'4.'..‘.'0‘.."00‘.....

Serving with Spot GPUs Iin the Sky
Ziming Mao and Tyler Griggs

‘e
."0O0000'°.

Introduction Mixed Accelerators

Problem Policy Overview Policy #1: Request Size
Large generative Al applications are rapidly growing in popularity. However, (1) Overprovision cheap spot instances to mitigate preemptions . A10 Cost
serving these models is challenging because they have strict availability (2) De-correlate preemptions by placing spots on different regions / clouds 2000 | 8% | 10% Savings 024 0% Savings
requirements and are expensive to operate. We identify one primary component (3) Fallback to on-demand instances when spot becomes unavailable T e e o N D l 0% i 0%
of the model serving stack that exacerbates these problems: GPUs. _ _ g 20% 2
Trafflc Preemptlon? % 500 2% 1% (9 17% | 21% 0% é ~ = -

. . . . 2 2 L. ° 5

GPUs are notoriously expensive and scarce. Expensive GPUs inflate the cost of (1) 2) 3 20% 2 20%
: . : : ' Decide (3) & 250 Bl 2% 1% 8% O 512 24% 0% 10%
model serving, and GPU scarcity forces organizations to horde GPUs when Autoscale spot-demand _ Allocate s 40% g N ..
available in order to meet service demand, leading to resource inefficiency and D S U Spot g 100 EATH 1% 1% 4% 60% I
even higher serving costs. QPS,, N S(t) Spots Assign 25 " I . 20 COS 24% 0% 0% S0
ar d % % : -
N . instances D(t) on-demand St(t) Spots o a0 o00 2o Ato0 s CRTI T Savinge
pproac O Zzones Prompt Length (tokens)

In this work, we seek to reduce model serving cost while achieving high Observation: Both LLaMA2-7b (left) and StableDiffusion-XL (right) have
service availability by pursuing two directions that exploit the characteristics of System Overview large request size space wherein different GPUs are cost-optimal.

cloud GPU instances to make more cost-efficient use of GPUs: Policy: Serve each model request on the GPU that is most cost-efficient for

(1) Launch service replicas on different regions and clouds; the request’s size.

(1) Spot Instances: reduced-cost, preemptible GPU instances Redirect user traffic to diiferent service replicas
(2) Mixing Accelerators: mix accelerator types in same serving pool (2) Service controller handles replica lite cycles o Policy #2: Request Rate

(provisioning, health probe, job monitoring, and termination) Observation: At lower request rates, high-end GPUs are underutilized.
(3) Implement policy (autoscaler, spot mixture, spot placer, as above) Policy: If a low request rate is causing GPU underutilization, switch to using
a cheaper and less powerful GPU.

/ Controller VM \
- . O\ (- . O - . - T
Y\ Service 1(gorvion 1 T\ Service2(gorvia Policy #3: Availability
(S:erwci 1 Ready Replicas Load geNICﬁ 2 Ready Replicas Load
ac g ro u n OMrOIeT ewais|_ Balancer OMONer swamaia|_ Balancer Observation: Autoscaling with a single GPU type is challenging because
> T) GPUs may be unavailable when needed to meet demand. However, the GPU

Monitor Provision shortage is mostly experienced by popular high-end GPUs.

& Boolslrapping b redirect
: '= j Policy: When a preferred
& > ———— @
Spot Instances Mixed Accelerators Health Probe™. .~ ! h . GPU?,s unavaiIaI:F))Ie fall
\Job M 5)
LLaMA-2-7b StableDiffusion-XL - |" 01 onitoring - | 5 I;I o, g—— . back to plentiful,
40 eplica eplica : eplica 3 eplica 2 , :
A100 VI00 T4 K&0 N : [(READY) J{ (READY) J (PROVISIONING) | (FAILED) ; highly-available GPUs.
O @5 AWS/us-east-1 GCPlus-central1 | AWS/(launching) Ei - 3 &
AWS 10 4-12 6—8 48 30 ~ U st reses et 4 £ 0 B . _
Agure 2;2 4i 10i | Oi 52 54 9 O MOVe'pmV'i"f” On left, autoscaling with a
GCP 3% 3% 5-7x 10X jfz i Evaluation i AZZ//ZZ mix of GPUs (Policy #3)
g g2 (1) Spot " 4 availability t 15 q - achieves higher availability
. 1 pot preemption and availability traces, covering 15 zones, g —
Cost Savings (Spot GPUs) ; __ regions, 2 clouds, up to 2 months 8 prissni i oo and lower cost compared
0 . 25) (2000, 2000) (256, 256) (1024, 1024) ’ ’ . _ - —— Autoscale: 99p early to Slngle'GPU aUtOscallng
RoquestSize (o, ot okens) Reauest Size (g wdh, g high) (2) Three workloads: Poisson, ChatbotArena, and Azure Functions. o > PekPomon oan and provisioning for peak
sswestza H e ‘ Heterogeneity in Generative Models (3) Simulation, replay traces for reproducibility, multi-node simulation . ’ . o
3?:2:?? ” B :HIT—HI - f— i :: tO measure |atency percent”es Normalized Cost ($)
us-eastl-a —i— 1 i 4 i (4) Real end-to-end evaluation on prototype system. Running System System
. D e oy 10 | on actual Al serving workloads with real-time preemptions. We combined the policies into one cohesive auto-scaler and load balancer
| | 08 I that provisions a cost-optimal mix of accelerators given the observed (or
Spot instances preemptions i i Summary of Results predicted) workload.
0.6 i l
L§04 et (1) Guarantee high resource availability | Evaluations
us-west-2a []_| [| IIM_ILILIHI_ ' . : : (2) Saves cost (44% - 55%) and improves service latency (3x P99, 1.5x . . _ . .
| | | : : . . L Simulation Setup: Replay production traces (ChatbotArena, Azure Functions)
uswest2e | | T AT | - 0.2 i | 4xA100 P50) compared to using on-demand instances w/o overprovisioning. using real LLM datasets (ChatbotArena, ShareGPT)
—_— /J i —— 26100 More cost saving compared to on-demand w/ overprovisioning. J It !
I 0o : | 1XA100 . : Preliminary Results:
Relative Time (Hours) S s (3) Evaluating System on real Al workloads show that compared to using e Compared to single-GPU autoscaling: 26-36% cost reduction while
. . - . = 0
Correlated Preemptions within a Region Provisioning Wait Time (minutes) Ior:-der_nanbd, ?gos/te7m4§/aves 38_1:43(70 of cost while reducing P99, P90 achieving higher availability
nci r ively. L . R
Accelerator Unavailability AleNCIEs DY 9970, 1470 TESPECUVElY o C(()jmpac;ed t(: provisioning for peak: same high availability at 45-70%
reduced cos

