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Serving with Spot GPUs Iin the Sky
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Introduction Mixed Accelerators

Problem Policy Overview Policy #1: Request Size
Large generative Al applications are rapidly growing in popularity. However, (1) Overprovision cheap spot instances to mitigate preemptions . A10 Cost
serving these models is challenging because they have strict availability (2) De-correlate preemptions by placing spots on different regions / clouds 2000 | 8% | 10% Savings 024 0% Savings
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GPUs are notoriously expensive and scarce. Expensive GPUs inflate the cost of (1) 2) 3 20% 2 20%
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model serving, and GPU scarcity forces organizations to horde GPUs when Autoscale spot-demand _ Allocate s 40% g N ..
available in order to meet service demand, leading to resource inefficiency and D S U Spot g 100 EATH 1% 1% 4% 60% I
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In this work, we seek to reduce model serving cost while achieving high Observation: Both LLaMA2-7b (left) and StableDiffusion-XL (right) have
service availability by pursuing two directions that exploit the characteristics of System Overview large request size space wherein different GPUs are cost-optimal.

cloud GPU instances to make more cost-efficient use of GPUs: Policy: Serve each model request on the GPU that is most cost-efficient for

(1) Launch service replicas on different regions and clouds; the request’s size.

(1) Spot Instances: reduced-cost, preemptible GPU instances Redirect user traffic to diiferent service replicas
(2) Mixing Accelerators: mix accelerator types in same serving pool (2) Service controller handles replica lite cycles o Policy #2: Request Rate

(provisioning, health probe, job monitoring, and termination) Observation: At lower request rates, high-end GPUs are underutilized.
(3) Implement policy (autoscaler, spot mixture, spot placer, as above) Policy: If a low request rate is causing GPU underutilization, switch to using
a cheaper and less powerful GPU.
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Monitor Provision shortage is mostly experienced by popular high-end GPUs.
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