CFS: A Multi-Credential POSIX-Compliant File System for Secure and Verifiable Data Storage
CS 262a Project #1, by: Qingyang Hu, Yucheng Huang, and Manshi Yang

Problem Statement Architecture

DataCapsule's single-writer semantics lack
flexibility and scalability, which limits the
scalability of the Global Data Plane. -> Store and serve DataCapsule blocks.

DataCapsule Server 4 N

DataCapsule Sever

DataCapsule

. 1 ata Server | ode Server |
There is a lack of a Common Access API (CAAPI) = Handle read requests from clients Server snivasumg s 1) | Sucvesiey Ful 2
on the client side for file system, which requires and write requests from middlewares.
developers to have a comprehensive understanding Middleware _ e — wi \ \Rea/
of DataCapsule. => Enforce client write permission N (— B
. . . rlt e Write Middlowfro 1 Write Mlddlew:are 2
In need of a multi-credential file system that through ACL and signatures. Middlewares [
supports multiple writers and implements -> Verity, sign and forward writes > .
read/write provenance, while still guaranteeing data request from multiple clients. e s _ — I -
security through a cryptographic approach. => Use Trusted Execution Environment. — Glients | | s oo e e e 2 o ot
, N y
CFS Client Figure 2: CFS high-level architecture

DataCapsule Background

Standardized metadata Eher

wrapped around opaque Hole <{ 3=(:}
. Hast(Ptr =

data transactions. P Eina e

Every transaction explicitly sequenced in a has
chain history and is append-only.

Use FUSE (Filesystem in Userspace) to provide a POSIX-compliant interface.

Reconstruct local INode information and serve data from two separate DataCapsules.
Implement configurable LRU cache of blocks to improve read performance.

Support journaling for batched requests to improve write performance and crash recovery.
Represent user identities using a combination of the client’s public key and their local UID.
IAM provided using permission bits and enforced by operating system and middleware.

'] 2In31g

:‘911’1131’1118 anSdBD Ble(

S0 20 2 2K 27

Each is uniquely named and globally findable.

Resembles a “blockchain in a box” structure.

Capsule Block Design

Performance INode Block Capsule Capsule: INode Block : Capsule: Data Block
Our performance is about (S Bend.and Wilte Latency / ACL V.Vlth. crypto- i : ——+ S
n v ra th Slgnatures. : 08§ae4,roo : ata = "test data....
10x slower than NFS - = 5Tep HESEE T 0
without network latency. 2 9 v T1mes£amp f(()ir q = A iyl aazzay
. . = 1 - B data = "bye...."
Write is ¢ omp arably Sl OW % % SNApsS .OtS and contlicts 3 ¢
due to synchronous and % 2 resolution i ooz el 1| osore foldert || STeer2Mel . lazedc
. 8 7 } : : : : o F 0 ;’ \/ Structure tO re resent : Ind —t ! ?,13564— kind = folder md _t l ?2135257 i)data = "hello world..."
sequential requests. o @ o A b P | fele e el time = 100 Sl ' ; |
Expected to get better ol oL Tie size filesystem hierarchy X g
. . Figure 4: read/write latency w/ \/ 1 1 d d ’) _a"98e81)
performance with caching, different file size File/Folder metadata [gata = Mestdata..
jour naling, and QUIC. e Write V' Hashes of data blocks kindf=7f?IZ,ls?z,:|=ei002 kinza: ﬁf;?ggiio kind6§?i(|:el,§i’zzli8786 : 1
M 1.52 151.21 : [data:a3d781, data: 9a778cal (] [data:a98e81, data: 1la278cal : A
Latency breakdown and ean ns s Data Block Capsule : time = 120 time = 140, f=deleted time = 160 :
Median 1.44ns 104.17ms

application benchmark
will be added later on. Table 1: read/write per-block latency Figure 3: CFS detailed block structure

v Configurable size . §

