
Serving with Spot GPUs in the Sky
Ziming Mao and Tyler Griggs

Introduction

Background

Spot Mixed Accelerators
Policy Overview

(1) Overprovision cheap spot instances to mitigate preemptions
(2) De-correlate preemptions by placing spots on different regions / clouds
(3) Fallback to on-demand instances when spot becomes unavailable

System Overview
(1) Launch service replicas on different regions and clouds; 

Redirect user traffic to different service replicas
(2) Service controller handles replica life cycles 

(provisioning, health probe, job monitoring, and termination)
(3) Implement policy (autoscaler, spot mixture, spot placer, as above)

Evaluation
(1) Spot preemption and availability traces, covering 15 zones, 8 

regions, 2 clouds, up to 2 months
(2) Three workloads: Poisson, ChatbotArena, and Azure Functions.
(3) Simulation, replay traces for reproducibility, multi-node simulation 

to measure latency percentiles.
(4) Real end-to-end evaluation on prototype system. Running System 

on actual AI serving workloads with real-time preemptions.

Summary of Results
(1) Guarantee high resource availability
(2) Saves cost (44% - 55%) and improves service latency (3x P99, 1.5x 

P50) compared to using on-demand instances w/o overprovisioning. 
More cost saving compared to on-demand w/ overprovisioning. 

(3) Evaluating System on real AI workloads show that compared to using 
on-demand, System saves 38-43% of cost while reducing P99, P90 
latencies by 55%, 74% respectively.

Spot instances preemptions

Correlated Preemptions within a Region

Cost Savings (Spot GPUs)

Spot Instances

Problem
Large generative AI applications are rapidly growing in popularity. However, 
serving these models is challenging because they have strict availability 
requirements and are expensive to operate. We identify one primary component 
of the model serving stack that exacerbates these problems: GPUs. 

GPUs are notoriously expensive and scarce. Expensive GPUs inflate the cost of 
model serving, and GPU scarcity forces organizations to horde GPUs when 
available in order to meet service demand, leading to resource inefficiency and 
even higher serving costs.

Approach
In this work, we seek to reduce model serving cost while achieving high 
service availability by pursuing two directions that exploit the characteristics of 
cloud GPU instances to make more cost-efficient use of GPUs:

(1) Spot Instances: reduced-cost, preemptible GPU instances
(2) Mixing Accelerators: mix accelerator types in same serving pool

Mixed Accelerators

Evaluations
Simulation Setup: Replay production traces (ChatbotArena, Azure Functions) 
using real LLM datasets (ChatbotArena, ShareGPT)
Preliminary Results:
● Compared to single-GPU autoscaling: 26-36% cost reduction while 

achieving higher availability
● Compared to provisioning for peak: same high availability at 45-70% 

reduced cost

Policy #1: Request Size

Observation: Both LLaMA2-7b (left) and StableDiffusion-XL (right) have 
large request size space wherein different GPUs are cost-optimal.
Policy: Serve each model request on the GPU that is most cost-efficient for 
the request’s size.

Policy #2: Request Rate
Observation: At lower request rates, high-end GPUs are underutilized. 
Policy: If a low request rate is causing GPU underutilization, switch to using 
a cheaper and less powerful GPU.

Policy #3: Availability
Observation: Autoscaling with a single GPU type is challenging because 
GPUs may be unavailable when needed to meet demand. However, the GPU 
shortage is mostly experienced by popular high-end GPUs.

Policy: When a preferred 
GPU is unavailable, fall 
back to plentiful, 
highly-available GPUs.

On left, autoscaling with a 
mix of GPUs (Policy #3) 
achieves higher availability 
and lower cost compared 
to single-GPU autoscaling 
and provisioning for peak.

System
We combined the policies into one cohesive auto-scaler and load balancer 
that provisions a cost-optimal mix of accelerators given the observed (or 
predicted) workload. 

Heterogeneity in Generative Models

Accelerator Unavailability


