
➔ DataCapsule's single-writer semantics lack
flexibility and scalability, which limits the
scalability of the Global Data Plane.

➔ There is a lack of a Common Access API (CAAPI)
on the client side for file system, which requires
developers to have a comprehensive understanding
of DataCapsule.

➔ In need of a multi-credential file system that
supports multiple writers and implements
read/write provenance, while still guaranteeing data
security through a cryptographic approach.

Problem Statement Architecture

Figure 2: CFS high-level architecture

Performance

Capsule Block Design

DataCapsule Background

DataCapsule Server
➔ Store and serve DataCapsule blocks.
➔ Handle read requests from clients

and write requests from middlewares.
Middleware

➔ Enforce client write permission
through ACL and signatures.

➔ Verify, sign and forward writes
request from multiple clients.

➔ Use Trusted Execution Environment.

➔ Standardized metadata
wrapped around opaque
data transactions.

➔ Every transaction explicitly sequenced in a hash
chain history and is append-only.

➔ Each is uniquely named and globally findable.
➔ Resembles a “blockchain in a box” structure.

Figure 1:
D

ata capsule structure

CFS Client
➔ Use FUSE (Filesystem in Userspace) to provide a POSIX-compliant interface.
➔ Reconstruct local INode information and serve data from two separate DataCapsules.
➔ Implement configurable LRU cache of blocks to improve read performance.
➔ Support journaling for batched requests to improve write performance and crash recovery.
➔ Represent user identities using a combination of the client’s public key and their local UID.
➔ IAM provided using permission bits and enforced by operating system and middleware.

Figure 3: CFS detailed block structure

INode Block Capsule
✓ ACL with crypto-

graphic signatures.
✓ Timestamp for

snapshots and conflicts
resolution

✓ Structure to represent
filesystem hierarchy

✓ File/Folder metadata
✓ Hashes of data blocks
Data Block Capsule
✓ Configurable size

Read Write

Mean 1.52ns 151.21ms

Median 1.44ns 104.17ms

Figure 4: read/write latency w/
different file size

Table 1: read/write per-block latency

➔ Our performance is about
10x slower than NFS
without network latency.

➔ Write is comparably slow
due to synchronous and
sequential requests.

➔ Expected to get better
performance with caching,
journaling, and QUIC.

➔ Latency breakdown and
application benchmark
will be added later on.

CFS: A Multi-Credential POSIX-Compliant File System for Secure and Verifiable Data Storage
CS 262a Project #1, by: Qingyang Hu, Yucheng Huang, and Manshi Yang

