
Implementing and Understanding Performance of Fino

Siddhant Sharma
University of California, Berkeley

Chris Liu
University of California, Berkeley

Neil Giridharan
University of California, Berkeley

Abstract

BFT-SMR has traditionally low throughput and high message
communication overhead. However, recent research advances
DAG-based BFT protocols that decouple reliable message
broadcast and transaction ordering to achieve high throughput
for additional latency overhead. Fino [13], by Malkhi and Sza-
lachowski, is a novel DAG-BFT protocol that emphasizes sim-
plicity while trying to achieve high performance for through-
put and latency. Protocols such as Narwhal-Bullshark [10]
explore this tradeoff space as well, achieving impressive per-
formance in the happy case. In the case of network latency or
Byzantine leaders, Bullshark can face high latency, as nodes
are often blocked awaiting progress. Fino takes an approach
of integrating timeouts into its messages to promote view
changes, leading to questions about performance between the
two protocols in various workloads. In this paper, we imple-
ment Fino with the Narwhal broadcast layer. We observe how
this affects performance by running benchmarks against other
DAG-BFT protocols across various scenarios and workloads.
Furthermore, we develop an end-to-end evaluation framework
to provide insight on the holistic performance of consensus
protocols when applied to applications with transaction ex-
ecution—we find this reveals more nuanced behavior than
would be possible by only observing maximum throughput
and minimum latency data.

1 Introduction

BFT-SMR has been a major point of focus in recent
blockchain scalability efforts, as the bottleneck for many
chains has been the core consensus layer. Consensus proto-
cols have evolved from traditional PBFT [3] to have nuanced
properties and design decisions for different use-cases, but
the throughput and latency are low (<100 tx/second). Certain
blockchains, such as Ethereum [19], try to maintain larger
validator sets, leading to poor throughput (7 tx/second) and
slow block times (12 seconds per block). This is often due
to the complex coupling of message broadcasting and poor

pipelining, leading to very “sequential” periods of consensus
ordering.

Protocols such as HotStuff [1] reduce the message com-
plexity required for leaders to communicate with participants
to commit and order new transactions and even offer avenues
for pipelining to increase throughput. HotStuff achieves this
through the notion of quorum certificates, which are used to
guarantee safety. However, HotStuff still does not maximize
the network throughput, as non-leader nodes do not produce
any transactions.

Narwhal and Tusk [5] introduces a novel decoupling of
transaction/block gossiping and transaction ordering, that al-
low Narwhal-Tusk and Narwhal-HotStuff to achieve over
150k tx/second and 125k tx/second respectively. Narwhal pro-
vides an underlying DAG structure that allows all nodes to
produce uncommitted blocks that are eventually committed
when a leader proposes a block and orders the block’s causal
history through a topological sort. This allows the network
to produce blocks at network speed through zero consensus
overhead on top of the message complexity! Further improve-
ments such as Bullshark [10] introduce better asynchrony
and latency guarantees through concepts of physical DAGs
(formed in Narwhal’s messaging layer) and logical DAGs
(built on top of the physical DAG) used for consensus.

DAG-BFT protocols such as Bullshark and Tusk make
improvements on the latency guarantees of HotStuff (under
partial synchrony and eventual synchrony), but can still run
into periods of high latency when nodes do not receive mes-
sages from leaders to advance rounds or when leaders do
not receive enough votes on proposals. In production deploy-
ments, this is extremely problematic, as we can lose liveness
for extended periods.

Fino [13] introduces an additional message type, time-
outs, integrated within the message DAG for BFT proto-
cols. This allows nodes to broadcast messages indicating
they have timed out on the current round and are progress-
ing forward in their local DAG given enough support from
peers. The network can proceed with bounded waiting peri-
ods, without blocking, in cases where leaders are unrespon-



sive/Byzantine or when there is widespread network latency or
packet drops. Theoretically, the throughput and latency guar-
antees are asymptotically the same, but the performance in
practice should be significantly better due to nodes not block-
ing on missing actions from other nodes. Papers such as MEV
Protection on a DAG [13] introduce this notion of "integrated"
timeouts, but do not provide implementations with through-
put or latency benchmarks against other consensus protocols.
Comparing the throughput and latency performance of time-
outs in logical DAGs against other DAG-BFT protocols can
shed light on the performance differences between physical
and logical DAG-BFT consensus protocols.

2 BFT Definitions

2.1 Model

For simplicity, our system contains n nodes
Π = {p1, p2, · · · , pn} that participate in state machine
replication. Up to f < n

3 nodes can be Byzantine. They may
act arbitrarily and can implement any adversarial behavior
(such as crashing or delaying, duplicating, dropping, and mod-
ifying messages) but cannot subvert standard cryptographic
methods. To allow nodes to use these cryptographic methods,
we assume the existence of public-key infrastructure (PKI)
that provides asymmetric encryption, signing, and message
integrity functionality. Byzantine nodes are not necessarily
independent, and can therefore collude. We say that all nodes
that are not Byzantine are correct. We assume all nodes are
connected and send messages to each other over a partially
synchronous network, where the network is asynchronous up
to an unknown global stabilization time (GST), after which
there is a known bound ∆ on message delays between nodes.
Furthermore, we assume that all messages between correct
nodes are eventually delivered. In essence, we assume the
same Byzantine, networking, and cryptographic models as
Bullshark and similar protocols to ensure our comparisons
are fair.

2.2 Required Infrastructure

Many relevant BFT protocols, including Fino, involve the
following known abstractions:

Reliable Broadcast: A node pk can call reliable broad-
cast, r_bcastk(m,r), to broadcast a message m during round
r ∈ N of the protocol. Each node pi also has an output chan-
nel r_deliveri(m,r, pk) for a message m, a round number r,
and a node pk which called the corresponding r_bcastk(m,r).
Reliable broadcast guarantees agreement, integrity, and valid-
ity—we will not define them formally, as we inherit them from
Narwhal. Agreement allows all correct nodes to eventually
output the same r_deliver(m,r, pk) values. Integrity guaran-
tees that each correct node will only output r_deliver(m,r, pk)
at most once each round. Validity ensures that every correct

node eventually outputs r_deliver(m,r, pk) as a result of a
correct node calling r_bcastk(m,r). For our implementation,
we use Narwhal’s [5] reliable broadcast functionality for fair
evaluations between Fino and Bullshark.

Global perfect coin: A node pi ∈Π can randomly select a
node p j ∈Π by invoking choose_leaderi(w) on an instance
of a global perfect coin w ∈ N; the outcome of which can be
represented by the random variable Xw. The global perfect
coin guarantees agreement, termination, unpredictability, and
fairness. We will not define them formally, as we inherit them
from Narwhal. Agreement allows two correct nodes calling
choose_leader(w) to receive the same values. Termination
guarantees if at least f +1 correct nodes call the function, then
the function will eventually return. Unpredictability allows
for the probability of an adversary guessing the return value
of p j to be equal to indistinguishable from a random value
within a negligible range. Fairness allows for the probability
of a node being picked to be 1

n for a system with n nodes.

2.3 Problem Definition

Fino aims to solve the problem of reaching consensus on
a total ordering of all transactions in the face of Byzantine
failures for all correct nodes. Specifically, if a correct node
orders message m1 before m2, then no correct node can order
message m2 before m1. Fino relies on a DAG transport layer
to communicate with peers and maintain a DAG view for each
node in the system.

Our goal is to implement the Fino protocol, using Narhwal
as the underlying DAG transport protocol, to understand its
performance in a real-world system when compared to other
BFT protocols. Fino’s introduction of timeouts into its DAG
structure promises to reduce latency under certain node behav-
ior, but its effects in practice are currently unknown. There-
fore, our goal is also to measure the impact of including time-
outs on real-world, practical workloads. By using Narwhal as
the transport layer, we can leverage a well-tested messaging
layer that has been used in research and production environ-
ments. Implementing and benchmarking Narwhal-Fino allows
us to understand the class of DAG-BFT protocols that use a
logical layering on top of the messaging better on latency and
throughput metrics.

3 Related Work

3.1 Narwhal

Narwhal [5] is a mempool protocol that introduces a key in-
sight of decoupling message gossiping and message sequenc-
ing. It handles the dissemination of transactions, grouped into
blocks, introducing a DAG-based structure to manage the ca-
sual history of these blocks. Narwhal finds performance gains
by only performing consensus on a small amount of metadata;
it also avoids wasteful messaging found in many traditional

2



BFT protocols by guaranteeing that all proposed blocks are
eventually committed.

3.1.1 Relevant Properties

Narhwal assumes a system of n nodes tolerant of suffering
f Byzantine failures, such that n ≥ 3 f + 1. Its provides a
performant mempool and a store of uncommitted transactions,
revolving around a key-value store of blocks b keyed by their
digest d. It provides the following properties:

• Integrity: Correct nodes reading from the same digest d
will receive the same block b.

• Block-Availability: Reading a digest d after a successful
key-value write (d,b) on a correct node must eventually
return b.

• Containment The causal history of a later block always
contains that of an earlier block.

• 2/3-Causality The causal history of a block contains
≥ 2

3 of the previous blocks.

• 1/2-Chain Quality At least 1
2 of a block’s causal history

is written by correct nodes.

3.1.2 Replication Protocol

Narwhal implements a novel reliable broadcast protocol, intro-
ducing the notion of a certificate of availability. In Narwhal’s
DAG, blocks comprise of a hash signature, a list of transac-
tions, as well as a collection of certificates of availability for
the previous round’s block. Certificates of availability are
comprised of the hash of its corresponding block alongside
2 f +1 signatures from other nodes during the current round r,
verifying the block’s successful delivery. The gossip protocol
goes as follows:

1. Nodes create a transaction list using incoming client
transactions and a certificate list from incoming certifi-
cates.

2. Upon receiving 2 f + 1 certificates from other nodes
within a round r−1, a node moves into the next round r,
adding its transaction list to a new block and broadcast-
ing it to other nodes.

3. Incoming blocks are validated by the node to ensure they
contain a 2 f + 1 certificate from the previous round r;
the node signs the hash with its own signature if this is
the case.

4. Nodes create a certificate of availability once it has re-
ceived 2 f +1 signatures for a block it broadcasted. Once
a certificate of availability has been created, the node
broadcasts it to all other nodes and stops broadcasting
the original block.

Narhwal and Tusk [5] follows up this message dissemina-
tion protocol with its own consensus protocol named Tusk;
which is responsible for actually committing blocks.

3.2 Bullshark

Bullshark [10] is a BFT protocol that introduces additional
metadata into Narwhal’s messaging layer to support consen-
sus. Specifically, each block proposed during round r in Nar-
whal’s DAG additionally includes a vote for blocks proposed
during round r−1. When a block receives f +1 votes, it and
its causal history are ordered and committed. Additionally,
after f +1 blocks are proposed during a round, the block pro-
posed by the leader of that round (known as the anchor block)
and its causal history are also ordered and committed. When
a node times out while waiting for other nodes to send in
votes during a round, it "short-circuits" and sends out its cur-
rent information on other nodes’ votes alongside its current
transaction block to be committed later.

p← current node
f ← # of Byzantine failures
dag← the current DAG

function try_commit(v: Vertex):
r← get_round_number(v)
if r is even then

if v.author = p∧ p is leader for round r then
stake← 0
for message m ∈ dag.get(r−1) do

if m.parent = v then
stake←
stake+get_stake(r.author)

end
end
if stake > f +1 then

ls← dag.order_causal_history(v)
commit_blocks(ls)

end
end

end
end

Algorithm 1: Bullshark Commit Protocol

Leaders only have the potential to commit blocks during
even rounds—odd rounds are used to determine which block
will be voted upon. To reach consensus on a block, the leader
calculates its stake, representing how many nodes have voted
in approval of the block being proposed during the current
round. If the stake exceeds the validity threshold of f +1, the
leader orders the DAG vertices in the block’s causal history
and commits.

3



3.3 Fino

Fino [13] is described as a BFT protocol introducing the no-
tion of a logical DAG on top of Narwhal to achieve high
transaction throughput. Each round of the protocol, nodes
gossip blocks and collect signatures on these blocks as per the
Narwhal protocol. Separate from Narwhal’s DAG composed
of the blocks being gossiped (otherwise known as the physi-
cal DAG), the logical DAG introduced by Fino is composed
of messages voting on these gossiped blocks. This allows
the protocol to advance the physical DAG at network speed,
independent of the consensus logic for the logical DAG. This
implies the logical layer of the DAG is a subset of the physi-
cal DAG, but committing blocks from the logical DAG will
eventually commit all blocks on the physical DAG.

Fino relies on vote, propose, and complain (otherwise
known as timeout) messages to form the logical DAG re-
sponsible for managing causal history and committing blocks.
Specifically, its classification of timeouts as part of logi-
cal messages allows nodes to communicate with each other
about moving on from rounds with unresponsive or Byzan-
tine leaders without suffering performance losses. Asymptoti-
cally, Fino has the same messaging complexity as Bullshark,
but Fino attempts to take a different approach to slow-view
changes when leaders or peers are unresponsive.

p← current node
f ← # of Byzantine failures
dag← the current DAG

function try_commit(v: Vertex):
r← get_round_number(v)
if r is even then

if v.author = p∧ p is leader for round r then
stake← 0
for message m ∈ dag .get(r−1) do

if m.parent = v∧m is a vote then
stake←

stake+get_stake(r.author)
end

end
if stake > f +1 then

ls← dag.order_causal_history(v)
commit_blocks(ls)

end
end

end
end

Algorithm 2: Fino Commit Protocol. The key difference
between Fino and Bullshark’s commit is using the stake
of only vote messages to commit.

The commit protocol for Fino is very similar to that of Bull-
shark, but with the key difference that it must differentiate

between vote and complaint messages within a round when
computing stake. Similarly to Bullshark, the leader orders and
commits if the number of votes exceeds the f + 1 validity
threshold. However, unlike Bullshark’s "short-circuit" time-
outs, nodes only move on to the next round if the number of
complaints within a round exceeds the quorum threshold of
2 f +1.

4 Implementing Fino

4.1 Integration with Narwhal-Bullshark

By itself, Fino is a simple consensus protocol. There are
only 2 forms of consensus messages sent, with very simple
data structures and data types, such as signed integers, mes-
sage digests, and asymmetric cryptographic signatures. The
protocol’s cryptographic properties are guaranteed via our
original model and PKI assumptions. However, the Fino pro-
tocol requires a data dissemination layer to send its logical
DAG metadata within messages. In Malhki’s original work
on Fino, this is a generalized DAG-transport protocol that
contains simple broadcast and deliver APIs. In our work,
we rely on Narwhal to provide reliable broadcast and DAG-
transportation. We choose Narwhal due to its testing in real
world, production-ready applications such as Sui [14] and
Aptos [2], as well as its well-designed architecture that can
scale system throughput quasi-linearly with respect to the
number of data-dissemination workers per node. To reach
consensus on top of Narwhal messaging, we attach Fino’s
logical messages and implement the Fino consensus protocol.

4.1.1 Modifying Narwhal

Implementing Fino on top of Narwhal requires modifying
some of Narwhal’s core data structures. To minimize the code
changes required, we added a Decision enum to represent
the logical DAG decision that participants in the network
make based on gossip information they are processing. Votes,
Complains, and Proposes all have Rounds attached to the
enum, specifying which logical round number the decision is
for. If the header is created just for the physical layer of the
DAG (essentially, for Narwhal), the Decision holds Empty,
with no associated logical round number. All other core data
structures between Fino and Narwhal remain unchanged. We
maintain as small of a code diff between the two implemen-
tations to ensure we do not infringe on Narwhal’s properties,
such as garbage collection, or insert unnecessary metadata or
data structures that can affect performance.

Integrating Fino’s logical timer alongside Narwhal’s system
is tricky due to potential blocking and race conditions between
physical and logical blocks, as well as other components of
the Narwhal system. Narwhal’s architecture contains a Core
module that orchestrates Tokio (Rust asynchronous schedul-
ing) [17] handles and interactions upon receiving votes, cer-

4



Enum Decision options
Vote(Round);
Complain(Round);
Propose(Round);
// default
Empty;

end
Struct Header contains

PublicKey author;
Decision decision;
Map<Digest, WorkerId> payload;
Set<Digest> parents;
Digest id;
Signature signature;

end
Struct Certificate contains

Header header;
Vec<(PublicKey, Signature)> votes;

end
Algorithm 3: Core Data Structures for Fino

tificates, and headers. The Core dispatches actions to the
Proposer module to create new headers and dispatch them to
other nodes, among other intermediate steps. Therefore, the
Narwhal Primary’s Core module is the perfect place to inte-
grate the Fino abstraction of a logical timer. We instrument the
Core module with a timer to keep track of time since the last
view change. When a header is received for a given round, we
add it to each node’s count of Ok or Complain for the current
logical round. Then, if a node has received more than f +1
Ok or 2 f +1 Complain of validator stake for a logical round,
the quorum of nodes can view change. When a node receives
a Propose, it checks for its logical timer expiration. If the
timer has not expired, the node responds with a Ok to indicate
a vote. If the timer has expired, it broadcasts a Complain for
the given logical round. The value that the Core decides to
broadcast via the Proposer module is sent via a Tokio chan-
nel. The Proposer is modified to listen to this additional data
from the Core in its execution loop. Upon receiving the next
view’s decision from the Core, the proposer attaches it to the
next set of headers it processes for the given logical view.

By separating the logical timer from the proposer, we dis-
cover Fino has potential performance loss due to synchro-
nization issues between the Core and Proposer modules. As
a toy example, consider the case where the Core module is
processing headers and certificates, but the Proposer has just
sent out a header. The Fino decision sent by the Core would
need to wait for the next message to arrive, be processed, and
finally be sent out. This can add significant latency per header
and lead to some Fino decisions to be discarded as they are
stale, as the logical DAG may have progressed to the next
view and the header would no longer be needed. A nuance of
this is that it interpolates the trade-off space between latency

and throughput through such delays. Since the underlying
DAG transport protocol running underneath Fino, Narwhal,
continues to progress at network speed, we simply add addi-
tional latency before we commit. As a result, each consensus
commit contains more transactions but incurs extra latency.
This can occur in certain tail cases under the correct network
delays or message receiving times. It is important to note this
is not a correctness issue and will not lead to liveness issues
in the partial synchrony model that Fino follows.

4.1.2 Implementing Fino’s Consensus Protocol

Implementing Fino’s consensus is fairly similar to Bullshark’s
implementation in Narwhal-Bullshark. The core functional
difference is instead of checking for f +1 stake from parents
in Bullshark, Fino instead checks for f +1 stake of Vote votes
to commit for a given round. Similarly, Fino only commits
at the logical layer, but each commit contains the messages
and blocks gossiped from the physical layer of Narwhal. All
operations in Fino’s consensus protocol works over the logical
DAG, unlike Bullshark integrating all information into the
physical layer via Narwhal.

4.2 Integration with ABCI

Application Blockchain Interface (ABCI) [16] is a framework
that provides a standardized interface between the consensus
and mempool layer of blockchains to the applications that
run on blockchains. ABCI has a strong focus on modularity
and interoperability, making it a great candidate for develop-
ing a framework of macrobenchmarking different systems
by easily swapping out consensus protocols, mempools, and
execution environments. ABCI is used in production in var-
ious blockchains today, primarily found in the Cosmos [4]
ecosystem.

We developed a framework using ABCI that allows for
benchmarking by integrating generalized execution environ-
ments via RPC, building off the work developed by Konstan-
topoulos, et al. in their article Cosmos without Tendermint:
Exploring Narwhal and Bullshark [12]. We allow clients to
interact with an application by sending RPC requests to a
shim residing at the consensus and data availability layer of
ABCI. The shim can route requests directly to the peer-to-
peer layer or consensus layer for message routing or ordering
(depending on the consensus protocol of choice) or forward
the request to the execution layer of the application. Upon
ordering of transactions, the ABCI framework can execute
newly produced blocks using an execution environment of
choice and propagate state changes to clients. The communi-
cation between data availability layer and execution layer are
also facilitated through RPC.

To integrate the Narwhal family of BFT protocols, we can
plug in Narwhal as our data availability layer for gossiping
with peers and storing our ledger. This includes the Narwhal

5



Figure 1: End-to-End Macrobenchmarking System Overview,
generalizing the work from [12].

primary and any workers used to scale the block gossiping for
the desired end-to-end system load. To integrate the consensus
layer, we can spin up our primary with the desired consensus
protocol. The primary can be configured with the appropriate
networking to its workers and other services such as signature
aggregators or databases. The process of configuring the data
availability and consensus protocol is designed to be as similar
to running other benchmarks with the Narwhal system, for
ease of use and feature-parity.

To integrate an execution environment, the execution envi-
ronment needs to spawn as an RPC server and route requests
to its internal services, such as the execution virtual machine,
the execution state handlers, and more. For our benchmarking,
we integrated the Ethereum Virtual Machine (EVM) [19] with
its corresponding Ethereum execution RPC1 to ABCI. The
Ethereum execution environment RPC gets requests routed
from the client via the consensus shim to compute client-
specific requests or execute new blocks of transactions for
state-transition computation. We must route the client requests
via the consensus shim, as we need to determine which re-
quests are new transactions for the mempool and which re-
quests are directed for the execution environment. We can
extend our work by testing various execution environments
that have different programming and execution paradigms,
such as Block-STM [9] designed for production-ready imple-
mentations of Narwhal-Bullshark called Aptos [2]. To inte-
grate the Ethereum Virutal Machine, we make use of Anvil2,
the local node development environment in the Foundry3

family of Ethereum development tools. We will use this end-
to-end framework to benchmark various consensus protocols,

1Ethereum execution RPC spec can be found at
https://github.com/ethereum/execution-apis

2Anvil can be found at https://github.com/foundry-
rs/foundry/tree/master/crates/anvil

3Foundry can be found at https://github.com/foundry-rs/foundry/

ranging from Bullshark to HotStuff to Fino to understand
throughput and latency under various workloads and network
configurations.

5 Evaluation

5.1 Evaluation Methodology

We compare Fino against other BFT protocols to understand
how it compares against Bullshark and HotStuff. Bullshark is
the most similar BFT protocol, as it builds on top of Narwhal
and is another zero-message overhead protocol, making it
the focus of our evaluations. We use three main methods of
benchmarking: simulated latency, cloud benchmarking, and
macro-benchmarking by attaching the Ethereum Virtual Ma-
chine’s execution environment to various consensus protocols.
We execute all non-cloud benchmarks on Apple M1 Max ma-
chines with 64 GB of memory and 1 TB of storage, allowing
for ample machine resources to not bottleneck our testing.

We employ cloud benchmarks to test the performance of
Fino against Bullshark in a wide area network (WAN) on
Google Cloud Platform. We test 5 runs under the simple con-
figuration of 4 honest nodes to get an idea of the limits of
the system under heavy load from clients. We can understand
how the systems perform under realistic workloads and geo-
graphically distributed nodes and clients.

The simulated latency benchmark simulates network con-
gestion across different committee configurations and average
latency. We use a Weibull distribution to model the latency
between peers communicating between each other. Weibull
distributions have two parameters, scale and shape. We mod-
ify the shape parameter to simulate different average latency
values. We also benchmark performance using a bimodal dis-
tribution of latency to model happy and sad case execution
paths for modeling the network and understanding how the
consensus throughput and latency are affected in such cases.
In such tests, we use an input transaction rate of 50,000 tx/s,
with a maximum block size of 500KB and transaction size of
512B.

Finally, we employ our end-to-end system benchmarking
methodology described in Section 4.2 to get a better under-
standing of how end-to-end (as well as consensus) throughput
and latency are affected when committing and executing op-
erations within each block. Specifically, we use the Ethereum
Virtual Machine (EVM) and its RPC protocol to execute the
transactions ordered by each consensus protocol. We use
simple transactions, such as simple interactions with other
accounts on the EVM, but also have the option to load in
additional state, such as ABCI modules or Ethereum smart
contracts, to simulate more complex interactions and transac-
tions. For end-to-end testing, we use an input rate of 10,000
tx/s, with a maximum block size of 500KB. It is difficult to
estimate the exact transaction size, as there are several vari-
able factors that can increase transaction size, such as gas

6

https://github.com/ethereum/execution-apis
https://github.com/foundry-rs/foundry/tree/master/crates/anvil
https://github.com/foundry-rs/foundry/tree/master/crates/anvil
https://github.com/foundry-rs/foundry/


prices and fees. However, a reasonable lower bound is 100B,
given the required fields in each Ethereum transaction and the
recursive length prefix encoding algorithm used to serialize
data structures.

5.2 Cloud Microbenchmarks

0 20k 40k 60k 80k 100k 120k 140k
Throughput (tx /s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

La
te

nc
y 

(s
)

Fino, 4 nodes Bullshark, 4 nodes

Figure 2: Cloud benchmarks of Fino and Bullshark, running
in a GCP Compute Engine using a wide area network

For our cloud benchmarks, we leveraged Google Cloud
Platform’s Compute Engine, using N2 machines with 4 vC-
PUs and 16GB of RAM. We use this setup to simulate an
average node’s hardware requirements to understand real-
world performance. We use a wide area network (WAN) to
simulate geographically distributed nodes to account for a
diverse validator set. We executed the benchmark over 5 runs,
using input transaction rates of 15,000, 50,000, 100,000, and
two runs of 150,000 transactions per second. From the graphs,
we see that Fino and Bullshark have very similar performance,
where Fino has a slightly lower throughput in almost every
input rate but trades it off for slightly lower latency.

Fino achieves about 11,000 tx/s and 2.1s of latency for
15,000 tx/s input rate, which is slightly less than Bullshark’s
14,500 tx/s and 2.3s of latency. Fino achieves 48,500 tx/s and
3.5s of latency, whereas Bullshark achieves 48,000 tx/s and
5.0s of latency. This helps highlight in certain happy paths,
Fino can achieve better latency than Bullshark. For input
100,000 tx/s, Fino achieves 93,000 tx/s and 2.2s of latency
whereas Bullshark achieves 99,000 tx/s and 4.0s of latency.
Once again, we see the logical DAG implemented by Fino
trades off latency for throughput. In the 150,000 tx/s case, we
can see some hints of the synchronization problem Fino and
other logical DAG-BFT protocols can face. In one run, we
see that Fino and Bullshark achieve almost the exact same
throughput and latency of 149,000 tx/s and 2.5s of latency.
However, in another run, Fino achieves only 135,000 tx/s with
2.6s of latency, whereas Bullshark achieves 148,500 tx/s and
2.9s of latency. Here, we see that Fino achieves a significantly
worse throughput for slightly better latency. We believe this
is due to Fino initially missing commits due to network la-
tency, causing the Fino logical timers to mis-synchronize with
Narwhal’s timers. Then, Fino’s next set of decisions tend to

be slightly mis-synchronized with Narwhal, causing commits
to happen with less latency but collecting fewer transactions
to commit in the same time period. Bullshark shines in this
example, as it is guaranteed to operate on the same timers as
Narwhal, since it does not maintain its own timer state.

5.3 Simulated Latency Microbenchmarks

Figure 3: Fino vs. Bullshark, simulated latency with Weibull
distribution. The labels indicate number of nodes in commit-
tee, and the number following the hyphen is number of faulty
nodes.

In Figure 3, we simulate latency for incoming messages
into each node using a Weibull distribution. The scale and
shape parameters of the distribution are 1.5 and 2.5, and we
use this to simulate milliseconds of latency by sleeping nodes
during this period. We simulate latency across 25 iterations of
the simulation and track minimum, 25th percentile, 50th per-
centile, 75th percentile, and maximum end-to-end throughput
and latency. Our evaluations show Fino and Bullshark fall into
the same class of throughput, with minor differences that we
attribute to the probabilistic simulation of latency. Fino also
has smaller spreads in the latency in comparison to Bullshark:
Bullshark’s end-to-end latency ranged between roughly 700 -
1600ms, whereas Fino’s end-to-end latency ranged between
roughly 400 - 1100ms. This helps highlight the strong per-
formance comparison between Fino and Bullshark and the
potential benefits of integrating timeouts within the DAG.
We see the general trends apply to both Fino and Bullshark
across different committee configurations. This microbench-
mark also gives us some insights of the performance of Fino
with faults against other algorithms. From this, we can see
Fino maintains its throughput without incurring high latency
penalties in the face of certain models of network behavior
and faulty actors. However, we believe a bimodal distribution
may better simulate network latency in a uncongested and
congested manner, leading to our next simulations.

In Figure 4, we simulate a bimodal distribution of network
latency to simulate a fast- and slow-case for network latency

7



Figure 4: Fino and Bullshark with simulated latency microbenchmark using a bimodal distribution. Each curve represents a
different sampling ratio between the two modes of the distribution for network latency.

Figure 5: Probability distribution of latencies with 100,000
samples of bimodal distribution sampling 95% from µ1 =
300ms, σ1 = 100, and 5% from µ2 = 1500ms, σ2 = 300. This
is the "slow" distribution we used for our simulations.

and bad actors. We use 2 distributions, dubbed "fast" and
"slow" for brevity. The fast distribution has µ1 = 2ms, σ1 = 2,
µ2 = 300ms, σ2 = 100. The slow distribution has µ1 = 300ms,
σ1 = 100, µ2 = 1500ms, σ2 = 300. We run the simulation
across five "quick-ratios" of 100%, 99%, 98%, 95%, and 90%
for each distribution, where a "quick-ratio" of 95% means
95% of the network’s latency is sampled from the normal dis-
tribution N(µ1,σ1), whereas the other 5% is sampled from the
normal distribution N(µ2,σ2). This allows us to explore how
the performance of each protocol is affected as the frequency
of network congestion changes. Similarly to above, we simu-
late latency across 25 iterations of the simulation and track
minimum, 25th percentile, 50th percentile, 75th percentile,
and maximum end-to-end throughput and latency. We pri-

marily focus on the slow distribution for our analysis, as we
believe it more closely models real-world network behavior.

Our evaluations show that Fino’s throughput performance
is slightly worse than that of Bullshark’s, but also tends to have
less spread. An increase in network reliability modeled by an
increasing quick-ratio consistently yielded higher throughput
minimums for Bullshark, whereas the throughput maximum
tended to fall within the 35,500 tx/s - 36,000 tx/s range (with
the exception of 34,7800 tx/s under a 95% quick-ratio). Fino
saw its throughput maximums fall within the 35,000 tx/s -
36,000 tx/s range, and its throughput minimum takes a step
back from about 35,200 tx/s at a 99% quick-ratio to only
34,700 tx/s at a 100% quick-ratio (near-perfect network sta-
bility!); its maximum throughput additionally steps back from
35,600 tx/s to 35,100 tx/s between a 99% and 100% quick-
ratio. However, its spread became noticeably tighter than their
Bullshark counterparts as the network becomes less stable:
Fino yielded a range of 347 tx/s under a 100% quick-ratio
(compared to Bullshark’s 491 tx/s) and a range of 381 tx/s
under a 99% quick-ratio (compared to Bullshark’s 1,259 tx/s).
On average, Fino is able to outperform Bullshark’s throughput
as the network latency increases and becomes more unsta-
ble. Fino and Bullshark are neck-and-neck for all quick-ratios
within the fast distribution, but the performance advantage
Fino has on Bullshark’s throughput grows as the quick-ratio
decreases within the slow distribution, if only marginally: for
all quick-ratios within the fast distribution, Fino and Bull-
shark’s throughputs are within 0.5% of each other—under a
quick-ratio of 98% on the slow distribution, Fino outperforms
Bullshark’s throughput by 0.8%; this performance gap further
increases to 2.4% under a quick-ratio of 90%.

On the other hand, Fino’s latency tends to be more stable
than Bullshark’s; the protocols’ minimum latency values are

8



comparable across all quick-ratios, but Bullshark tends to
experience a latency spike between the 25th and 75th per-
centile—yielding latency ranges from about 509ms to 715ms
between quick-ratios—whereas Fino’s maximum latency val-
ues are comparable to their corresponding minimums within
each quick-ratio—yielding latency ranges from about 97ms
to 260ms and noticeably outperforming the maximum latency
values of Bullshark. This tendency to not stray far from its
minimum latency values means that Fino is capable of con-
sistently outperforming Bullshark’s average latency by 10%
- 15% for most quick-ratios under both slow and fast distri-
butions—the minimum such gap being 6% under the slow
distribution with a quick-ratio of 95%.

5.4 End-to-End Macrobenchmarks

Figure 6: Macrobenchmarks integrating a full consensus and
execution environment with Fino and Bullshark.

In Figure 6, we explore the performance of Fino, Bull-
shark, and HotStuff using the end-to-end testing framework
described in Section 4.2, focusing on the end-to-end through-
put and latency of the system. As described above, we use
the Ethereum Virtual Machine as our execution environment,
communicating with it via the Ethereum RPC. In the first
benchmark, we want to push the systems to their limits, so we
remove all simulated latency and test for maximum through-
put and minimum latency. We see that in an end-to-end test,
the fast consensus commits HotStuff can achieve do not trans-
late to fast end-to-end latency, despite its expected low latency.
Overall, HotStuff tends to achieve less throughput and slightly
less latency than Fino and Bullshark. Comparing Fino and
Bullshark shows the inconsistent performance of Fino. Fino
achieves roughly the same throughput as Bullshark, but tends
to have slightly higher latency. We attribute this to a mis-
synchronization between the Narwhal messaging layer and
the Fino logical layer. It is possible in certain cases, the Fino
logical layer sends a decision to the Narwhal message layer
just after Narwhal sends a header out, leading to the current

header needing to wait a full round to be included. We believe
this contributed to the increase in latency for Fino, compared
to Bullshark’s physical integration with Narwhal’s DAG.

Figure 7: Macrobenchmark of bimodal distribution of simu-
lated latency between Fino and Bullshark. We use a bimodal
distribution with µ1 = 300ms, σ1 = 100 and µ2 = 1500ms,
σ2 = 300

In Figure 7, we additionally simulate a bimodal distribution
of network latency similar to that used in the microbench-
marks. This is an extension of the previous benchmark but
with simulated latency to compare how Fino performs in
specific network conditions against Bullshark. Like the mi-
crobenchmark evaluations, the fast distribution has µ1 = 2ms,
σ1 = 2, µ2 = 300ms, σ2 = 100 and the slow distribution has
µ1 = 300ms, σ1 = 100, µ2 = 1500ms, σ2 = 300. Again, we
primarily focus on the slow distribution for our analysis, as
we believe it more closely models real-world network be-
havior. Comparing Bullshark and Fino shows Fino achieves
better performance in the "steady" case of only sampling from
the 300ms distribution, but performs worse and worse as we
sample from the 1500ms distribution. Noticebaly, Fino has
greater variability in latency and throughput than Bullshark,
which we attribute to mis-synchronization between Narwhal
and Fino timers. The degradation in latency performance of
Fino supports this: as we introduce more "out of distribution"
latencies, Fino takes longer to commit as timers may get out
of sync. The table of data in Section 1 showcases the full
data collected, but the general trend we see is Fino achieves
higher throughput with worse latency than Bullshark in the
end-to-end, simulated latency benchmarks we conducted.

6 Future Work

One interesting area of research is exploring implementations
of alternative DAG transport layers besides Narwhal. More
specifically, integrating Fino into Narwhal is unfruitful today
since a Narwhal header requires n− f certificates in the cur-
rent round to advance to the next round. This is by design to

9



achieve a quorum of at least 1 honest node between rounds.
However, Fino only requires at most 2 f + 1 certificates to
advance to the next round. Thus, Narwhal imposes a sub-
optimal latency restriction on Fino. It would be interesting
to explore other designs of DAG transport layers that have
requirements that fit better with Fino. On the other hand, Nar-
whal is a well-tested protocol that provides several properties
that allow Fino to achieve very high throughput, such as only
passing message digests in certificates and effectively sepa-
rating data availabilty from message transport. Alternative
DAG transport layers can still maintain a simple API of broad-
casting and delivering transactions without equivocating, but
explore other aspects of the design space such as availability
or the quasi-linear scalability of Narwhal. Projects such as
Aleph [8] and DAG-Rider [11] are alternative designs and
further understanding this design space would be helpful for
better understanding such BFT protocols.

Another area of future work can be oriented around re-
thinking the need for a DAG structure in the first place! DAGs
provide a strong structured approach to building a blockchain
that can be used to build BFT protocols atop, but this is a
double-edged sword. A major disadvantage of Narwhal is the
notion of equal transaction load between all clients and nodes.
In reality, this is often not the case. The distribution of transac-
tions may follow a very long-tailed distribution: a small subset
of nodes may get a large proportion of transactions with the
remaining nodes in the network getting a smaller proportion.
In such cases, nodes with lesser transactions cannot make full
use of the Narwhal gossip design. An ideal solution would be
to allow nodes in the network to progress at their own speed
and not be tied to the network or consensus pace of other
nodes, leading to automatic scaling of the consensus layer
without depending on the client or transaction load of peers.
To do so, the system must be able to guarantee a node’s cer-
tificates must not depend on other replica’s certificates, unlike
Narwhal’s current design. Exploring this design space would
allow for utilization of learnings from DAG-BFT protocols
as well as continuing the paradigm of separating consensus
from data dissemination.

Additionally, modifying the consensus protocols them-
selves to be more scalable is another area of interest that could
introduce a new axis to optimize along—existing work opti-
mizing distributed consensus protocols like MultiPaxos [18]
hint at the possibility of further increasing consensus through-
put by the addition of new machines. Through the strategy of
decoupling and partitioning nodes (otherwise known as com-
partmentalization), bottlenecks in consensus protocols can be
identified, isolated, and partitioned away to unlock the poten-
tial of higher throughput that simply adding more nodes to the
system would be unable to achieve—all the while observably
identical behavior as the original protocol. These insights
can additionally be applied to BFT consensus protocols to
achieve higher throughput at scale! The steps required to ap-
ply this work to Byzantine protocols would involve reasoning

on these transformations under a new failure model; existing
work largely only consider how compartmentalization main-
tains correctness under crash failures—ensuring new nodes
being introduced cannot alter protocol behavior and violate
correctness through Byzantine failures is crucial to ensuring
the transformations are sound.

Integrating and testing additional execution environments
can be of further interest. In current literature, DAG-BFT
protocols are primarily used in chained settings. Implement-
ing and understanding applicability for traditional replicated
state machines such as databases could highlight additional
strengths or weaknesses of this class of consensus protocols
under different workloads and models. Protocols such as Fino,
Bullshark, and Tusk have properties that may perform well
or poorly in distributed databases such as RocksDB [6], Post-
gres [15], or etcd [7]. For example, Fino and Bullshark lin-
earize a committed block’s causal history to achieve ordering,
but this may not interact well with state machine serialization
needed to achieve fast throughput in certain key-value stores.
Our end-to-end benchmarks explore such performance for the
Ethereum blockchain’s state machine and execution layer, but
extending this analysis can be fruitful.

7 Conclusion

We explore the implementation of Narwhal-Fino and compare
performance by benchmarking Fino against existing state-
of-the-art DAG-BFT protocols. We choose Narwhal as the
DAG transport layer for Fino, a novel consensus algorithm
by Malkhi et al., due to its high throughput and low latency
performance, quasi-linear scaling properties with respect to
number of workers, and battle-testing in production deploy-
ments. Our microbenchmarks highlight the differences be-
tween Fino and Bullshark, a similar protocol, and explore
the behavior under different network latency to understand
how integrating timeouts into DAG messages affects con-
sensus throughput and latency. Our macrobenchmarks add
transaction execution using the Ethereum virtual machine,
shedding light on performance comparisons in a simulated
production system. Our evaluations show Fino is competitive
against other DAG-BFT protocols like Bullshark in terms of
throughput, and can sometimes offer less latency! However, in
certain cases where we find mis-synchronization between the
Narwhal messaging layer and Fino logical DAG layer, Fino
can incur heavy latency penalties due to messages waiting an
additional physical DAG round to be sent.

8 Acknowledgments

We would like to thank Prof. Kubiatowicz for his guidance
during the project, especially with regards to robust evalution
and benchmarking. We would like to thank Maanav Khaitan
for his help in implementing the macrobenchmarking system.

10



References
[1] ABRAHAM, I., GUETA, G., AND MALKHI, D. Hot-stuff the linear,

optimal-resilience, one-message BFT devil. CoRR abs/1803.05069
(2018).

[2] APTOSLABS. The aptos blockchain: Safe, scalable, and upgradeable
web3 infrastructure.

[3] CASTRO, M., AND LISKOV, B. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation (USA, 1999), OSDI ’99, USENIX Association,
p. 173–186.

[4] COSMOS. Cosmos: The internet of blockchains.

[5] DANEZIS, G., KOKORIS-KOGIAS, E., SONNINO, A., AND SPIEGEL-
MAN, A. Narwhal and tusk: A dag-based mempool and efficient BFT
consensus. CoRR abs/2105.11827 (2021).

[6] DONG, S., KRYCZKA, A., JIN, Y., AND STUMM, M. Rocksdb: Evo-
lution of development priorities in a key-value store serving large-scale
applications. ACM Transactions on Storage 17, 4 (Oct. 2021), 1–32.

[7] ETCD-IO. Etcd-io/etcd: Distributed reliable key-value store for the
most critical data of a distributed system.

[8] GAGOL, A., LESNIAK, D., STRASZAK, D., AND SWIETEK, M. Aleph:
Efficient atomic broadcast in asynchronous networks with byzantine
nodes. CoRR abs/1908.05156 (2019).

[9] GELASHVILI, R., SPIEGELMAN, A., XIANG, Z., DANEZIS, G., LI, Z.,
MALKHI, D., XIA, Y., AND ZHOU, R. Block-stm: Scaling blockchain
execution by turning ordering curse to a performance blessing, 2022.

[10] GIRIDHARAN, N., KOKORIS-KOGIAS, L., SONNINO, A., AND
SPIEGELMAN, A. Bullshark: DAG BFT protocols made practical.
CoRR abs/2201.05677 (2022).

[11] KEIDAR, I., KOKORIS-KOGIAS, E., NAOR, O., AND SPIEGELMAN,
A. All you need is DAG. CoRR abs/2102.08325 (2021).

[12] KONSTANTOPOULOS, G., KIRILLOV, A., AND NEU, J. Cosmos with-
out tendermint: Exploring narwhal and bullshark, Jul 2022.

[13] MALKHI, D., AND SZALACHOWSKI, P. Maximal Extractable
Value (MEV) Protection on a DAG. arXiv e-prints (aug 2022),
arXiv:2208.00940.

[14] MYSTENLABS. The sui smart contracts platform.

[15] ROWE, L. A., AND STONEBRAKER, M. The postgres data model. In
Proceedings of the 13th International Conference on Very Large Data
Bases (San Francisco, CA, USA, 1987), VLDB ’87, Morgan Kaufmann
Publishers Inc., p. 83–96.

[16] TENDERMINT. Application blockchain interface specification.

[17] TOKIO-RS. Tokio-rs/tokio: A runtime for writing reliable asyn-
chronous applications with rust. provides i/o, networking, scheduling,
timers, ...

[18] WHITTAKER, M. J., AILIJIANG, A., CHARAPKO, A., DEMIRBAS,
M., GIRIDHARAN, N., HELLERSTEIN, J. M., HOWARD, H., STOICA,
I., AND SZEKERES, A. Scaling replicated state machines with com-
partmentalization [technical report]. CoRR abs/2012.15762 (2020).

[19] WOOD, G., ET AL. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151, 2014 (2014),
1–32.

A Bimodal Distribution Simulated Latency
Data

Metric Latency Distribution Consensus Protocol
Fino Bullshark

Consensus TPS

Fast, 100% 461.5 611.5
Fast, 95% 789.5 596.5
Fast, 90% 642 379
Slow, 100% 839 648.5
Slow, 95% 539 526
Slow, 90% 448 445.5

Consensus Latency

Fast, 100% 888.5 532
Fast, 95% 712.5 548.5
Fast, 90% 604.5 539
Slow, 100% 1395.5 1568.5
Slow, 95% 2442.5 2115
Slow, 90% 2183.5 2336.5

End-to-End TPS

Fast, 100% 434 580
Fast, 95% 724 561
Fast, 90% 594 363
Slow, 100% 632.5 541
Slow, 95% 445.5 432.5
Slow, 90% 375.5 402

End-to-End Latency

Fast, 100% 1257 773.5
Fast, 95% 1234 834.5
Fast, 90% 1062.5 818
Slow, 100% 2147.5 2399
Slow, 95% 3270 3038
Slow, 90% 2960 3028.5

Table 1: End-to-end simulated latency with different bimodal
distributions, showing the mean of 2 runs

Metric Latency Distribution Consensus Protocol
Fino Bullshark

Consensus TPS

Fast, 100% 37030.47 36963.19
Fast, 99% 36978.94 36979.50
Fast, 98% 37015.55 36990.65
Fast, 95% 36687.88 36808.04
Fast, 90% 37013.42 36814.89
Slow, 100% 35949.86 36202.29
Slow, 99% 36373.34 36178.05
Slow, 98% 35892.45 35669.75
Slow, 95% 35908.47 35614.88
Slow, 90% 35344.10 34448.39

Consensus Latency

Fast, 100% 482.74 566.61
Fast, 99% 508.99 605.02
Fast, 98% 513.78 596.13
Fast, 95% 546.72 599.77
Fast, 90% 580.62 706.21
Slow, 100% 1082.44 1306.40
Slow, 99% 1138.87 1398.13
Slow, 98% 1201.42 1458.62
Slow, 95% 1207.32 1331.85
Slow, 90% 1462.50 1672.17

End-to-End TPS

Fast, 100% 36763.33 36750.26
Fast, 99% 36731.68 36755.01
Fast, 98% 36759.64 36755.10
Fast, 95% 36429.72 36590.29
Fast, 90% 36761.83 36599.17
Slow, 100% 34882.70 35207.02
Slow, 99% 35355.15 35113.30
Slow, 98% 34871.38 34629.77
Slow, 95% 34876.25 34592.96
Slow, 90% 34243.01 33435.72

End-to-End Latency

Fast, 100% 631.67 719.49
Fast, 99% 693.10 787.01
Fast, 98% 702.62 784.85
Fast, 95% 755.24 809.10
Fast, 90% 821.65 945.75
Slow, 100% 1673.93 1897.35
Slow, 99% 1813.69 2071.34
Slow, 98% 1932.31 2186.83
Slow, 95% 1938.07 2058.64
Slow, 90% 2357.63 2565.84

Table 2: Microbenchmarks with simulated latency with differ-
ent bimodal distributions, showing the mean of 25 runs

11


	Introduction
	BFT Definitions
	Model
	Required Infrastructure
	Problem Definition

	Related Work
	Narwhal
	Relevant Properties
	Replication Protocol

	Bullshark
	Fino

	Implementing Fino
	Integration with Narwhal-Bullshark
	Modifying Narwhal
	Implementing Fino's Consensus Protocol

	Integration with ABCI

	Evaluation
	Evaluation Methodology
	Cloud Microbenchmarks
	Simulated Latency Microbenchmarks
	End-to-End Macrobenchmarks

	Future Work
	Conclusion
	Acknowledgments
	Bimodal Distribution Simulated Latency Data

