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Abstract—CapsuleFS (CFS) 1 is the first filesystem to inte-
grate multi-credential functionality within a POSIX-compliant
framework, utilizing DataCapsule as the storage provider. This
innovative system is established based on the Global Data Plane
in the area of edge computing. Our comprehensive design and im-
plementation of CFS successfully fulfill the objective of providing
a multi-credential Common Access API. The architecture of CFS
is methodically segmented into three integral components: Firstly,
the DataCapsule server, tasked with the storage, dissemination,
and replication of DataCapsules on the edge. Secondly, the
middleware, a crucial element running in a Trusted Execution
Environment responsible for the enforcement and management
of write permissions and requests. Finally, the client component,
which manifests as a POSIX-compliant filesystem, is adaptable
and operational across many architectures. Experimental evalu-
ations of CFS reveal that, while its read and write performances
are comparatively modest, it upholds a high degree of functional
correctness. This attribute distinctly positions CFS as a viable
candidate for application in real-world software development sce-
narios. The paper also delineates potential future enhancements,
aimed at augmenting the practicality of CFS in the landscape of
software development.

I. INTRODUCTION

Edge computing has seen tremendous development and
adoption in recent years. The edge computing paradigm is
changing and redefining the boundaries of computing and
how and where data is stored and computed. Instead of
having a centralized cloud server and delivering data over the
Internet to the end user, edge computing brings computing and
data storage closer to the user’s device, reducing latency and
bandwidth, and better preserving the user’s privacy.

Global Data Plane (GDP), introduced by Nitesh Mor et
al, is an innovative federated storage architecture for edge
computing devices [1]. GDP allows users to conveniently
access data while it is federatively stored by different storage
providers. DataCapsule is the ground truth of GDP, which pro-
vides a standardized way to access heterogeneous resources. A
DataCapsule is a globally addressable, cohesive encapsulation
of data that can live in a widely distributed system. It can
provide a unified storage and communication primitive that
makes large-scale distributed storage based on DataCapsule
possible and feasible. A DataCapsule consists of signed,

1This project is for both CS 261, Security in Computer Systems and CS
262a, Graduate Computer Systems.

immutable records that are linked together, and metadata that
contains the identity of the DataCapsule and the credentials of
its owner.

Due to the DataCapsule paradigm, there are some limita-
tions that need to be addressed to make it more accessible
and scalable. First, it would be advantageous to implement a
Common Access API (CAPPI) on the client side. This would
provide developers with a more user-friendly and concise inter-
face, as the current API necessitates a thorough understanding
of DataCapsule. DataCapsule is a blockchain-like data storage
unit that requires additional processing before it can be read
and written by the client. Second, the single-writer pattern of
DataCapsule precludes expanding the current application to
a generic file system, due to the possibility of multiple users
mounting the same file system and writing to it in a real-world
usage scenario.

In order to facilitate a familiar interface for developers, we
utilized Linux’s Filesystem in Userspace (FUSE), which is
POSIX compliant, as the core of DataCapsule clients. The
CFS client operates on the user’s device and is responsible for
converting the data it receives from the DataCapsule Server
into a standard filesystem interface that users can directly
use, while utilizing caches and journals to provide excellent
performance and crash recovery.

To provide multi-credential support for CFS, we added a
middleware layer between the user and the server to manage
key distribution, data encryption, signature, and user identity
management when it comes to writing data to the file system.
The DataCapsule’s unique write key is held by the middleware
and stored in a Trusted Execution Environment(TEE) for
security. The middleware processes the user’s write request,
encrypts the data with the appropriate keys, and adds a
signature to make the change auditable and traceable. In
addition, the middleware de-serializes the Access Control List
it receives from the DataCapsule server to identify users and
protect the DataCapsule server from unauthorized writes.

CFS is mainly developed using Rust and Go. The Data-
Capsule server and client are implemented in Rust, while the
middleware is implemented in Go. Rust offers robust memory
safety and thread safety, as well as streamlined integration
with other languages while guaranteeing admirable runtime
performance. GO’s robust and well-documented cryptographic



library makes it ideal for middleware implementation, which
involves verifying, signing, and forwarding write requests from
multiple clients to the server.

Our goals with CFS are twofold:
• To rigorously adhere to POSIX standards, supporting

necessary file and directory operations (creation, deletion,
reading, writing, modification) across various operating
systems while providing reasonable performance and
maintaining consistency in APIs.

• To incorporate a mechanism for detailed, multi-credential
read and write provenance, enabling tracking and auditing
of file and directory access and mitigating common threat
models.

II. THREAT MODEL

To ensure security while providing a multi-credential file
system implementation, we considered several threat mod-
els, including man-in-the-middle attack, dishonest server, and
leaked keys, while designing CFS to address potential vulner-
abilities. All these three threat models are possible situations
where malicious attackers can gain illegal read access to
decrypt data and also write access to put wrong files into the
filesystem.

A. Man-in-the-middle attack(MITM)

Fig. 1. Threat Model: Man-in-the-middle Attack

In the threat model for a man-in-the-middle attack, as illus-
trated in Figure 1, we examine the scenario where middleware
requests updated data from the DataCapsule server. During this
process, a malicious attacker can impersonate the middleware
and substitute the updated file with a counterfeit one, thus
illegally writing to the DataCapsule server. Similarly, such
attacks could also occur when the client is sending data to the
middleware, posing a risk of data interception or alteration.

B. Dishonest server

Fig. 2. Threat Model: Dishonest Server

The dishonest server threat model, as shown in Figure
2, does not involve malicious attackers. Instead, the service
provider is dishonest and wants to serve an illegal file to the
client. When the client requests to read from the server, the
server may return a false file. This can happen when the service
provider is compromised and the storage service is taken over
by malicious attackers.

C. Leaked private key

Fig. 3. Threat Model: Leaked Key

In the Leaked Private Key threat model, as depicted in
Figure 3, both the user’s selectively shared read key (or
decryption key) and the write key (or encryption key) are
susceptible to compromise through attacks. If the user’s read
key is leaked, a malicious attacker can gain unauthorized
access to decrypt data in the file system. Similarly, if the write
key is compromised, the server will permit unauthorized writes
to the file system, enabling attackers to insert arbitrary data.

III. RELATED WORK

Fig. 4. DataCapsule structure [1]

A. Global Data Plane (GDP)

As briefly discussed in the introduction, Global Data Plane
(GDP), consisting of append-only logs and a routing layer,
is designed as a federated edge computing architecture to
manage data using DataCapsule as the fundamental collection
of data items. [1] DataCapsule is represented as a standardized
metadata enveloping opaque data transactions as depicted in
Figure 4. Each DataCapsule has a unique name derived from
hashes over its metadata, enabling it to be globally discov-
erable. Instead of focusing on infrastructure, GDP offers a
“platform vision” that allows developers to convey properties,



such as performance and security, to the underlying infrastruc-
ture to address resource heterogeneity. It provides functionality
including a consistent interface, secure storage, secure routing
mechanism, administrative boundaries, and locality-awareness
etc. It serves as the physical backing for DataCapsule.

B. CapsuleDB

To simplify data management on the edge environment
using DataCapsule and accelerate data retrieval, a key-value
store (KVS), called CapsuleDB, has been proposed. Cap-
suleDB is the first database and KVS designed for GDP [2].
It provides developers with a straightforward interface that
upholds security and can run in a trusted execution environ-
ment (TEE), such as Intel SGX, which mitigates attacks from
malicious operating systems. To enhance data retrieval speed,
an indexing system is utilized to trace active data and leverage
the distinct structure of DataCapsules for the natural aging out
of older data.

C. IPFS

The InterPlanetary File System (IPFS) represents a
paradigm shift in the domain of distributed storage, charac-
terized by its wholly decentralized architecture [3]. A hall-
mark of IPFS is its innovative content-addressing scheme,
which employs hash-based Content Identifiers (CID). This
distinctive approach not only facilitates the decentralization
process but also imbues CIDs with inherent self-certification
and permanence properties. Notably, IPFS distinguishes itself
as the inaugural file system to incorporate a Merkle Directed
Acyclic Graph (MerkleDAG) structure. This structure is in-
strumental in establishing decentralized trust within its peer-
to-peer network, a critical feature for enhancing the integrity
and reliability of distributed systems.

After reviewing the current state of the research on Data-
Capsule, it is apparent that there’s a need for a multi-credential
filesystem where provenance is provided and data security is
guaranteed. Our research aims to fill this gap by introducing
CFS as a state-of-the-art filesystem that fits within the GDP
framework. This approach not only strengthens data protection
but also ensures greater adaptability and scalability to various
user roles and data types, making it a versatile solution for
modern data management challenges.

IV. DESIGN

A. Architecture

The structure of our system, as illustrated in Figure 5,
comprises three distinct components: the DataCapsule Server,
the write Middleware, and the CFS client. In this section,
we will delve into a detailed discussion of each component,
elucidating their individual roles and functionalities within the
architecture. This breakdown aims to provide a comprehensive
understanding of how each segment contributes to the system’s
operation and interplays with each other.

1) DataCapsule Server: The server is primarily in charge
of storing DataCapsule blocks and processing read and write
requests. For the normal operation of CFS, a minimum of two
distinct DataCapsules is essential. The first capsule, noted as
the INode capsule, is dedicated to storing and managing INode
information, while the second capsule, noted as the data block
capsule, stores file data separated into multiple blocks. This
separation ensures efficient data organization and retrieval and
eases our overall system design. On the client side, INode
information from the INode capsule is utilized to reconstruct
the filesystem structure, and file data is retrieved from the data
block capsule.

The diagram in Figure 5 simplifies this structure by il-
lustrating only two distinct servers, storing each of the two
capsules mentioned above. However, in practical implemen-
tations, additional servers are often deployed to the edge to
replicate those capsules. These servers are designed to handle
read requests from the clients and write requests originating
from the middleware.

2) Middleware: The middleware occupies a crucial role
in our system, mainly facilitating the multi-credential func-
tionality and enforcing write permissions. This component
is strategically designed to operate within a Trusted Execu-
tion Environment (TEE), for the need to safeguard sensitive
operations. Specifically, the middleware is responsible for
securely storing the exclusive write keys associated with the
DataCapsules and maintaining Access Control List (ACL)
information critical for validating write permissions.

In the data flow, each write request is initiated by a client
is first routed through the middleware. Here, a verification
process takes place. The client’s signatures are scrutinized to
ensure authenticity and the ACL is consulted to confirm the
client’s authorization for writing to the designated DataCap-
sule. Only upon successful completion of these verification
steps is the request further processed. The middleware then
wraps an additional layer around the request and encrypts
the whole block using the DataCapsule’s write key before it
is forwarded to the server. This layered approach to request
handling not only reinforces security but also maintains the
integrity and confidentiality of the data flow within the system.

3) CFS Client: On the client side of our architecture, we
employ FUSE (Filesystem in Userspace) to create a POSIX-
compliant interface, enabling developers to seamlessly mount
the CFS onto their personal computers and use it. Upon initial-
ization, the client interacts with two DataCapsules, retrieving
data to reconstruct both the filesystem with the local INode
information, and files within the filesystem.

Clients are also tasked with managing key cryptographic
elements. Each client is uniquely identifiable with its public
key, which can be used to validate the origin of the blocks.
They must also safeguard their private key, which is used to
sign any blocks they would like to submit to the middleware, as
well as manage the ACL. Additionally, they need to maintain
the read keys of the DataCapsules, which are shared among
all clients. User identities within this framework are uniquely
defined by a combination of the client’s public key and



Fig. 5. CFS Architecture

their local User ID (UID), fostering a secure and distinct
identification mechanism.

To enhance performance on the client side, our filesystem
features caching and journaling. This cache is designed to
optimize read operations by storing frequently accessed data
in the memory. Alongside these features, we also included a
journaling system to support crash recovery, thereby ensuring
data integrity and system resilience in the face of unexpected
failures. We have also incorporated the concept of batched
requests in our journaling design to improve write efficiency.

B. Block

DataCapsules use blocks for communication and storage.
Our design adds additional layers to the DataCapsule blocks,
as illustrated in Figure 6. A block can contain either file data or
inodes. Within INode blocks, signatures for access control and
identity verification are also stored. By design, DataCapsule
blocks are linked using hash values, making it easy to verify
previous records. During a complete write operation, the client
sends the file system block to the middleware along with
the client’s signature, to prevent any MitM attacks between
the client and the middleware (depicted in Figure 1). The
middleware then verifies the block, wraps it around the file
system block into a complete DataCapsule block, and sends
the encrypted and signed DataCapsule block to the server. This
signature is designed to prevent any MitM attacks between the
middleware and the server, as shown in Figure 1.

1) Data Capsule Block: The data capsule block uses the
generic structure defined by DataCapsule. It contains a previ-

ous block hash to form a chain-like structure, and a file system
block as its core. A timestamp is added by the middleware for
conflict resolution. The block is signed and encrypted by the
middleware, using the shared write key.

2) Capsule File System Block: Each Capsule File System
block contains either an INode block or a data block, deter-
mined by whether it is stored in INode capsules or data block
capsules. The client who is authoring the block is required to
record its ID (public key) and the UID who is initiating the
request inside the operating system. The block is signed (but
not encrypted) by the client, using the client’s signing key.

3) INode Block: The Inode block is used to reconstruct the
file system. Each Inode block contains the file name, size, and
category. This information is used by the client to convert the
structure into the file system. The block also contains ordered
links, in the format of hashes, to the data blocks, so that the
client could fetch the file data upon request. The ACL list
keeps track of all users that are allowed to update the current
block, by signing the client’s public key and the UID.

4) Data Block: The data block contains the actual file
content. It is designed to have a fixed size (for example,
512 bytes), which can be configured during initialization,
depending on the workflow.

C. Multi-Credential Management

In our system, multi-credential management is achieved
through a combination of unique identifiers and public key
cryptography. Each user’s ID is composed of their client’s
public key and its UID in the operating system, signed by



Fig. 6. CFS Block Design

the client’s signing key. When a client receives a block, the
client first verifies its signature. Then it uses the updatedBy
field in the INode block to map the UID from the block
into the filesystem, but only if the public key matches. If
the public key is from a different client, the system maps the
UID to nobody. This ensures that users are recognized and
authenticated based on their unique credentials. Users already
included in ACL are permitted to modify that ACL using
chown, which allows for flexible and secure management of
permissions. In the event of a client key leakage, the system
can easily revoke access by updating all ACLs associated with
that compromised key, ensuring security and mitigating the
leaked client keys threat model shown in Figure 3. Permission
enforcement is integrated at the kernel level, with additional
checks done at the middleware, restricting write access to only
those UIDs listed in the ACL. Furthermore, the ACLs inherit
from parent inodes by default, and can be changed independent
of others, a practice similar to traditional operating systems.
This per-block ACL system enhances security and allows
for varied and specific user permissions within the same
filesystem, ensuring both flexibility and robustness in access
control.

D. Trusted Execution Environment

Our middleware is designed to run in a trusted execution
enclave, for example, Intel SGX [4]. Intel SGX is a secure
enclave that can provide a protected environment for the
code and data [5]. The reason for using a TEE is for better
key protection in our system, to mitigate the leaked server
keys threat model shown in Figure 3. Due to the design and
implementation of DataCapsule, the single writer key is the
main access control mechanism that prevents the server from
illegal writes sent by malicious attackers. In the architecture
of CFS and the setting of edge computing, the clients are not
secure and trusted. If we distribute the writer key directly to
the client, it can be compromised by attackers, and it will take
time and resources to distribute new capsules with new keys
to the clients. Based on these considerations, we decided to
put the writer key in the middleware.

E. Cache

1) INode Capsule: Due to the need for fast access to our
filesystem structure, our filesystem features a local, in-memory
cache of all the inodes. The local cache maintains 1) a hash-
to-inode-number mapping, and 2) an INode to child INode(s)
mapping. The cache is rebuilt each time before the filesystem
is mounted, by requesting all leaf hashes and fetching their
contents. Merkle proofs of such leaves will be validated to
ensure the node originated from the authentic DataCapsule,
while eliminating the need to recursively fetch all blocks
in the path to the root to verify that property, ensuring
dishonest servers (discussed in Figure 2 will be detected and
ignored. Conflicts can be resolved by keeping the latest block
written, referencing the timestamp field inside the block.
The filesystem will then subscribe to all incoming updates
from the INode capsule, updating the local cache using the
same conflict resolution strategy.

Our middleware is also aware of the filesystem structure
using the same caching strategy, particularly whether an INode
has been replaced by a newer INode or not. This is done to
prevent leaked keys from being used to submit fraudulent data
blocks.

2) Data Block Capsule: Our filesystem also caches data
blocks fetched from the data block capsule, using the hash as
the caching key and employing a hybrid strategy that utilizes
both memory and disk. This is done to reduce the write
latency for frequently accessed blocks. The cache size can be
configured in terms of the number of blocks, with LRU (Least
Recently Used) being the default strategy. Subsequent requests
for blocks that are cached will be served without querying the
server, due to the append-only nature of DataCapsules.

F. Journal

Our filesystem utilizes a journal to reduce write latencies.
This journal is a queue-like structure, containing blocks to
be committed to the middleware. Whenever the filesystem
receives write requests, it calculates and manipulates the
blocks, then sends them to the journal for commitment. When
receiving requests to fetch data blocks, our data cache first



checks if the hash is in the journal. If so, data will be returned
from the journal without checking the cache or the server.
However, as the final hash is only generated by the middleware
after it finalizes all signatures, a placeholder hash will be used
and replaced once the block is committed. Once all data blocks
are committed, the inode block will be updated and sent for
commitment. After the inode block is committed, all relevant
blocks will be purged from the journal. This significantly
reduces write latency as we no longer need to wait for the
block to be committed by the server; often, we will need to
commit at least two blocks (one data block and one Inode
block) for a single write request.

Additionally, the use of a journal provides easy crash
recovery. The journal is serialized onto a permanent local
storage system, usually hard drives, before the filesystem
responds to the write request. In case of failures, the filesystem
just needs to read from the journal and resend all blocks to
the middleware. Duplication of blocks will not be an issue,
as conflicts can be resolved using timestamps. Once all data
blocks are committed, we can continue the process mentioned
in the previous paragraph to commit the metadata.

To further reduce the number of requests needed for write
requests and thus the time needed to fully commit blocks from
the journal, as well as to reduce unused blocks on DataCap-
sules, the journal will batch multiple requests operating on
the same block into one. This is done by tracking the INode
number and block index associated with each write request.
The journal is scanned before sending each block to the server
to identify if there are subsequent write requests for the same
block. If so, as all subsequent blocks contain the updates from
the previous blocks due to the data cache hook, the current
block will be dropped, with its hash replaced by the subsequent
one.

G. Snapshot

Our filesystem also allows a user to roll back to a specific
timestamp, essentially providing a snapshot / auditing feature.
This is achieved by ignoring all blocks written after the
specified timestamp while rebuilding the INode cache. This
approach offers users easy access to track changes.

V. IMPLEMENTATION

A. Overview

We have implemented our file system in Rust, primarily
using FUSE, with approximately 550 lines of code. Our
filesystem is capable of creating, reading, and writing files and
directories. Features like signature verification, block signing,
and caching are also implemented. However, due to time
constraints, journaling and snapshots were not implemented.

Our middleware is implemented in Go, using approximately
150 lines of code. All features have been implemented, and
running inside a Trusted Execution Environment (TEE) will
be simulated as we do not have adequate hardware to support
this.

Blocks are implemented using Protocol Buffers, and all data
exchange is done with gRPC, using HTTP/2 with HTTPS.

We have also created a dummy server, which provides block
services to our middleware and filesystem. This is not our
focus, so we will not discuss it in our paper.

Our implementation is available on GitHub: https://github.
com/hqy2000/cfs. You may read the project descriptions to
learn how to run it in your environment.

1) Middleware: Due to the major functionality of encryp-
tion and communication of the middleware, we decided to
implement the middleware using GO. For the encryption part,
we used GO’s crypto library and used the randomization, en-
cryption, and decryption algorithms including RSA, SHA256,
and pkcs1v15. To implement the communication functionality
of the middleware, we used GO’s gRPC library.

2) Client: Due to the need for close interaction with the
operating system, we have chosen Rust to implement our
filesystem. This choice was made because of Rust’s supe-
rior memory management and debugging experiences when
compared to C++. We utilized third-party libraries to aid our
implementation; for example, tonic for gRPC and Protocol
Buffers, rsa for signature creation and verification, fusers
for bridging with the native FUSE interface, etc.

VI. EVALUATION

We evaluated CFS’s performance in the following aspects:
• We measured CFS’s read and write performance using

a high-resolution timestamp counter of the processor to
give an accurate measurement of the system’s perfor-
mance.

• We measured CFS’s performance on specific applications
to show its potential for software development.

• We ran the above two benchmarks on NFS to form a
comparison with CFS’s performance.

• We conducted the simulation of a series of attacks to
evaluate if CFS can successfully mitigate the threat
models.

Our experiments were performed on the above CFS client,
middleware, and server implementation. We deployed our CFS
implementation, along with NFS, onto a virtual machine with
8 CPUs, 32 GB memory, and 96 GB storage. It is hosted on
a bare-metal server with Intel Xeon Platinum 8153 Processor
[6], 192 GB DDR4 2133 MHz RAM, and 1.92TB Intel S3610
SSD.

A. Read/Write Performance

To obtain a comprehensive understanding of the read and
write performance of CFS, we measured the latency for
various file sizes, recording the average latency for each block.
This evaluation included sequential reading of blocks directly
from the server, bypassing the client cache, to assess the read
performance more accurately. We investigated the influence
of cryptographic operations on performance by performing
the same experiments with all cryptographic operations turned
off. To ensure precision in our measurements, we used the
processor’s built-in timestamp counter, rdtsc, counting CPU
cycles, and utilized inline assembly and system calls for
implementation. This approach provided more accurate latency

https://github.com/hqy2000/cfs
https://github.com/hqy2000/cfs


measurements compared to other tools available through high-
level libraries.

1) Results: As depicted in 7 and 8, the read operation
outperforms the write operation considerably. This outcome
ensues from our utilization of a configurable LRU cache which
boosts the read performance by circumventing redundant
fetching of recently accessed data from the server. Addition-
ally, because we were unable to implement journaling and
batched write requests, the write requests are being processed
sequentially by the client and the middleware, resulting in
additional time costs. From the graphs, we observe that as
the file size doubles, the time required to read and write the
file increases exponentially, demonstrating a linear pattern on
a logarithmic scale. This indicates that CFS’s read and write
latency remains uniform for every block.

Another noteworthy aspect is that the cryptographic op-
erations proved to be quite time-consuming. Despite Go’s
and Rust’s well-defined and optimized cryptography libraries,
cryptographic tasks still cause significant latency in overall
performance. Consequently, write performance is impacted
more as the write workflow entails numerous cryptographic
operations along the way. Each write request must be signed
by the client. Then it passes through the middleware, where
the signature and write permission are verified and the request
is signed before being sent to the server. In contrast, in the
case of a read request, cryptographic operations only occur
when the client wishes to decrypt the server’s response.

We conducted measurements of read and write latency for
each block without any caches, both with and without crypto-
graphic operations, and the results are presented in Table I.
The data demonstrates that enabling cryptography for read
operations leads to an increase in latency of approximately
1.2 times compared to when cryptography is disabled. And
for write operations, enabling cryptographic operations results
in a latency increase of approximately 44 times. Hence an
improved efficiency in cryptographic operations will greatly
boost CFS’s performance.

Op Latency w/ Crypto Latency w/o Crypto

Read 4.13ns 3.42ns
Write 411.64ms 9.09ms

TABLE I
READ/WRITE PER-BLOCK LATENCY (10% TRIMMED MEAN)

2) Comparison with NFS: To obtain a comprehensive un-
derstanding of CFS’s performance in comparison to other
distributed file systems, we utilized NFS as a benchmark.
Despite NFS’s optimization and maturity, we believe that it
is a useful indicator in identifying performance bottlenecks
and directing our efforts to improve CFS’s performance. Here
we performed the above experiments in NFS [7].

Due to the optimized write and read performance in NFS,
accurately measuring the sequential read performance presents

Fig. 7. Latencies of read operations based on different file sizes, with and
without cryptography

Fig. 8. Latencies of write operations based on different file sizes, with and
without cryptography

a challenge. This difficulty arises because it is uncertain
whether each read operation is being executed from the disk
or the cache, as the prefetch mechanism might influence
the process. Regarding the write operations, NFS’s server
architecture enables concurrent processing of these requests, as
opposed to a sequential, one-by-one approach used by CFS.
The data in Table II is derived from the same experiments
conducted on a 1MB file. These observations indicate that
NFS exhibits significantly smaller latency for both reading
and writing operations. Two primary factors contribute to this
outcome: firstly, NFS incorporates a prefetch mechanism and
supports disk flushing, which means that the experiment does
not conclusively determine if the read requests are from the



disk or if the write operations are being made to the disk
[8]. Another factor influencing CFS’s elevated latency is the
selection of gRPC for our network stack, which inherently
introduces more latency compared to other frameworks like
QUIC.

To more precisely compare CFS’s read performance with
that of NFS, we devised a random read experiment on NFS to
mitigate the impacts of prefetching. This experiment entailed
performing random reads of 1MB data from various locations
within a file so that the entire file could not be prefetched
and stored in the cache. Repeated iterations of this experiment
yielded an average time of 294.16ms for NFS to randomly read
1MB of data from a 1GB file. Note that the lower read latency
in CFS without cryptographic operations is due to the fact that
our emulated DataCapsule server stores the data in memory
rather than disk for simplicity. Overall, this outcome suggests
that prefetching will substantially enhance the sequential read
performance of the file system.

Op CFS w/ crypto CFS w/o crypto NFS, seq NFS, rand

Read 2385.18ms 37.88ms 2.63ms 294.16ms
Write 157768.32ms 2383.16ms 1.32ms N/A

TABLE II
READ/WRITE 1MB FILE LATENCY

B. Application Performance

Considering that CFS encompasses a comprehensive set
of file and directory operations, our objective is to test its
viability and efficiency for application in the realm of software
development. This evaluation will be conducted through a
series of application benchmarks, which are intended to test
the capabilities of CFS in a variety of scenarios.

In this study, we selected two distinct tasks frequently em-
ployed to evaluate the suitability of a filesystem for software
development applications. The initial task involves a com-
pilation process, where the log-structured file system (LFS)
benchmark serves as the compilation target [9].

The second task encompasses the typical operations of
compression and decompression tasks which involve intensive
read and write and are integral to a multitude of real-world
software applications. The chosen subject for this task is the
’strings’ package from the Go programming language, which
is approximately 188 Kilobytes in size [10]. This application
benchmark aims to provide a comprehensive assessment of the
filesystem’s performance in scenarios commonly encountered
in the software development process. Here we executed the
benchmark in both CFS with cryptography turned on and NFS
to form a comparison.

1) Results: The experimental data, as presented in Table III,
provides empirical evidence regarding the operational correct-
ness of CFS. The successful execution of the designated tasks
by CFS corroborates its functional integrity. As discussed in
the preceding section, it is evident that while CFS exhibits

competent performance, there is a notable space for enhance-
ment in its write performance, especially when compared with
more established systems such as the NFS. This is particularly
observable in write-intensive tasks like decompression, where
CFS demonstrates a longer latency. Despite these areas for
improvement, the overall performance of CFS in the appli-
cation benchmark instills confidence regarding its potential
applicability in real-world software development scenarios,
provided that targeted optimizations are implemented to bol-
ster its efficiency.

Application CFS w/ crypto NFS

make lfs 22.93s 0.15s
compress go/strings 7.08s 0.04s
decompress go/strings 39.28s 0.13s

TABLE III
APPLICATION BENCHMARK COMPLETION TIME

C. Attacks Simulation

To verify our design, we conduct a series of simulations of
various attacks to evaluate the resilience and effectiveness of
CFS in mitigating these threats. This systematic assessment
aims to determine the robustness of CFS in the face of
diverse and potentially sophisticated attack vectors, primarily
the attack scenarios as outlined in the preceding section.

1) Man-in-the-middle attack(MITM): The resistance of
CFS to Man-in-the-middle attacks was evaluated. A malicious
attacker’s behavior was simulated by replacing the content of a
put request. In the first case, only the file data in the put request
was replaced. Due to the mismatch of the signature in the
request, the put request was identified as invalid and rejected
by the middleware. In the second case, we replaced both the
file data and the signature. However, since the attacker’s ACL
key is not in the allowed list, and our client’s private key
is computationally impossible to guess, the middleware again
rejected the request.

2) Dishonest server: We also assessed the CFS client’s
capability to handle a dishonest server. To simulate a malicious
service provider or an honest server that has been compro-
mised by an attacker, we substituted the file data on the server
side. When a read request was made, the client verified the
merkle proof and the hash value to ensure data consistency.
However, due to the server’s arbitrary alteration of the data,
the client was unable to verify the hash and/or the merkle
proof, rendering the attack unsuccessful.

3) Leaked private key: In this scenario, we revoked a
user’s decryption key to simulate a situation where the client’s
sigining key has been compromised. After removing the key
from the access control list, the user no longer had write
access to the file data associated with the revoked key. All
write requests correctly rejected by the middleware, making
the attack unsuccessful.



VII. FUTURE WORKS

A. Prefetch

In earlier discussions regarding the read performance of
CFS, we identified the incorporation of a prefetch mechanism
as a potential area for enhancement. The fundamental premise
of this improvement lies in leveraging the server’s capability to
handle multiple requests concurrently. By adopting prefetch-
ing, CFS can proactively retrieve and store data that is likely
to be accessed in the near future, placing it in the cache as
a background operation. This proactive data retrieval strategy
offers a significant advantage: when users subsequently request
this data, it can be delivered directly from the cache [8]. An
essential aspect of this mechanism is that prefetching occurs
in the background, ensuring that the overall performance of
CFS is not adversely affected in scenarios characterized by
sparse requests.

The implementation of prefetching in CFS is expected
to markedly enhance read performance, especially in cases
involving sequential or pattern-based data access. By utilizing
cached prefetched data, this mechanism can significantly expe-
dite data retrieval processes, thereby improving the efficiency
and user experience of the CFS.

B. Automatic Cache Policy & Size

In our current design, the cache size for data blocks needs
to be manually configured, depending on the workload. This
may pose challenges for our end users, requiring them to
carefully analyze their applications to optimize performance.
For instance, users may need to find a balance between their
available memory space and their working set to determine the
optimal number of blocks to retain in the cache. In the future,
our system should be able to dynamically adjust its cache size
based on usage patterns and available memory space.

Additionally, our cache currently utilizes a simple Least
Recently Used (LRU) policy. However, for many applications,
more complex strategies might be necessary. For example, a
Least Frequently Used (LFU) policy may offer better per-
formance in scenarios such as model training, where some
datasets are accessed more frequently than others. These
datasets may be spread out, rendering the LRU policy less
effective in efficiently caching them. In the future, the filesys-
tem should have the capability to dynamically change its
cache policies. This enhancement will enable our filesystem
to provide a more versatile interface for our end users.

C. Network Stacks

Another area for improvement is the choice of network
stacks. In our current approach, for simplicity, we use gRPC
as a method to exchange block data across our service. gRPC
operates over HTTP or HTTPS protocols, which may lead
to protocol overhead, such as unnecessary handshakes. In
the future, a more refined design focusing on the network
protocol may be required. For example, to maintain simplicity,
we might consider using the QUIC or HTTP/3 protocol to
exchange gRPC requests, thereby reducing handshakes [11].
Alternatively, we could develop our own protocols based on

TCP or UDP to minimize such overhead. Reducing protocol
overheads would definitely help to decrease our latencies.

D. DataCapsule Server

Currently, we have developed the CFS client, middleware,
and server ourselves. Due to time constraints, the functionality
and performance of the server part of CFS is not optimized.
Samuel Berkun has implemented a data capsule server, dc-
prototype [12], which can be used in our file system. Dc-
prototype provides a convenient solution and support for
routing and connection in the server. In our future work, we
will integrate dc-prototype into our server to provide more
features and better performance. Moreover, using dc-prototype
as a common server can allow other data capsule projects to
integrate with CFS.

E. Platform Independent Serialization

We utilized gRPC and protobuf for communication between
different parts of the system [13]. However, we encountered
serialization issues during this process. We discovered that
message serialization differs between Go and Rust when using
gRPC with protobuf. This resulted in problems with signature
verification between the middleware and the server. In the
future, a platform-independent serialization method that can
be used by both the GO and Rust components of the system
will be needed.

F. Sigchain

In our design to better deal with key leakage on the user
side, we designed a key revoke mechanism that allows a user
or the server to invalidate user decryption keys. In the future
improvement of this project, Sigchain might be used [14].
Sigchain is the user access control mechanism proposed by
Zoom to manage and revoke user-trusted devices. Our project
can also use Sigchain to manage and revoke users’ read keys,
and we expect it to be more secure and efficient than our
current implementation, by eliminating the need to track every
key in each block.

VIII. CONCLUSION

In this paper, we have demonstrated the functionality of CFS
as a multi-credential filesystem, conceptualized on the frame-
work of the Global Data Plane (GDP). While our analysis
acknowledges certain performance limitations in the current
iteration of CFS, we have identified and discussed several
strategic areas for potential enhancement, thereby augmenting
its viability as a practical application in real-world scenarios.
Notwithstanding the prospective improvements aimed at opti-
mizing the performance characteristics of CFS, we anticipate
the development and integration of a novel mechanism on the
server side to reduce the frequency of cryptographic signing
operations. Such a development is expected to facilitate more
efficient handling of batched write requests, thereby signif-
icantly streamlining the operational efficiency of CFS. This
prospective advancement will align CFS more closely with
the requirements of real software applications.
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