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Problem Statement Architecture

DataCapsule's single-writer semantics lack
flexibility and scalability, which limits the
scalability of the Global Data Plane. -> Store and serve DataCapsule blocks.
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DataCapsule Background
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Every transaction explicitly sequenced in a has
chain history and is append-only.

Use FUSE (Filesystem in Userspace) to provide a POSIX-compliant interface.

Reconstruct local INode information and serve data from two separate DataCapsules.
Implement configurable LRU cache of blocks to improve read performance.

Support journaling for batched requests to improve write performance and crash recovery.
Represent user identities using a combination of the client’s public key and their local UID.
IAM provided using permission bits and enforced by operating system and middleware.
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Each is uniquely named and globally findable.

Resembles a “blockchain in a box” structure.

Capsule Block Design
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