

Large-scale principal component analysis (PCA) [1], [2] is
a necessary component of many scientific and data analytic
workloads, including bioinformatics [3], deep learning [4],
and image compression [5]. Extensive research has been done
on its subroutine, randomized singular value decomposition
(SVD) [6], over many decades developing efficient parallel
shared-memory and distributed algorithms [7]–[9]. It is in-
creasingly the case that much of this research targets spe-
cific architectures and accelerators. While researchers develop
faster and faster algorithms to run on specialized hardware
and high performance computing (HPC) clusters, many sci-
entists and data analysts not in the HPC community still
have difficulty utilizing these advantages in their own work.
The relatively recent introduction of cloud computing and its
many variants offers the potential to close the accessibility
gap. Serverless computing [10]–[12] is a paradigm in cloud
computing that has attracted interest due to its low startup cost,
relative ease of configuration, and flexible scalability. Cloud
computing helps abstract away the need for organizations or
individuals to handle the tedious management and provisioning
of servers. Serverless computing takes this a step further.
Through the concept of Function as a Service (FaaS), cloud
providers abstract away the need to maintain a running server.
Instead, computation is performed through stateless functions
that scale elastically to the demands of applications. Crucially,
it lets researchers perform highly scalable and parallel compu-

tations in a cost-effective manner without exposing them to the
gritty and frustrating issues one deals with when interacting
with a cluster.

Effectively making use of distributed randomized SVD
kernels for serverless systems is not a trivial problem how-
ever. The most difficult problem to deal with is the stateless
execution environment of FaaS, and the burden this imposes
on efficient communication. Standard designs of distributed
algorithms rely heavily on a stateful execution environment
where it is assumed that compute nodes can communicate
directly with each other in a point-to-point fashion, and also
using collective primitives like gather and broadcast through
the help of Message Passing Interface (MPI). In contrast,
previous work [13] has pointed out that serverless linear
algebra kernels suffer from high communication overheads
due to the lack of efficient collective communication primi-
tives. Nevertheless, distributed linear algebra kernels nowadays
have already been optimized for minimizing communication
cost [14]. Therefore, the central challenge of randomized
SVD for serverless systems is how to reduce communication
overheads on top of the fact that the distributed design is
already optimized for minimizing communication cost.

In this paper, we address this central challenge by inte-
grating a newly proposed serverless message interface [15]
into a loosely coupled distributed randomized SVD algo-
rithm [16], [17], where the former provides efficient collective
communication primitives for serverless systems and the latter
redesigns the algorithm to reduce its reliance on collective
communication primitives.

We then present an experimental study of our integrated
implementation. We analyze the error incurred by our ran-
domized SVD approach. The runtime of both approaches
is measured in a series of experiments. To verify that our
approach is feasible, we analyze the total runtime of both
approaches in terms of span and work. To demonstrate the
improvement in total wait time the serverless implementation
provides, we measured time from submission to completion for
both approaches. Our evaluations show that high performance
serverless linear algebra is a feasible alternative to traditional
HPC solutions. Furthermore, our research demonstrates that it
is technically feasible to obtain a competitive serverless linear
algebra implementation of a widely used machine learning
algorithm with simple modifications to a traditional HPC
implementation targeting a supercomputer. Finally, our work
addresses a common issue with HPC workloads: long job
queues. Using FaaS mostly eliminates this hidden time cost,
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Fig. 1. Illustration of PCA for dimensionality reduction. The original data in
three dimensional space is embedded into two dimensional space by keeping
the first two PCs.

making it easier for users to obtain results quickly.

II. BACKGROUND

A. Principal Component Analysis

Given a columnwise standardized data matrix X ∈ Rn×p

with n samples in p dimensional space, PCA finds a lower
dimensional space that maximizes the variance of the projected
data among subspaces of a given dimension k ≪ p (Figure 1).
This is achieved by transforming X into the so-called principal
components (PCs) where the first k of them retain most of
the variation present in X [18]. Mathematically, this can be
solved by doing eigendecomposition on the p × p symmetric
covariance matrix C = X⊤X/(n − 1), i.e., factorizing C as
V DV ⊤ where D is a p×p diagonal matrix with eigenvalues in
decreasing order and columns of V contain the corresponding
normalized eigenvectors. Then, the first k columns of V form
the orthogonal basis of the targeted k-dimensional subspace.
In other words, the j-th column of XV is the j-th PC and
its corresponding explained variance is the j-th eigenvalue λj

divided by the sum of all eigenvalues. However, computing
eigendecomposition of X⊤X/(n−1) is numerically unstable,
and the solution is to use SVD on X instead.

B. Singular Value Decomposition

SVD [19] is a generalization of eigendecomposition for
arbitrary matrices. Given X ∈ Rn×p defined above with
r = min{n, p}, the SVD of X is X = USV ⊤, where
U and V are n × r and p × r matrices with orthogonal
columns, respectively, and S is an r × r diagonal matrix
with singular values σj in decreasing order (Figure 2). Then,
we have C = X⊤X/(n − 1) = V S2

n−1V
⊤. By comparing

with the eigendecomposition C = V DV ⊤, we observe that
SVD and eigendecomposition share the same V and that
D = S2/(n− 1) and XV = USV ⊤V = US. In other words,
the PCs of X are given by US. Also, eigenvalues of C and
singular values of X are related by λj = σ2

j /(n− 1).
Numerically stable SVD algorithms [20]–[22] and its dis-

tributed version [23] have been developed in the past decades.
Nevertheless, their cubic time complexity with respect to n or
p makes them not suitable for large-scale PCA where n and
p are typically several millions.
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Fig. 2. Illustration of SVD. Matrix X is decomposed into U , S, and V ⊤

where the columns of U are the left-singular vectors of X , the diagonal
entries of S are singular values of X in decreasing order, and the columns
of V (rows of V ⊤) are the right-singular vectors of X .

C. Randomized Singular Value Decomposition

One solution to overcome the cubic time complexity is to
use randomized SVD. Since PCA only requires to compute
the first k ≪ p PCs, we don’t need to solve for the full SVD
X = USV ⊤. Instead, we only need to compute the truncated
SVD X ≈ UkSkV

⊤
k , where Uk contains the first k columns

of U , Sk is the leading principal k×k submatrix of S, and Vk

contains the first k columns of V (Figure 3). However, exactly
computing the truncated SVD is as hard as computing the full
SVD, and here is the place where randomized SVD come into
play.

Randomized SVD follows the intuition of random projec-
tions from the Johnson–Lindenstrauss lemma [24] with the fact
that the failure probability decreases super-exponentially when
oversampling the required dimension k. An algorithm is given
in [6]. The first step is to generate an n×2k random Gaussian
matrix Ω where 2k corresponds to the oversampling parameter
and find an orthogonal basis Q of the space spanned by the
2k columns of XX⊤XΩ. Then, do an SVD on the projected
data Q⊤X to get Q⊤X = Ũ2kS2kV2k and an approximated
rank-2k truncated SVD X ≈ QQ⊤X = (QŨ2k)Ŝ2kV̂2k =
Û2kŜ2kV̂2k where Û2k = QŨ2k. Based on the oversampling
property, we then get an approximated rank-k truncated SVD
X ≈ ÛkŜkV̂k by extracting the leading columns and submatrix
with low failure probability. See [6] for more details, bounds,
and refinements.

Let’s now have an analysis on the time complexity of
randomized SVD. Recall that k is typically no more than 10
in PCA applications, implying 2k ≪ p and 2k ≪ n in large-
scale PCA. The main bottleneck is computing XX⊤XΩ since
SVD is only done on a 2k× p matrix Q⊤X . Multiplying out
XX⊤XΩ from the right hand side has quadratic complexity
with respect to n and p if treating 2k as a constant. Overall,
randomized SVD has quadratic time complexity hence being
capable of handling large-scale PCA with n and p being
several millions.

D. Serverless Computing

Serverless computing [10]–[12], a sub-category of cloud
computing, is a computing paradigm that abstracts away the
need for maintaining servers. Figure 4 shows the workflow

2



≈ × ×

𝑿 𝑼𝒌 𝑺𝒌 𝑽𝒌"
𝑛	×	𝑝 𝑛	×	𝑘 𝑘	×	𝑘 𝑘	×	𝑝

Fig. 3. Illustration of truncated SVD. Instead of keeping all singular values
and singular vectors in SVD, the rank-k truncated SVD only keeps the first
k largest singular values and their corresponding singular vectors.
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Fig. 4. Workflow of serverless computing using the AWS Ecosystem [25] as
an example. When the user (or an event) triggers a task, the task is added to
the task queue and scheduled as serverless functions. Due to their stateless
nature, serverless functions can only read the inputs from the cloud storage
and also write the outputs to the cloud storage. Subtasks generated by the
serverless functions will be added back to the task queue and be scheduled as
long as there is enough resource. Once the task queue is empty, indicating the
whole workflow is done, the user can fetch the final outputs from the cloud
storage.

of serverless computing using the Amazon Web Services
(AWS) Ecosystem [25] as an example. Blue labels show
the components involved in serverless computing, and green
labels convey how different components interact. Note that
serverless functions are typically isolated from each other,
and communications are usually realized through the help of
cloud storage, e.g., Amazon S3 [26], where one function puts
data there and the other gets the data back. Purple arrows
show the dependencies among serverless functions, which are
maintained by the task queue, e.g., Amazon SQS [27]. The
task queue has the ability to perform auto-scaling based on
the requirement of each serverless function.

Through the concept of FaaS, computation in serverless
computing is performed through stateless functions that scale
elastically to the demands of applications, which is suitable
for irregular and imbalanced workloads. Also, the fine-grained
billing model allows user to only pay for the computing time
and memory allocated for the serverless functions. The recent
growth of serverless computing offers the potential to close
the accessibility gap for people without knowledge of server
provisioning.

E. Serverless Linear Algebra

Directly migrating linear algebra kernels from HPC to
serverless computing is, however, not an easy task. Although
existing general serverless programming frameworks [28],
[29] simplify serverless development, their generality runs
in opposite direction of performance-oriented linear algebra
kernels. There are specialized serverless linear algebra frame-
works [13], [30] with tens of thousands lines of code to deal
with task scheduling and resource management, but they still
suffer from high communication overheads due to the lack
of efficient collective communication primitives. Nevertheless,
linear algebra kernels nowadays have already been optimized
for minimizing communication cost [14]. This issue leaves
serverless linear algebra an interesting field worth investigat-
ing.

F. FaaS Message Interface

FaaS Message Interface (FMI) [15] is a recently proposed
message passing library aims for providing MPI-like prim-
itives for serverless systems. The motivation is to get rid
of frequently interacting with secondary cloud storage and
to have fast and cheap message passing instead. However,
one issue of function isolation in serverless systems is that
endpoints are hidden behind Network Address Translator
(NAT) gateways [31], making direct communication between
serverless functions not a simple task. FMI circumvents this
obstacle by utilizing the hole punching technique [32] where
a relay server is used to map and exchange IP addresses of
serverless function instances. Afterward, serverless functions
are able to communicate directly and build collective commu-
nication primitives on top of direct communication.

G. Loosely Coupled Singular Value Decomposition

The bottleneck of standard numerically stable SVD algo-
rithms is to reduce the matrix X into a bidiagonal matrix [20]–
[22]. This step is inherently coupled in a distributed setup
when X is partitioned block-by-block since multiple orthog-
onal transformations need to be applied one after another.
Loosely coupled SVD [16], [17], on the other hand, redesigns
the algorithm, distribute X in a columnwise manner, and
merge the results using a perfect binary tree. Figure 5 il-
lustrates how loosely coupled SVD works when there are 22

processors.
Firstly, the input matrix X is partitioned in a columnwise

manner and distributed across processors. Each processor at
leaf nodes performs standard SVD on the columns being
assigned. Then, each internal node in the binary tree merges
results from its two children nodes to get the SVD of all the
columns within its subtree. Therefore, the root node will have
the full SVD of X at the end. When only computing the rank-
k truncated SVD of X , each node in the binary tree does
not need to hold the full SVD, but only needs to hold the
rank-k truncated SVD of all the columns within its subtree.
Nevertheless, loosely coupled SVD sacrifices its accuracy with
a factor related to the amount of parallelism.
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Fig. 5. Illustration of loosely coupled SVD. Suppose there are 22 processors
organized as leafs in a perfect binary tree, and the input matrix X is first
partitioned in a columnwise manner. Then, each processor performs SVD on
the columns assigned. After that, processor 0 merges its result with that from
processor 1, and processor 2 merges its result with that from processor 3.
Finally, processor 0 merges its result with that from processor 2 and returns
the SVD of X .

By distributing the input matrix X in a columnwise manner
and organizing dependencies as a perfect binary tree, loosely
coupled SVD reduces its reliance on collective communication
primitives when compared with its numerically stable coun-
terpart. Also, randomized SVD can be easily implemented
following this scheme since the randomization part is embar-
rassingly parallelizable.

III. RELATED WORK

A. Singular Value Decomposition

SVD is the Swiss Army knife of linear algebra. The first
complete statement dates back to [19] and the first reliable
algorithm is presented in [20]. Since then, SVD has been
extensively studied [21], [33], [34] and incorporated into
linear algebra libraries [22], [35]. Parallel and distributed
SVD [23], [36] have also been considered for specialized
hardware and HPC clusters, with a shift of focus from high
accuracy to communication avoiding algorithms [14], [37]. Al-
though already optimized for minimizing communication cost,
distributed SVD still suffers from high communication over-
heads in serverless systems hence loosely coupled SVD [16],
[17] is proposed to simplify dependencies in computation by
sacrificing accuracy in order to reduce overheads. SVD also
suffers from its inherent cubic time complexity when large-
scale data sets come into play where sizes of matrices are
several millions. One solution is to use randomized SVD [6],
[7] to approximate SVD in a low dimensional space. The other
solution is to use iterative methods [38], [39] to approximate
SVD until desired accuracy is achieved. The recent growth
of serverless computing makes large-scale serverless SVD a
worth investigating problem since SVD needs to be redesigned
to overcome constraints imposed by this new paradigm.

B. Serverless Computing

Serverless computing [10]–[12] is a recently introduced
cloud computing paradigm that abstracts away the need for
maintaining servers. It is initially intended for lightweight
function execution such as real-time tools [40], [41] and data

analytics [42], [43]. There exists general serverless program-
ming frameworks [28], [29] that simplify serverless develop-
ment and enables people to implement serverless linear algebra
kernels. However, their generality introduces significant bloat
in order to handle many different kinds of workloads. While
this is good for application developers who are interested in
serverless, it precludes programmers from fully optimizing
their workloads for the cloud setting and therefore offers less
impressive results for performance-oriented linear algebra ker-
nels. Therefore, it is necessary to have specialized serverless
linear algebra frameworks to overcome constraints imposed by
serverless computing.

C. Serverless Linear Algebra

The need to express parallel numerical linear algebra in
terms of directed acyclic graph (DAG) based computations
is addressed in [13]. By representing subtasks and their
dependencies explicitly in terms of a DAG, the lack of
stateful functions in the serverless setting can be overcome.
It is accomplished by introducing a domain-specific language
which expresses linear algebra routines as operations on matrix
tiles that can fit into the local memory of a single stateless
function. The main insight is that by explicitly representing
and referencing each subtask as a node in a graph whose
edges represent data dependencies, parallel algorithms can be
expressed in a manner agnostic to the particular machine lay-
out and topology. However, its reliance on a general serverless
framework [28] introduces significant overheads. Additionally,
[13] points out that serverless linear algebra kernels still
suffer from high communication overheads. Although this can
be mitigated by introducing co-located cache [44] with the
assumption that co-locating serverless functions are available,
the main bottleneck comes from the lack of efficient collective
communication primitives.

Task and resource scheduling is another issue in serverless
linear algebra and has been extensively studied in [45]–[47].
Decentralized scheduling distributed across serverless func-
tions proposed in [30] enhances data locality and resource elas-
ticity. Data locality is also achieved by function co-locations
in [44]. On the other hand, due to the predetermined time
limit enforced by cloud providers on individual FaaS function
invocations, serverless linear algebra frameworks need to
decompose tasks into subtasks. This is mitigated in [13] by the
fact that they only address dense matrix operations, leading to
much more predictable subtask running times.

The reliance on secondary cloud storage due to the nature of
stateless execution is also addressed by studying networking
and communications in serverless systems. Solutions include
intermediate functions or coordinators [48], [49] , specialized
storage or query systems optimized for cloud and server-
less computing [50], [51], and direct communication over
TCP/IP [15], [52], [53].

Overall, numerous studies have been conducted to migrate
distributed linear algebra kernels into serverless systems. Al-
though thousands lines of code [13], [30] have been written
to overcome issues mentioned above, the main bottleneck on
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communication overheads is still a matter. Also, as we can
observe that migrating well-studied distributed linear algebra
kernels requires more efforts than the original implementations
to achieve comparable performance, whether there is a need
to redesign distributed algorithms to align with characteristics
in serverless systems is a worth investigating problem.

D. Other Serverless Applications

Other than real-time tools, data analytics and linear algebra
kernels mentioned above, there are other applications that can
make use of serverless computing [54]. Scientific computa-
tions such as bioinformatics benefit from serverless computing
due to their coarse-grained communication [55], [56] and on-
demand resource requirements [57]. Media related applications
such as video processing [58] and livestreaming [59] exploits
serverless computing easily due to its inherent time-based
intra-parallelism. Also, Internet of Things applications that
are designed based on cloud computing can easily adopt the
serverless computing paradigm [60], [61]. Moreover, there
are experimental studies for the booming machine learning
workflow on serverless systems [62], [63].

IV. RANDOMIZED SVD FOR SERVERLESS SYSTEMS

A. Implementation Overview

Recall that the central challenge of serverless randomized
SVD is how to reduce communication overheads on top of
the fact that the distributed design is already optimized for
minimizing communication cost. To overcome this obstacle,
we propose to mitigate communication overheads from two
perspectives: using a loosely coupled SVD algorithm and using
FMI as an efficient serverless message passing interface.

Loosely coupled SVD is a solution to the lack of efficient
collective communication primitives on serverless systems, as
it only requires point-to-point communication when merging
results in the binary tree. However, the reliance on sec-
ondary cloud storage for point-to-point communication still
constitutes a large portion of communication overheads, and
that’s the reason why we add FMI on top of point-to-point
communication to make serverless randomized SVD faster.

Figure 6 shows how FMI is added on top of loosely coupled
SVD. When two processors want to merge their SVDs, both
of them connect to a hole punching relay server so that
the relay server can create an address mapping table. Then,
both processors get the other’s address from the relay server
once the mapping is established. Direct communication comes
afterward where one processor sends its SVD to the other so
that two SVDs can be merged in a single processor. Note that
the hole punching relay server is needed in order to circumvent
the issue in NAT gateways. We have implemented loosely
coupled SVD using MPI for HPC clusters and using FMI for
serverless systems in order to conduct our experimental study.

B. Metrics of Success

On top of our distributed and serverless randomized SVD
implementations, we are interested in the following questions:

• Does our serverless implementation have comparable
performance as our distributed implementation? How
many lines of code need to be changed to convert our
distributed implementation to our serverless one? If two
implementations have comparable performance and only
a few lines of code need to be modified, it indicates
that redesigning algorithms might be more beneficial than
developing thousands lines of general serverless linear
algebra frameworks.

• How long do we need to wait for serverless systems and
HPC clusters to return results? One notorious issue in
HPC is waiting in the queue for several hours or even
days. A shorter response time in serverless systems has
the potential to close the accessibility gap.

• How much CPU time is used in both implementations?
Underutilization is a common problem in HPC clusters
since a fixed amount of resource must be launched
through the whole job session while serverless computing
does not have this limitation hence being more cost-
efficient.

• How much error is introduced when scaling up the
number of processors? Recall that loosely coupled SVD
sacrifices its accuracy with a factor related to the amount
of parallelism. To make our implementation usable in
the downstream PCA application, the error needs to be
considerably small.

V. EVALUATION

Generating Data Sets. There are two different categories of
evaluations that require different setups given the limitations
of the serverless setting. In the MPI setting, reading in an
input matrix file from disk can be parallelized with MPI-IO
functions. Each MPI task can start by reading the file from an
evenly spaced chunk, ordered by processor rank. Using a prefix
scan, the file can be quickly divided into regions corresponding
to column-partitioned submatrices. In the serverless setting,
the preferable method would be to use a single serverless
function to pre-process the matrix file and find the coordinates
for each chunk. These can then be written to cloud storage in
a text file and upon invocation each serverless function can
quickly look up which section of the file corresponds to the
submatrix that it is responsible for.

In order to test the run-time of our prototype implemen-
tations, we focused on just timing the computation phase,
since the pre-processing step just mentioned has comparably
negligible run-time. Therefore, to test timing for both the
MPI and AWS Lambda implementations, the input matrices
were generated at runtime in parallel. Each processor/Lambda
generated its submatrix by sampling uniform and independent
random 64-bit floating point numbers from the interval [0, 1].

We tested timing using square matrices of dimensions 2048
(2K) and 4096 (4K). We verified that our timing tests were
not returning junk values by examining the leading reported
singular values. For a uniformly random matrix X ∈ R2k×2k ,
the expected largest singular value is σ1 = 2k−1, and the
second largest singular value is σ2 =

√
2k−1/2.
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Fig. 6. Illustration of integrating loosely coupled SVD with FMI. (i) When processor 0 and processor 1 have their SVDs ready, they connect to a hole
punching relay server to circumvent NAT issue. (ii) Once the address mapping table is established, both processors get the other processor’s address. (iii)
Processor 1 then sends its SVD directly to processor 0 via TCP. (iv) Processor 0 then follows the loosely coupled SVD algorithm to merge their SVDs.

For error analysis, it is preferable to generate matrices
with known singular values beforehand. Furthermore, because
our implementation approximates only a truncated SVD, and
because most applications of PCA are only interested in
a handful of the most important principal components, we
generated matrices whose leading singular values are more
significant than the rest. The largest singular values were all set
to 100, and the following singular values σ2, . . . , σr (where we
assume r is the dimension of a square matrix) are a decreasing
geometric sequence σi = 2−i+1σ1, i = 2, . . . , r.

Evaluation Platforms. To test the MPI implementation
of our program we used CPU nodes on the NERSC Perl-
mutter supercomputer, an HPE Cray EX system. The server-
less implementation was run using AWS Lambda. We were
granted a concurrency limit of 256 Lambda functions. We
therefore tested both implementations ranging from 2 to 256
parallel tasks. Because the SVD algorithm requires at least
one communication phase, we cannot run the algorithm with
a single task. All timing tests were run with three trials
to account for possible variance in the system load. The
code for our implementations can be found on github at
https://github.com/gabe-raulet/lambda svd.git.

A. Algorithm Performance

To compare the general performance of both implementa-
tions, we measured the total runtime span for the MPI imple-
mentation and the time to completion of the AWS Lambda
implementation. Randomly generated square matrices with
dimension 2048 and 4096 were tested. Our results demonstrate
that performance on each system is comparable. For both
systems, the SVD time starts to increase after too many
tasks are added. Too many tasks can cause contention over
resources. The comparable performance of both systems is
noteworthy because the serverless implementation required
changing only 26 lines of code from the MPI implementation,
which has about 450 lines of code (excluding utility functions).

Fig. 7. SVD Time is measured from the moment execution of the dis-
tributed/serverless SVD algorithm starts until all tasks are complete. 2048×
2048 matrices are measured in the top figure and 4096× 4096 matrices are
measured in the bottom figure.

B. Waiting Time Comparison

In addition to the accessibility concern we attempt to
address with this paper, another advantage of using a serverless
cloud provider like AWS Lambda is that there is negligible
wait times associated with function invocation. A common
oversight in HPC research is that most work is focused
exclusively on runtime performance, which neglects the long
wait-queues generally associated with a highly demanded
supercomputer. It is common on the Perlmutter system to wait
days for a large job submission (e.g. hundreds or thousands
of compute nodes) to be removed from the job queue. While
we did not run our implementation on such a large number
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Fig. 8. Submission to completion time is measured from the time of function
invocation (for AWS Lambda) and job submission (for Perlmutter). The bars
behind each point span from the slowest to the fastest of three trials with the
data point in the middle being the mean. 2048×2048 matrices are measured
in the top figure and 4096×4096 matrices are measured in the bottom figure.

of nodes, this problem is still noticeable for much smaller
workloads. Figure 8 demonstrates the increased wait times
associated with supercomputer resources do not affect the
serverless setting. We measure submission to completion time
for the Perlmutter implementation starting from the moment
the job is submitted to the Slurm scheduler. In our experi-
ments, the amount of time between submitting the requested
invocations to their executing starting in AWS Lambda was
too small to show up in our plots. We therefore used the
same time measurement scheme as in Figure 7 for AWS
Lambda. For both AWS and Perlmutter, we ran three trials
for each experiment. This is represented in 8 using “error”
bars spanning from the fastest trial to the slowest. The plotted
points correspond to the average over the three trials. We note
here that bars for the AWS experiments are so hard to see
because the variance over all three trials was very low.

C. CPU Time Comparison

To measure possible under-utilization of resources on su-
percomputers, we measured total processor time spent for
both approaches. One issue associated with MPI is that it is
exceedingly difficult to throttle down the amount of resources
being used during runtime. A selling point of the serverless
approach is its ability to scale automatically to the runtime
requirements of the application. We hypothesized at the outset
of our project that a positive aspect of our approach would
be the more efficient utilization of resources, because Lambda
functions can be immediately released when they are no longer
needed. MPI tasks must wait and idle, using up system re-
sources, until the end of the executable runtime. We measured
Total CPU time by taking the individual times associated with

Fig. 9. CPU time measures the total number of processor-seconds starting
from the moment execution begins. 2048 × 2048 matrices are measured in
the top figure and 4096× 4096 matrices are measured in the bottom figure.

Fig. 10. Number of running tasks is the number of active Lambda functions
over the course of execution. Ran using a total of 256 concurrent Lambda
functions on a 2048× 2048 matrix.

each MPI task and Lambda function and summing them. To
help visualize the runtime characteristics of the AWS Lambda
implementation, we plot in Figure 9 the number of of actively
running tasks over time. The exponential decay is explained
by the binary topology of the execution flow, where after each
communication phase half of the currently active Lambdas
return early.

D. Error Analysis

In order to measure the error incurred due to the use of
an approximate algorithm, we compute the relative errors of
a selection of the top 10 principal components of a PCA.
Recall that a PCA can be obtained from the SVD by a
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Fig. 11. Relative errors of explained variance (Relerr of expvar) for principal
components (PC) in PCA v.s. number of processors used on a 4096× 4096
matrix.

simple transformation. The error of our implementation can
be seen to increase as the number of tasks goes up. This
is explained by the nature of the algorithm we use. The
seeding phase of algorithm runs truncated SVD on its original
column-partitioned submatrix. When more tasks are employed,
this means the seeding phase computes a less accurate initial
estimate because there is less information.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

A. Various Optimizations

The current implementation of our algorithm follows a naive
scheduling strategy, where each Lambda function’s respon-
sibility is determined deterministically by the topology of a
binary tree. A more efficient utilization of resources would be
to introduce a runtime DAG task scheduler. A DAG scheduler
represents parallel programs in terms of their dependencies.
Whenever a task is completed, its successors are looked up in
the DAG and notified that one of their dependencies is ready
to communicate its results. This means that faster tasks don’t
waste CPU time as in the deterministic approach.

B. Serverless Sparse Linear Algebra

Although irregularity and load imbalance in sparse linear
algebra make it align well with serverless computing at the first
glance, there are still several obstacles that existing serverless
linear algebra frameworks need to overcome.

One issue is the predetermined time limit enforced by cloud
providers on individual FaaS function invocations. Existing
serverless linear algebra frameworks only deal with dense
matrix operations, leading to much more predictable subtask
running times so that those frameworks can divide the tasks
until they fit into the time limit. However, in the sparse
linear algebra domain, even if the sizes of inputs are known
beforehand, it is not easy to predict the running time as
accessing data in an irregular pattern varies the running time
a lot. Logging and checkpointing in serverless systems [64],
[65] have been studied, but their high overheads make them
incompatible with performance-oriented sparse linear algebra
kernels.

Another issue is still the communication overheads. In order
to fit each FaaS function invocation into the predetermined
time limit, sparse linear algebra kernels need to be partitioned

aggressively to address their unpredictable running times.
However, over-partitioning introduces more small messages
that need to be communicated between serverless functions,
which aggravates the already congested communication traf-
fics. Although there are studies [66], [67] trying to address
this by regularizing irregular sparse communications, they are
not panaceas since they focus on specific sparsity patterns and
network topology.

From another point of view, real-world large sparse graphs
can be represented as sparse matrices hence serverless graph
processing is also worth investigating in order to understand
serverless sparse linear algebra. Serverless graph processing
has been studied in [68]. Although fine-grained elasticity is
achieved, the paper indicates that their implementation is
network-bound and not suitable for communication-intensive
graph algorithms.

C. Serverless Machine Learning

Machine learning applications, including PCA discussed in
this paper, rely heavily on linear algebra kernels. Although
there exists serverless machine learning services such as [69],
they still share the same difficulties as serverless linear algebra.
For example, operators in deep learning models are highly
coupled hence deploying them on serverless systems suffer
from high communication overheads [63]. Consequently, de-
signing loosely coupled deep learning models, an approach
similar as the loosely coupled SVD, has been explored [62].
Nevertheless, there are still other difficulties such as the lack
of serverless GPU systems need to be solved.

Large language models are also studied in serverless sys-
tems [70]. Downstream applications of large language models
including generative artificial intelligence fit well into the
serverless paradigm because requests are triggered on demand
and inference needs to be done in real time. However, fitting a
high-quality large language model into serverless systems can
be hard since serverless computing is designed for lightweight
tasks. Also, compared to a serverful setup where models can be
pre-loaded, the stateless nature of serverless computing makes
it suffer from high startup cost for loading models.

Overall, linear algebra kernels are not the only bottleneck
in serverless machine learning. The highly coupled model
designs, the reliance on GPUs, and the high startup cost for
loading models are issues that need to be addressed in order
to make serverless machine learning a maturer field.

D. Serverless GPU systems

Most of the well-developed serverless services at present
only include CPUs but not GPUs. Although serverless GPU
systems have been proposed [71], it has not yet been provided
by mainstream cloud providers due to the imperfections stated
below.

One issue is, again, communication overheads. Distributed
GPU linear algebra kernels generally assumed that there is a
fast network interconnect between all compute nodes such as
NVLink [72] to transfer data between GPUs. However, such
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an interconnect does not exist in serverless systems hence it
is a worth exploring future direction.

Another issue is the startup time. Migrating data between
CPUs and GPUs, kernel launching overheads, and synchro-
nization overheads constitute the startup time, which is con-
siderably longer than using CPUs alone. Only if there are
enough jobs to do in the current serverless function after
startup can this time be amortized. However, this is hindered
by the predetermined time limit set by cloud providers, hence
a new billing model must be considered.

Another direction is to use the AWS Spot Instances [73],
where spare compute capacity is provided in a lower price.
However, high-end GPUs are usually unavailable, making
specialized GPU linear algebra kernels relying on special
components such as Tensor Cores [74] unable to run.

As more and more linear algebra kernels are specialized for
GPUs, the lack of mature serverless GPU systems is widening
the accessibility gap. Overcoming the scarcity of GPUs is hard,
but we believe that it is a necessary step in order to make
everyone benefit from GPU based linear algebra kernels in
their own workflow.

VII. CONCLUSION

In this paper, to alleviate high communication overheads
found in existing serverless linear algebra frameworks, we
integrate a FaaS message interface into a loosely coupled
randomized SVD algorithm and derive a serverless random-
ized SVD implementation. We then conduct an experimental
study on our randomized SVD implementation for serverless
systems. Our evaluations demonstrate that high-performance
linear algebra kernels can be executed in the serverless set-
ting with comparable performance and significantly better
accessibility when compared to supercomputers. Furthermore,
the long job queuing times associated with high-performance
clusters are completely bypassed by our approach.

Although we only focus on randomized SVD in this paper,
we believe that our analysis can be extended to other linear
algebra kernels suffering from high communication overheads.
Specifically, to improve performance of serverless linear alge-
bra kernels on top of the fact that distributed ones are already
optimized for minimizing communication cost, either a more
efficient serverless message interface is required or a redesign
of algorithms aligning with constraints imposed by serverless
computing is needed.
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