
A Secure Multicast Tree for the Global Data Plane

Arun Sundaresan
UC Berkeley

arun.sundaresan@berkeley.edu

Mikkel Svartveit
UC Berkeley

misva@berkeley.edu

Tony Hong
UC Berkeley

tshong@berkeley.edu

Abstract
We present a multicasting protocol for the
Global Data Plane, capable of utilizing the en-
tire topology of the network to build efficient
multicast trees. Whereas earlier approaches
simply route through a strict tree hierarchy of
trust domains, our proposal enables the use of
links between arbitrary domains at any level of
the trust domain hierarchy. Our protocol dy-
namically builds a multicast tree by leverag-
ing an end-to-end principle for trust domains,
dividing the problem into cross-domain and
intra-domain routing. We also present meth-
ods for multicast groups to ensure confiden-
tiality and integrity over messages sent, while
managing access revocation and ensuring only
authorized clients receive multicast messages.
We detail the implementation of a simulator
for multicasting and demonstrate that our pro-
tocol achieves significant reductions in stress
at the higher levels of the trust domain hierar-
chy. At the same time, we are building mul-
ticast trees that are more efficient relative to
a strictly hierarchical protocol. We also show
that the overhead of encrypting messages fades
as more messages are sent to the same multi-
cast group. Finally, we present methods for
preserving multicast groups in cases where re-
sources fail or deliberately leave the network.

1 Introduction and Related Work
1.1 The Global Data Plane
The Global Data Plane (GDP) is rooted in a trend to-
wards moving more powerful computing resources to-
wards end users. However, this trend does come with
its own set of challenges. For instance, managing edge
devices can involve detecting and resolving faults on
thousands of different devices. The GDP provides a
unified and secure method to manipulate resources on
the edge and aims to support communication between
edge devices via publish-subscribe messaging. Multi-
casting is particularly important to the GDP since lim-
ited network bandwidth is often a constraint in edge
computing use cases, making alternatives like broad-
casting too inefficient for practical use (Mor et al.,
2019).

1.2 GDP Routing and Network Organization
GDP routing partitions nodes into routing domains.
Each one has a GLookup service that stores routing in-
formation for all nodes within the routing domain. If a
destination node cannot be found in the GLookup for
the current routing domain, the sender can query the
parent domain’s GLookup (routing domains are orga-
nized hierarchically) (Mor et al., 2019). Unlike IP, the
GDP cannot rely on methods like prefix routing since
every entity in the GDP has a 256-bit GDP name (Inc.,
2001).

1.2.1 Multicast Groups
In the same vein of thinking, we partition our clients
into “multicast groups”. A client can be a part of sev-
eral multicast groups and there is no semantic mean-
ing to a multicast group (for example, members of a
multicast group may be spread across the world) other
than the fact that all clients in the group should receive
messages addressed to the 256-bit GDP name of said
multicast group.

1.2.2 Trust Domains
Additionally, clients are members of a trust domain.
Notably, each trust domain consists of a collection of
physically close devices with common ownership (Mor
et al., 2019). For example, the University of California
may be a trust domain, with Berkeley as a child, and
the Department of Electrical Engineering and Com-
puter Sciences as a grandchild. The key idea for routing
is that we want to maximize sending messages within
trust domains and keep the path as short as possible
(in practice, this means we only want to send messages
wherever they are necessary; for example, a message
within a trust domain does not need to go to the global
GLookup). We assume that the network within a trust
domain is dense with short links, while links between
trust domains are sparser and with longer links. We
also assume that more nodes exist than are needed to
create a multicast tree among the given trust domains.

1.2.3 Routing Information Bases
Trust domains each have a Routing Information Base
(RIB) that stores information about the GDP names that
are members of a trust domain, how to route messages
within the trust domain, and how to route between de-
scendant trust domains. The idea of RIBs enable trust



domains to organize themselves in a tree structure, so
trust domains have a parent (except for the root) and
some number of children. We say each trust domain
has a domain router consisting of a RIB and an en-
tity capable of sending messages to direct members of
the trust domain, in addition to parent and child trust
domains. Importantly, other GDP resources such as
switches are also members of a trust domain.

1.2.4 PSL Multicast Paper
In 2021, Plutowski et al. proposed a multicast tree
building protocol for Paranoid Stateful Lambdas (PSL)
nodes where trust domains took the form of a n-ary
tree (Plutowski et al., 2021). Moreover, they did not
provide any security guarantees over their messages or
address the idea that trust domains could be connected
via links not part of a strict tree hierarchy. To this end,
their approach puts undue stress on routers high in the
hierarchy instead of leveraging the non-tree links. Our
approach generalizes the assumptions made in the 2021
paper, attempting to provide utility for any application
built on top of the GDP. We present a dynamic mul-
ticast tree building protocol that can leverage all links
in the network while preserving a trust domain hierar-
chy, alleviate congestion at higher levels in the hierar-
chy, and provide end-to-end symmetric encryption of
messages with capabilities for key rotation and access
revocation.

2 Design

2.1 Terminology

The naming convention we use for devices within the
network distinguishes between clients, switches and
routers.

2.1.1 Clients
Clients represent devices in the network that produce
and consume messages. They are likely personal com-
puters or servers or some kind. A client is connected to
a single switch or router, and all traffic from the client
goes through this link.

2.1.2 Routers
Routers, as the name suggests, are responsible for do-
ing the heavy lifting of message routing in the network.
Routers are laid out in a hierarchy, which implies that
each router has a designated parent router and a num-
ber of child routers. Each router defines a routing do-
main in the network. Despite the hierarchical nature of
routers, we allow a router to have links to other routers
that are not its parent or any of its children. As men-
tioned earlier, each router stores a Routing Information
Base (RIB) that stores 1) information about all nodes
owned by the domain and links between them, and 2)
child domain routers and links between them. Note
that a RIB does not store information about clients and
switches within child domains.

2.1.3 Switches
Switches sit between routers and clients within a rout-
ing domain. They can have an arbitrary number of
connections to clients, routers, and other switches.
Switches are conceptually simpler devices than routers.
They only keep a local routing table in the form of a
key-value store, with GDP names as keys and a set of
next hops as the corresponding value. If a switch re-
ceives a message with a destination name that is not
stored in its local routing table, the switch will send a
message to its domain router. The router will query its
RIB and return a set of next hops to the switch. The
switch caches this information in its local routing ta-
ble, so that the routing information can be reused next
time the switch encounters this GDP name.

2.2 Goals

We should use routing information bases at each level
to determine what the next destination for a message is.
Everything in the tree has a unique 256-bit GDP name,
including the switches, clients, and routers. We want
to find efficient paths for each message. Moreover, our
multicast tree should be dynamically built and only use
resources as close as possible to joining entities.

We want to provide end-to-end symmetric encryp-
tion for messages, having clients in a multicast group
agree to one encryption key for the whole multicast
tree. Furthermore, it should be straightforward to ro-
tate keys and remove clients from the tree.

We aim to support tree construction and repair.
Specifically, we propose a method to detect when
neighboring elements of the tree fail, and figure out
a way to replace them in a way that does not impact
the functionality of existing multicast trees or trust do-
mains.

2.3 Threat Model

We assume that routers and switches are honest-but-
curious, but that switches only offer unreliable deliv-
ery. We assume that each client and router has a pub-
lic/private key pair to be used for asymmetric encryp-
tion, another asymmetric pair to be used for signing and
verification, and that the public keys are authorized by
an external, trusted certificate authority. We are con-
vinced that this is a sound threat model, as protocols
for messaging between members of the GDP (such as
DTLS) provide protection against an adversary who
tries to modify packets in flight. Additionally, prior
literature about privacy preservation has also taken an
honest-but-curious adversary to be the main threat.

2.4 Trust Domains

Trust domains will be used to partition clients and han-
dle routing, both inside and outside the domain. Each
trust domain router has a RIB that keeps track of the
clients and switches in the trust domain, the links be-
tween them, as well as which multicast groups those



clients participate in. Additionally, RIBs store infor-
mation about where to find parent and child trust do-
mains. Each trust domain has a router that forwards
messages and can leverage information from its corre-
sponding RIB. All clients and switches are members of
one and only one trust domain.

2.4.1 Creating trust domains
Trust domains are created by sending a message to the
parent trust domain router, which checks the authoriza-
tion of the node sending the message and may reject the
request. If accepted, the node that originally sent the
message must initialize a router (including a RIB) and
supply the GDP names to the parent, which adds them
to its RIB. The parent router propagates a message up
the tree, forwarding to successive ancestors its informa-
tion about the new domain. Since each domain router
should have visibility of all resources within their trust
domain, routers build an adjacency list of the resources
available in their domains.

2.4.2 Joining Trust Domains
A domain router may add additional resources to its
trust domain. To do this, the router must specify a 256-
bit GDP name for the new resource and add it to its
RIB. A similar procedure can be performed for adding
new neighbors if new switches come into the graph.
Additionally, we only want authorized clients to be able
to join a trust domain. Hence, we require that clients
conducting an operation (join/leave) on a trust domain
must present a certificate (stored by a globally visible
certificate authority) to be verified by the router of the
trust domain to verify its identity. Additionally, trust
domain routers wishing to establish connections with
another trust domain router must also present their cer-
tificates.

2.4.3 Leaving Trust Domains
The router may also remove resources from its trust do-
main. This is done by removing the resource’s GDP
name from the RIB for clients that are direct members
of the trust domain. For GDP switches, the process is
more complicated. A switch leaving may break a mul-
ticast tree (this will be addressed in the fault tolerance
section later).

2.4.4 Consistency
A problem that might arise is that updates to the net-
work structure can arrive from multiple trust domains
at once. For example, a request to create a multicast
tree may arrive from trust domain A and use a switch
owned by trust domain B, which is attempting to re-
move that switch. We discuss this problem in more
detail when we examine the procedure of building a
multicast tree.

2.5 Multicast Groups

Cross-trust domain routing involves flooding a multi-
cast tree (potentially including nodes outside the source

trust domain) with a message. Messages are sent from
the source’s trust domain router to other recipient trust
domain routers. We assume trust domain routers are
aware of child and parent trust domain routers and have
some idea of the length of time a message will take to
go from the source trust domain to a neighboring trust
domain. We assume that edge lengths within a trust do-
main are short and edges are dense. Between trust do-
main routers, we assume edges are sparser and longer.

2.5.1 Creation

A client can be a member of several multicast groups
(but exactly one trust domain) and there need not be
any relationship between members of a multicast group
(physical, logical, or otherwise). A client can form a
multicast group by messaging the router of its trust do-
main.

Multicast Group Leaders Whenever a new mul-
ticast group is created, the first client becomes the
“leader” of the group and is responsible for assigning
and rotating keys in collaboration with its correspond-
ing domain router (which emits multicast messages to
send new keys). The leader client of a multicast group
can specify new members to join the multicast group at
any time by signing a message that the member’s GDP
name is allowed to join and sending these messages to
a certificate authority. The leader sends these signed
messages to the certificate authority, and the trust do-
main router of any client that seeks to join a multicast
group verifies that such a message exists before pro-
ceeding further.

Setting Up Keys We want messages to be encrypted
in transit and only decryptable by clients that are part of
the appropriate multicast group. Thus, each multicast
group must have separate encryption keys and a proce-
dure to rotate them and revoke access. We assume that
any client in the multicast group have a public-private
key pair that can be used for an initial setup of keys
used for encrypted messaging. When a multicast group
is created, the leader generates separate symmetric keys
for encryption and HMAC.

2.5.2 Joining

When a client wants to join an existing multicast group,
it needs to establish a path between itself and the ex-
isting multicast tree. A key principle when building
the multicast tree is to keep the procedure as close in
the trust domain hierarchy as possible. To this end,
the client starts by messaging the router of its trust do-
main. If the router of the client’s trust domain is already
part of the multicast tree, the router adds the client to
its list of direct members that participate in the multi-
cast group and computes a path to send messages to the
client (similar to the procedure below). Otherwise, the
router leverages the hierarchy of trust domains. This is
when the multicast tree between trust domains is built.



Finding the Lowest Common Ancestor If the
client’s domain router is not already in the multicast
group, the router asks its parent router if it has infor-
mation about the multicast group. This process con-
tinues until some trust domain router has information
(in these messages, we also note the original router
that sent them, as well as the client wishing to join).
We refer to this router as the lowest common ancestor.
This procedure keeps multicast tree building as local as
possible, confining it to a subtree rooted at the lowest
common ancestor rather than involving all trust domain
routers. At the lowest common ancestor, we compute a
path from the client requesting to join to the rest of the
multicast tree.

Path Computation Approaches We want to effi-
ciently find a low-cost path between the client request-
ing to join and the rest of the multicast tree. To this
end, we can require trust domain routers to maintain
an adjacency list containing all the resources in the
trust domain and well as within descendant trust do-
mains. We can use a path-finding algorithm on the ad-
jacency list in the lowest common ancestor. Starting
at the joining client, we find the distance to the neigh-
boring resources and get the minimum of (distance +
distance to multicast tree) for each node. The case for
DFS over dedicated shortest path-finding algorithms is
supported by performance and simplicity. DFS runs in
O(V + E) time, whereas algorithms like Dijkstra (O((V
+ E)logV)) and Bellman-Ford (O(VE)) are slower.

The drawback of this, however, is that we need ev-
ery trust domain router to be aware of every resource
in the subtree rooted there. This exacerbates the con-
sistency issues mentioned earlier since the state of the
network is duplicated at multiple routers. Addition-
ally, this approach requires messages to be propagated
all the way up the hierarchy of routers whenever new
clients or switches join, imposing extra overhead.

An alternative approach is to only propagate mes-
sages up the tree for links that connect one trust do-
main to another. With this approach, routers effectively
treat the internal structures of descendant trust domains
like a black box, and assumes the child routers can find
routes between any two member resources (and we as-
sume that trust domains are dense networks with short
edges). For each internal node in a trust domain, we
collect the GDP names of the resources it links to, as
well as the GDP names of the trust domains they belong
to. With this information, we can effectively build a re-
duced version of the network solely consisting of con-
nections between trust domains. We can run a pathfind-
ing algorithm from earlier from the “ends” of the trust
domain the joining client is in (Saltzer et al., 1984).
After this, we use the path with the shortest distance
and send the results back down the tree. Note that trust
domain routers still directly maintain connections be-
tween clients in their ownership.

This leverages the hierarchy of descendant trust do-
mains that is modified at routers when new trust do-

Figure 1: In this diagram, the green router and client
start out as part of a multicast tree. The red client wants
to join, so it messages the blue router, which in turn
propagates messages to the two orange routers. The
top orange router then observes that the red edge is the
shortest path. The top-level router only sees the other
routers and the links between them.

mains are created. The router for the trust domain of
the joining client is responsible for finding a path from
the appropriate “end” of the trust domain to the joining
client, and it can use a similar algorithm to the lowest
common ancestor. This approach breaks the problem of
building a multicast tree into cross-domain and intra-
domain path finding and does not require full global
visibility of all GDP resources unlike the previously
mentioned approach (just the trust domain hierarchy
rooted at the lowest common ancestor and the “ends”
of trust domains, i.e. where they connect to other trust
domains). The drawback of this approach is that it
can still suffer from consistency issues when resources
leave or are added, albeit not as much as those that re-
quire global visibility at the lowest common ancestor.

2.5.3 Message Sending
In any case, the actual sending of messages to a multi-
cast group is done via a flood-based algorithm, where
each node sends the message to all other connecting
nodes that are also part of the tree, aside from the
sender. We deliberately did not tailor our design specif-
ically for DataCapsules. While DataCapsules are the
main units for data transfer between members of the
GDP, we wanted our approach to be generalized, espe-
cially since applications like Paranoid Stateful Lambda
(Chen et al., 2022) and FogROS (Kaiyuan et al., 2021)
gain a major upside by having a multicast tree. Thus,
we used a generalized notion of a message to be sent
between members of a multicast group.

Message Encryption Upon joining the multicast
group, the new node sends a message to the leader



Figure 2: The diagram shows how trust domains with-
out a client involved in the multicast group (shown in
green) can be used to find a shorter path between trust
domains than going to the root router (shown in red).
This practice motivates the need for end-to-end en-
cryption of messages, ensuring that only the intended
clients can read them.

client asking for keys, along with its certificate. The
leader responds with keys encrypted under the client’s
public key (under a nondeterministic scheme like RSA
with OEAP for IND-CPA security). There are two op-
tions to verify a client’s authorization. The first requires
the trust domain router to ask the certificate authority if
the client is allowed to join the multicast group before
any pathfinding occurs. However, this requires the cer-
tificate authority to be operational at all times.

To ease the requirements on the certificate authority,
we can allow pathfinding to happen first and get the
joining client to multicast a message asking for keys.
If the client is not authorized by the leader to join the
multicast group, the client can deny the join request
and send a message to the trust domain the client is in.
The trust domain router then runs a protocol to make
the client leave the multicast group, which can lead to
the multicast tree being pruned (this protocol is shown
later). The downside of this approach is that it requires
action from multiple components of the GDP and is
more complex. Additionally, it leads to the possibility
of an edge case where one authorized and one unautho-
rized client attempt to join concurrently. This leads to
the need for synchronization between the tree pruning
for the unauthorized client and the pathfinding for the
authorized client.

Key Rotation and Revocation of Access Key rota-
tion is handled by having the leader client multicast a
message under the old key. To handle clients leaving
the multicast group, we have clients inform their do-
main router that they are no longer interested in the
multicast group. This causes a request for key rotation
to be multicasted to the group. Revocation of access
to a client is also supported, and in this case the router
for the trust domain directly performs the above pro-
cedure. When the keys are rotated, the client will not
receive the message containing the new keys, although

that message will still be encrypted with an old set of
keys.

2.5.4 Preserving Multicast Groups When
Resources Leave

Trust Domains When a trust domain leaves the hier-
archy, it sends messages up the trust domain hierarchy
that it is leaving. In this case, it has two options: dis-
connect the entire subtree rooted there, or hand off its
subtrees to another trust domain that is below its par-
ent. The changes are sent to all direct ancestors of the
leaving trust domain and reflected in the adjacency lists
they maintain. The children of the leaving trust domain
request to rejoin any multicast groups they have infor-
mation about to ensure that the multicast trees are not
broken. Additionally, trust domain routers may have
outgoing links that are not part of the tree of trust do-
mains. To ensure all topologies are up to date, we re-
quire that the leaving trust domain send a notice to all
neighboring trust domains connected with links that are
not part of the hierarchy.

Switches When switches leave a trust domain, they
are removed from the RIBs of the trust domain they
belonged to. If the switch linked to something out-
side its trust domain, messages are propagated to the
trust domain’s direct ancestors and the adjacency lists
both within and above the trust domain are modified.
Additionally, any multicast groups that use that switch
(known to the trust domain owning the switch) are re-
joined by the trust domain.

Clients When clients leave a multicast group, they
send a message to the router of their trust domain. The
path to that client is erased from the trust domain’s RIB.
To avoid sending messages on unnecessary links, the
corresponding multicast tree is pruned if there are no
clients in the multicast group left in the hierarchy of
trust domains rooted there (which can be measured by
the number of child trust domains that have informa-
tion about the multicast group), and there are one or
fewer outgoing edges for that multicast group in the
trust domain. The trust domain propagates a message
up the tree of trust domains saying it no longer has in-
formation about the multicast group, and the procedure
is repeated at the trust domain receiving the message. A
message is also sent to neighboring trust domains that
may not be in the multicast tree before the link is ulti-
mately removed from the multicast tree (and repeated
at the neighbor if applicable).

Leadership Handoff If the leader client leaves its
multicast group, we do a handoff of leadership fol-
lowed by a key rotation. Handing off leadership in-
volves multicasting a message about the leader’s intent
to leave, and appointing the new leader to be the first
client to respond (and multicasting a message verify-
ing who the new leader is before leaving). Addition-
ally, the existing leader sends a message to the certifi-
cate authority endorsing the first client that responded



as the new leader. Therefore, each multicast group has
a chain of signed messages from leaders of the group.
Using this chain of messages, trust domain routers can
still honor authorizations from previous leaders of the
multicast group.

2.6 Fault Tolerance

2.6.1 Switches and Links Within a Trust Domain
Trust domain routers are responsible for checking func-
tionality of resources in their domains. If a trust domain
router detects a failed switch or link, it is responsible
for ensuring all multicast trees that use the switch/link
have an alternate route. For switches and links that con-
nect within a trust domain, this can be accomplished by
placing the switch/link on a “watchlist” and adding it
back when it is operational. Resources on the watch-
list cannot be used for sending messages and the root
router recomputes the routes for the “ends” that each
multicast tree uses. Notably, in this approach, trust do-
mains are responsible for checking the health of their
resources. For switches and links within a trust do-
main, a heartbeat can be sent periodically by flooding
the network, and a new route can be computed for any
multicast groups using failed switches or links.

2.6.2 Links Between Trust Domains
Recall that the topology of trust domains includes a tree
of trust domains with possible edges between trust do-
mains that are not part of the tree itself. To test the
functionality of non-tree links (not leading to a parent
or child trust domain), we send heartbeats along the
links and expect a response. If a response is not re-
ceived in a timely manner, the trust domain sending the
heartbeat requests to rejoin any multicast groups using
the link.

2.6.3 Trust Domain Routers
If a trust domain router goes down, it can affect the abil-
ity of its children to create and join multicast groups or
receive messages. Thus, we have two choices for what
to do: wait for the router to recover and tolerate some
amount of missed messages, or immediately repair any
affected multicast trees.

2.6.4 Parent Failure
In the latter option, trust domain routers periodically
send a “heartbeat” message to their parent and children.
If a router does not receive a heartbeat from its par-
ent, it needs to reattach to another trust domain in order
to preserve multicast groups. In this case, the router
can send requests to become the child of a neighbor-
ing trust domain on non-tree edges. If the neighbor-
ing trust domain accepts, the edge becomes a tree edge
and the trust domain attaches to its neighbor. Addition-
ally, it requests to rejoin any multicast groups it partic-
ipates in. This approach is guaranteed not to create a
cycle in the hierarchy of trust domains since the edge
between a trust domain and its parent is moved. This

approach permanently affects the hierarchy of trust do-
mains and can lead to imbalances in the tree of trust
domain routers. To deal with this problem, we allow
a trust domain router to reorganize the topology rooted
there by requiring certain child trust domains to attach
to another child trust domain. These changes must also
be propagated up the hierarchy of trust domains. Fi-
nally, the child whose parent failed rejoins multicast
groups it has information about. This repairs any mul-
ticast trees that went through the child.

2.6.5 Child Failure

A downside of the above approach is that failed trust
domains with healthy parents can miss a lot of mes-
sages or fail to send messages for multicast groups
they handle. To minimize missed messages, routers
can maintain a queue of messages intended for failed
children (this can be recorded if a parent does not re-
ceive a timely heartbeat response from its child). If a
child router reattaches (determined by sending a heart-
beat message or a join request from a child marked as
needing message storage), the parent router forwards
all the messages to its child.

2.6.6 Multicast Group Leadership Handoff

An edge case emerges when a trust domain contain-
ing the leader client of a multicast group fails. Since
the leader is responsible for key distribution and access
control, those capabilities are removed if the trust do-
main containing the leader fails. To this end, we out-
line a method to hand off the leadership of a multicast
group in the event of a failure. If the trust domain con-
taining a multicast group leader fails, the parent of that
trust domain will detect the failure through its heart-
beat. The parent will then check if it has any clients
in that multicast group. If it does, the parent selects a
client to be the new leader and gets that client to con-
duct a key rotation. If the parent does not have any
clients in the multicast group, it propagates the mes-
sage up to its parent (and so on). If no client owned
by a direct ancestor of the failed router is found to be
a member of the multicast group, the handoff fails and
the multicast group continues to exist without key dis-
tribution or access control capabilities.

2.6.7 Dealing With Consistency Issues

One of the most notable drawbacks of having even-
tual consistency over the topologies stored in trust do-
main routers is that multicast trees can be built using
resources that are about to leave (or have already left
and not reflected the changes in their ancestors). To
deal with this, if a trust domain router sends a request to
join a multicast group and does not receive its encryp-
tion and HMAC keys within a particular time frame,
it can resend the request a specified number of times
before giving up.



2.7 Path Optimization
Some edges may be part of multiple multicast trees be-
cause they offer a convenient link between groups of
trust domains that wish to communicate. This can lead
to edges being overutilized. If an edge is overutilized,
its latency may increase, and it is beneficial if some
trees stop using that edge. Additionally, new trust do-
main routers and switches can frequently be added to
the GDP, and the multicast trees should adapt to find
shorter paths if they exist, while balancing the load of
sending messages with existing paths. In this section,
we propose a solution to both problems.

To deal with both issues, we allow a router in a mul-
ticast tree to voluntarily ask for a new path based on a
vote of its interested clients (this can be a simple ma-
jority vote over healthy clients that are members of the
subtree rooted at a trust domain) and rejoin the mul-
ticast tree. Since the router knows the routes for all
multicast groups that have clients owned by the subtree
of trust domains rooted there, it can send a message to
all such clients (which respond with a yes or no vote).
While the new route is being computed, the existing
route is still used to minimize missed messages as a re-
sult of path optimization. If a new path is found, the
existing multicast tree is pruned as if the trust domain
had lost all clients in the multicast group and the new
path is added.

We can use a similar approach to request new paths
due to congestion. Since every switch is owned by a
trust domain, we let trust domains monitor how many
messages per some period of time are sent or received
along links corresponding to switches they own. If the
number of messages is above a threshold specified by
the trust domain, it can request a new path with the
same mechanism above. The trust domain router re-
questing a new path propagates a message up the tree
until a trust domain with visibility over both ends of
the link is found. This ancestor domain then attempts
to find another path between both ends of the link. This
approach only allows a single congested edge between
trust domains to be bypassed. Additionally, it requires
modifications to our flood-based routing approach. In-
stead of indiscriminately flooding an edge, the load
needs to be divided between the old path and any new
paths. If additions to the multicast tree use edges on
the new path, they need to be converted to receive all
traffic for the multicast group.

3 Implementation
We have implemented a simulation of our protocol
and related algorithms in Python. This section ex-
amines the specifics of the implementation in rela-
tion to the design of our multicast protocol. We fo-
cused on implementing tree building, message encryp-
tion, and tests for stress on routers. For simplicity,
we serialize events at each router. Our implementation
is available at https://github.com/mikkelsvartveit/gdp-
multicast-simulator.

3.1 Establishing Multicast Groups
A multicast group is created by a client sending a mes-
sage of type CREATE-MULTICAST-GROUP to its do-
main router. The domain router creates a record for the
multicast group in its RIB. Each multicast group has
a lowest common ancestor (LCA) router. The LCA is
the lowest router in the domain hierarchy of which all
members of the multicast group are descendants. The
LCA router is responsible for building a spanning tree
between all domains that contain members of the multi-
cast group. By utilizing this concept of an LCA router,
we can ensure that tree building is kept as far down the
router hierarchy as possible, which helps with global
scalability. Upon creation of a new multicast group
with a single member, the LCA router is, naturally, the
domain router of the client that creates the group. The
router will also propagate a message up the router hi-
erarchy letting all ancestor routers know about the fact
that a multicast group with this GDP name exists, as
well as which router is currently the LCA.

3.2 Joining Multicast Groups
If a client wants to join an existing multicast group, it
sends a message of type CLIENT-JOIN-MULTICAST-
GROUP to its router. The router updates its local mul-
ticast group record to include the joining client as a
member, and runs the Dijkstra algorithm within the do-
main to find the shortest path from the joining client to
any of the existing members of the group. Additionally,
the joining client’s router takes an action depending on
whether or not its domain is already part of the mul-
ticast tree, and where in the hierarchy the LCA router
lies.

• If the joining client’s domain is already part of the
multicast group, the LCA already knows that mes-
sages should be sent to the domain. Therefore, no
further action is required.

• If the joining client’s domain is not already part
of the multicast group but its router is in fact the
LCA, the router computes a path from itself to the
rest of the spanning tree of domains.

• If the joining client’s domain is not already part
of the multicast group and the LCA router is
an ancestor of the joining router, the joining
router sends a message of type ROUTER-JOIN-
MULTICAST-GROUP to the LCA router. The
LCA router then computes the shortest path from
the joining client’s domain to the rest of the span-
ning tree of domains, again using the Dijkstra al-
gorithm.

• If the joining client’s domain is not already part
of the multicast group and the LCA router is
a descendant of the joining client’s router, this
router becomes the new LCA. The joining client’s
router sends a message to the current LCA of type
MULTICAST-GROUP-TRANSFER-LCA, upon

https://github.com/mikkelsvartveit/gdp-multicast-simulator
https://github.com/mikkelsvartveit/gdp-multicast-simulator


which the current LCA transfers the existing span-
ning tree of domains to the new LCA. The new
LCA now computes the shortest path from itself
to the other domains in the tree and adds this path
to the spanning tree.

• If the joining client’s domain is not already part
of the multicast group and the LCA router is nei-
ther a descendant nor an ancestor of the joining
client’s router, a new LCA has to be found. This
is done by propagating a message up the domain
hierarchy until a router that knows about the mul-
ticast group is found. This router becomes the new
LCA, and runs the Dijkstra algorithm to find the
shortest path between the current spanning tree of
domains and the joining client’s domain.

3.3 Sending Multicast Messages
To send messages to a multicast group, recall that we
make the distinction between intra-domain routing and
cross-domain routing. Each router is responsible for
facilitating intra-domain routing to the members of the
group that fall within their domain, while the LCA
router facilitates cross-domain routing for the entire
multicast group. When switches receive a multicast
message and don’t have the routing information in their
routing table, they query the RIB of their local router to
get the next intra-domain hops. When a multicast mes-
sage arrives at a router for a group not in their routing
table, they query both their own RIB as well as the RIB
of the group’s LCA router. This allows the routers to
correctly forward the message both intra-domain and
cross-domain. With each node now equipped with the
knowledge of where to forward the message, reaching
all clients of the multicast group is as simple as flood-
ing the multicast tree.

4 Evaluation
4.1 Comparison with PSL Multicast Paper
Our work builds upon that of the PSL multicast team
(Plutowski et al., 2021), who attempted to build a mul-
ticast tree serving nodes of Paranoid Stateful Lambda,
a key-value store built on top of the Global Data Plane.
Their multicast was also flood-based and assumed a
hierarchy of routers, but imposed more strict network
topologies between nodes. For example, they did not
consider that direct connections between clients in dif-
ferent trust domains could exist, and forced multicast
messages to operate only in the tree of router hierar-
chies. While our design incorporates similar ideas, we
offer the possibility of using the full network topology
instead of just the connections between routers.

Additionally, our hierarchical structure abstracts cer-
tain functions away from ancestor routers. The PSL
multicast paper devoted significant attention to creat-
ing a balanced tree, which could involve moving clients
to a different router (and therefore modifying the hi-
erarchy). By contrast, our design aligns more closely

Figure 3: Topology Used to Test RIB Size

with concepts from the Global Data Plane, allowing
the owner of a trust domain to coordinate messaging
within that trust domain as they see fit. Another benefit
of our design is that faults within a trust domain can
be handled by the owner of that trust domain instead
of involving other routers. Since the Global Data Plane
is meant to be adaptable to a number of different use
cases within trust domains, we believe our design fits
the brief better.

Our approach also differs in terms of security. We
include a method for routers to certify the identities of
clients attempting to join multicast trees, given a glob-
ally visible certificate authority. The capabilities for
end-to-end symmetric encryption, rotation of keys, and
revocation of access, are new features offered by our
proposal. We ensure that only members of the multi-
cast group are authorized to read messages sent to that
multicast group, thereby providing tolerance for false
positives (where a message is sent to an unintended re-
cipient).

4.2 Multicast Tree Properties

We first verify some desirable properties of our mul-
ticast tree design. For this test, we use the topology
shown in Figure 3, where green resources and links
signify membership of the multicast tree. We verify
that parent RIB sizes (measured in bytes) do not scale
with the number of clients in the multicast group. Child
RIBs, on the other hand, should scale with the number
of clients since they need to maintain state for those
clients. This illustrates the “end-to-end principle” for
trust domains we rely on in our multicast tree protocol,
where parent routers effectively treat child domains’ in-
ternal structures as a black box. Figure 4 shows that our
design obeys this principle. We also examine the capa-
bilities of our multicast tree to leverage non-tree edges.
We calculate the sums of edge costs for each message
sent, where an edge between trust domains has weight
100 and an edge within a trust domain has weight 1.

We compare our design against an approach from the
2021 PSL multicast paper, namely, one that only uses
edges in the tree of trust domains for routing. We use



Figure 4: RIB Sizes for Varying Numbers of Clients

Figure 5: Topology of 100 Trust Domains and 1000
Clients

the topology in Figure 5, with 1 router connecting to
3 children, which each connect to 4 children, which
each connect to 7 children. At each router, we add 5
switches and 10 clients, for a grand total of 100 trust
domains and 1000 clients. When considering non-tree
edges, we added an edge between trust domains on the
same level of the tree with probability 0.25.

We ran 1000 trials, where each trial consisted of ran-
domly choosing 10 clients to participate in a multicast
group and sending a particular amount of messages to
that multicast group. Notably, for this test, the non-tree
links are different for every trial. The data show that
our multicast tree building protocol offers a significant
reduction in total edge weight relative to a protocol that
does not consider non-tree edges. We initially see small
gains from small amounts of messages, but are able to
achieve roughly a 34% reduction (see Table 1) in mean
edge weight needed when 1000 messages are sent to
the same multicast group. Since we used a random-
ized topology for each trial, results in practice could be
better or worse depending on how well non-tree edges
align with groups of clients wanting to join a multicast
group.

Additionally, we find that as more messages are sent
in our topology, the difference between our design and
a hierarchical approach tends to widen.

4.3 Security Overhead
Our design places an emphasis on end-to-end symmet-
ric encryption, but this comes at the cost of key distri-

Figure 6: Mean of Edge Costs for 1000 Runs

Messages Our Design Hierarchical Quotient
1 7696.22 8906.43 0.864

10 18334.57 25098.35 0.731
100 125286.92 187017.53 0.669
1000 1193208.33 1806209.33 0.661

Table 1: Means of total edge cost from 1000 runs of
our design and a strict tree hierarchy, and the quotient
of those two values. Messages refers to the number of
messages sent per run.

bution. We use the same topology as the previous test,
but without the non-tree links. We conduct 1000 tri-
als of creating a multicast group from 10 randomly se-
lected clients and sending a certain number of messages
in that group. In keeping with previous tests, we mea-
sure the total edge weight from each trial and present
the mean.

As the number of messages increases, the relative
overhead of key distribution decreases (see the quo-
tients in 2). This makes sense because key distribution
is conducted when new clients join – hence it scales
with the number of clients in the multicast group. How-
ever, this test shows that if the number of messages sent
is significantly greater than the number of clients in the
multicast group, encryption does not create much addi-
tional overhead.

Figure 7: Mean of Edge Costs for 1000 Runs for En-
cryption and Message Sending



Messages Encrypted Unencrypted Quotient
1 9526967.72 2446360.039 3.894

10 17641352.68 10560745 1.670
100 98785202.29 91704594.61 1.077

1000 910223698.4 903143090.7 1.008

Table 2: Means of total edge cost from 1000 runs with
and without encryption, and the quotient of those two
values. Messages refers to the number of messages sent
per run.

4.4 Stress at Higher Levels

A key feature of our design is that it lowers the stress
imposed on routers high in the hierarchy of trust do-
mains. We ran 1000 trials where we made 10 groups
with 10 randomly chosen clients each, and sent 10 mes-
sages to each group. To quantify stress on higher levels
of the topology, we counted the number of messages
sent through the root, using the same topology as the
previous test.

The mean number of messages sent through the root
router using strict hierarchical routing was 213.845,
and was reduced to a mean of 22.534 in our design.
Interestingly, the standard deviations of messages sent
through the root were nearly identical (11.699 for hi-
erarchical and 11.775 for our design). This could be
due to the probabilistic nature of our experiment where
some clients were located far from non-tree links and
thus had to go route through the root.

4.5 Parent Fault Tolerance Overhead

The procedure for fault tolerance when a parent trust
domain fails involves messaging along non-tree links
to attach to a non-tree neighbor as a child, followed by
rejoining multicast groups. Due to time constraints, we
could not implement and test this capability directly,
but we have already addressed the procedure for joining
multicast groups.

5 Future Work

5.1 Comparison of Path-Finding Algorithms
Between Trust Domains

Our implementation uses a modified version of Dijk-
stra’s algoritm to construct a path between trust do-
mains (where we specified different topologies and
edge weights). We would be interested in seeing the
impacts of different path finding algorithms such as
DFS to analyze the tradeoff between optimality of the
path and efficiency in finding the path when many trust
domains and clients are involved (and especially when
trust domains or other GDP resources can leave at any
time). The case for using an efficient but non-optimal
path finding algorithm is that a connection to the rest
of the multicast tree can be produced sooner, which is
a benefit if resources leave frequently.

5.2 Scheduling at GDP Switches to Support
Performance-Critical Applications

Our implementation has the potential to let multiple
multicast trees use the same switches to transmit mes-
sages. This approach can have deficiencies if the mul-
ticast tree is used for a performance-critical applica-
tion. For example, a smart factory could send mes-
sages to all components to shut down in the event of
a critical hardware defect. The shut-down message
should take precedence over others. A deficiency of
our message sending approach is that there is no no-
tion of priority for different multicast groups. There
are two main hurdles to solving this problem: owner-
ship and scheduling. For ownership, all members of the
multicast tree would need to agree on the priorities of
different multicast groups. For scheduling, we can im-
plement priority-based scheduling algorithms at each
switch.

5.3 Better Methods of Repairing the Hierarchy of
Trust Domains

Updates to the adjacency lists stored in routers are
eventually consistent since they need to go through
switches and possibly other routers to finally affect an
ancestor. If trust domain routers fail, we get each child
trust domain of the failed trust domain router to re-
establish connections to any multicast groups it was
part of. While this approach gets the multicast groups
back in working order quickly, it makes many edits to
eventually consistent state, potentially leading to more
work downstream to repair multicast trees. An alterna-
tive approach is to allow trust domain routers to provi-
sion new routers with the same state (end-to-end con-
nections, clients, child routers) as a failed child router.
This could enable a much simpler method for fault tol-
erance, but would require parent routers to maintain
some visibility over the internals of its child routers.

5.4 More Fine-Grained Synchronization Over
Router State

Currently, our implementation serializes actions for
each router of a trust domain. However, there is room
for improvement regarding the serialization of updates
to resources held at trust domain routers. For example,
updates that affect sibling trust domains in the hierar-
chy should be allowed to run concurrently. A possi-
ble solution is to use a locking scheme similar to Two-
Phase Locking. Each node in the adjacency list could
have a lock that operations updating the adjacency list
need to acquire. Additionally, locks can be differenti-
ated into read and write locks, where a transaction hav-
ing a write lock on a particular resource blocks all op-
erations on that resource. We can also enforce a rule
that no transaction can acquire a new lock after releas-
ing locks, to ensure that all transactions are serializable.
Thread pools can be used to avoid excessive overhead
from too many threads at trust domain routers.



References
[Chen et al.2022] Kaiyuan Chen, Alexander Thomas,

Hanming Lu, William Mullen, Jeffery Ichnowski,
Rahul Arya, Nivedha Krishnakumar, Ryan Teoh,
Willis Wang, Anthony Joseph, and John Kubiatow-
icz. 2022. Scl: A secure concurrency layer for para-
noid stateful lambdas.

[Inc.2001] Cisco Systems Inc. 2001. Ip multicast tech-
nology overview, Oct.

[Kaiyuan et al.2021] Kaiyuan, Chen, Yafei Liang,
Nikhil Jha, Jeffrey Ichnowski, Michael Danielczuk,
Joseph Gonzalez, John Kubiatowicz, and Ken Gold-
berg. 2021. Fogros: An adaptive framework for au-
tomating fog robotics deployment.

[Mor et al.2019] Nitesh Mor, Richard Pratt, Eric All-
man, Kenneth Lutz, and John Kubiatowicz. 2019.
Global data plane: A federated vision for secure
data in edge computing. In 2019 IEEE 39th Inter-
national Conference on Distributed Computing Sys-
tems (ICDCS), pages 1652–1663.

[Plutowski et al.2021] Marcus Plutowski, Willis Wang,
and Vivek Bharadwaj. 2021. Delegated, sharded,
multicast tree for paranoid stateful lambdas.

[Saltzer et al.1984] J. H. Saltzer, D. P. Reed, and D. D.
Clark. 1984. End-to-end arguments in system de-
sign. ACM Trans. Comput. Syst., 2(4):277–288, nov.


	Introduction and Related Work
	The Global Data Plane
	GDP Routing and Network Organization
	Multicast Groups
	Trust Domains
	Routing Information Bases
	PSL Multicast Paper


	Design
	Terminology
	Clients
	Routers
	Switches

	Goals
	Threat Model
	Trust Domains
	Creating trust domains
	Joining Trust Domains
	Leaving Trust Domains
	Consistency

	Multicast Groups
	Creation
	Joining
	Message Sending
	Preserving Multicast Groups When Resources Leave

	Fault Tolerance
	Switches and Links Within a Trust Domain
	Links Between Trust Domains
	Trust Domain Routers
	Parent Failure
	Child Failure
	Multicast Group Leadership Handoff
	Dealing With Consistency Issues

	Path Optimization

	Implementation
	Establishing Multicast Groups
	Joining Multicast Groups
	Sending Multicast Messages

	Evaluation
	Comparison with PSL Multicast Paper
	Multicast Tree Properties
	Security Overhead
	Stress at Higher Levels
	Parent Fault Tolerance Overhead

	Future Work
	Comparison of Path-Finding Algorithms Between Trust Domains
	Scheduling at GDP Switches to Support Performance-Critical Applications
	Better Methods of Repairing the Hierarchy of Trust Domains
	More Fine-Grained Synchronization Over Router State


