
Multi-GPU for Piranha,
a Multiparty Computation Framework

Yibai Meng
University of California, Berkeley

mengyibai@berkeley.edu

Shuxian Wang
University of California, Berkeley

wsx@berkeley.edu

Alex Schedel
University of California, Berkeley

alexschedel@berkeley.edu

1 ABSTRACT
Secure multi-party computation (MPC) is an essential tool
for privacy-preserving machine learning. Piranha [10] is a
opensource GPU-based platform developed by SkyLab that
provides a generic interface for implementing secure multi-
party computation algorithms, while leveraging the acceler-
ation GPU provides.
Currently, Piranha can only use one GPU per computa-

tion party. This limits it’s ability to work with large models.
Therefore, for our CS262A project, we explored distributing
the computation of a single party among multiple GPU, to
increase speed and enhance scalability. This will allow for
effective scalabilty in regard to both time and memory for
the system.

We experimented with various form of model parallelism,
including pipeline parallelism and tensor parallelism. We
are able to decrease the per GPU memory requirements to
enable training models with much larger batch sizes. We
also realized some training speedup in limited circumstances.
We also discovered a important optimization that greatly in-
creases Piranha’s performance, albeit only marginally related
to multi-GPU parallelism.

Our code is at https://github.com/YibaiMeng/piranha, feel
free to have a look.

2 INTRODUCTION AND BACKGROUND
2.1 Multi-party Communication
Multi party computation (MPC) is a secure computing para-
digm aimed at allowing multiple parties not only to commu-
nicate information securely, but to jointly compute over that
information. A key distinction between MPC and conven-
tional cryptographic algorithms is that rather than securing
a system from outside attackers or adversaries, MPC protects
the data of cooperating parties from each other. This means
that computation is able to be done in a completely trust free
environment, as no party is able to access any information
other than their own.

MPC is facilitated by a combination of cryptography and
distributed computing protocols. First, data is divided into
several individual shares, each ofwhich represent some amount
of data held by a single party. This data is then securely en-
crypted by each party to ensure that others cannot directly

read their data. Through use of a secret sharing algorithm,
these shares contain information unintelligible to each indi-
vidual party, only yielding the secret once a sufficient number
of shares are combined. This allows the parties to jointly com-
pute on encrypted information without revealing any of the
underlying data.
MPC can be used in a variety of applications, such as

secure voting systems, distributed storage systems, and, as in
the case of Piranha, secure communication protocols for use
in machine learning systems. However, the cryptographic
and distributed computing protocols which underpin the
paradigm have a major drawback, that being that they are
often quite computationally expensive, making it difficult to
justify their use in large scale machine learning frameworks
without optimization.

2.2 Piranha
As noted above, writing efficient secure MPC algorithm re-
quires extensive knowledge. This is where Piranha, a general
purpose, modular platform for accelerating secret sharing
MPC protocols using NVIDIA GPU’s, enters the picture. Pi-
ranha aims to leverage the benefits of GPU parallelization
without requiring domain specific CUDA knowledge on the
part of the programmer. The Piranha system itself is split
into a three level of abstractions, shown in Figure 1.

(1) TheDevice Level. This layer accelerates secret-sharing
protocols by providing additional integer kernels not
found in many present GPU libraries. Additionally,
this layer is responsible for abstracting away much of
the domain specific knowledge of GPU programming
from the user as well as data management. Data is
managed on a DeviceData buffer and resides only on
the GPU. This is a key point of speed up and paral-
lelization under the current system.

(2) The Modular Protocol Level. This layer imple-
ments all the cryptographic primitives required by
the MPC protocols, additionally it allows developers
to maximize limited GPU memory with in-place com-
putation and iterator-based support for non-standard
memory access patterns. Piranha currently contains
support for 2, 3, and 4 party MPC (all sharing the
same interface), and is designed to be extensible with
other MPC protocols as well.

https://github.com/YibaiMeng/piranha


Yibai Meng, Shuxian Wang, and Alex Schedel

(3) The Application Level. This layer allows applica-
tions to remain agnostic to the underlying MPC pro-
tocols they use. Common layers in neural network is
implemented, with the primitives exposed from the
protocol layer. The end user may directly use those
layers to compose a working neural network.

Multi-GPU Setup

Application Level

Protocol Level

Device Level

MPC Protocols, 
2PC, 3PC, 4PC

Protocol-agnostic 
ML Libraries

Figure 1: The architecture of Piranha. Blue indicates
core layers, purple indicates modular components, and
green indicates the underlying hardware

2.3 Multi-GPU Parallelism
People have been using multiple GPUs to train neural net-
works and do computation in general since their inception.
In general, people would like to achieve two purpose when
using multiple GPUS:
• Fit very large models onto limited hardware
• Significantly speed up training

Based on the nature of these methods, they can be broadly
split into to categories:

(1) Data Parallel: The model is being replicated mul-
tiple times on multiple GPUs, while the input data
is split. Training or inference happens concurrently
for the split data, and updates are communicated and
synchronized if necessary.

(2) Model Parallel: The model is split among multiple
GPUs, and data is passed through each layer and
goes from GPU to GPU. Pipelining is often used to
increase performance.

These methods are often used among side each other.
Sometimes, the classification of a parallelization method
depends on the circumstances. For example, for tensor paral-
lelism, if model parameters and optimizer weights are split
among the devices, it could be classified as model parallelism,

whereas if input matrices are the ones split, it could become
data parallelism.

2.4 Our Approach
In this report, we discuss our experiments bringing multi-
GPU to Piranha. Thanks to the three levels of abstractions
provided by Piranha, we do not need to alter the crytographic
protocols in the Modular Protocol level, lowering our engi-
neering effort. We implemented model parallelism, especially
pipelined model parallelism in piranha.We also implemented
tensor parallelism for the underlaying gemm operations. Dur-
ing our experimentation, we also uncovered an significant
inefficiency in the original Piranha code.
The rest of the report is organized as follows. Section 3

discusses the concept of model parallelism, its implemen-
tation, as well as the notable implementation details in the
context of Piranha. Section 4 discusses tensor parallelism
and our implementation. Section 5 discusses the inefficient
way Piranha is conducting inter-party communication, and
how we remedies it. Section 6 evaluates our results. Section
8 and Section 7 summarizes possible future works and prior
related work on this subject.

3 MODEL PARALLELISM
As mentioned in Section 2.3, model parallelism partition
on the entire model into groups of consecutive layers, and
assign each GPU to a group of layers. Collectively, all GPU’s
serve a model by each constituting its group of layers, and
the resource requirement on each device becomes only a
fraction of the entire model.

3.1 Sequential Model Parallelism
The most straightforward way to implement model paral-
lelism is to assign layers to dedicated GPU’s, with the forward
and back-propagation of the layers calculated in sequence.
After all the layers on a GPU finish execution, we transmit
the data to another GPU, and start the process anew. This
way, each party only needs to hold a portion of the entire
network. The following algorithm illustrates this idea:

for all iteration 𝑖 do
𝐵 ← input batch
for all GPU 𝑔 do

Transmit 𝐵 onto 𝑔
for all Layer 𝐿 on GPU 𝑔 do

𝐵 ← forward direction of 𝐿 with input 𝐵
𝐺 ← loss of 𝐵
for all GPU 𝑔 in reversed order do

Transmit 𝐺 onto 𝑔
for all Layer 𝐿 on GPU 𝑔 in reversed order do

𝐺 ← back-propagation of 𝐿 with gradient 𝐺
Apply updates to 𝐿 with gradient 𝐺



Multi-GPU for Piranha,
a Multiparty Computation Framework

Unfortunately, this method of model parallelism will be
slower than using a single GPU. When one layer is active,
other layers will be waiting idly. However, sequential model
parallelism can reduce the memory requirement for indi-
vidual GPU’s by a factor of 𝑁 . As GPU onboard memory is
often a limiting factor during the training of large models,
this simple method is widely used.

3.2 Pipeline Parallelism
We want the memory saving of model parallelism, but we
also want to avoid the incurred performance penalties. One
way to achieve this goal is to use pipeline parallelism. We do
this by splitting the incoming minibatch into micro-batches,
creating a pipeline, which allows different GPUs to concur-
rently participate in the computation process.
Same as sequential model parallelism, the layers of the

model is partitioned onto various GPUs. We call the col-
lection of sequential layers on each GPU a pipeline group.
Different from sequential model parallelism, for forward and
backward, each pipeline launches a asynchronous thread.
Each thread goes through the the microbatches of the mini-
batch, and for each microbatch iterate over all the layers
within this pipeline group, calling forward and backward.
For forward, all microbatches are independent from each
other, therefore the final resulting activation is identical to
that of ordinary calculation. The activation will then be sent
asynchronously to the next pipeline group, while the sending
pipeline group is already at the next microbatch.

Back propagation is a little different as not all microbatches
are completely independent of each other. The gradient of
the loss relative to each microbatch input is independent. It
is thus treated the same as forward activation, sent to the
previous pipeline group asynchronously. The gradient of the
loss relative to the weight, on the other hand, depends on all
themicrobatches. Due to the chain rule, eachmicrobatch only
provides a portion of the gradient, and the final results are
their sum. Therefore after independently back-propagating
each microbatch, we synchronize and the update the weights.
See a pseudocode representation of a thread on GPU 𝑔 below:

for all microbatch 𝑏 in minibatch 𝐵 do
Wait for activation from microbatch 𝑏 on the previous
pipeline group to arrive.
for all Layer 𝐿 on GPU 𝑔 do

𝑏 ← forward direction of 𝐿 with input 𝑏
Async send the output onto the next pipeline group.

Synchronize all threads
Calculate loss gradient
for all microbatch 𝑏 in minibatch 𝐵 do

Wait for gradient from microbatch 𝑏 on the next
pipeline group to arrive
for all Layer 𝐿 on GPU 𝑔 in reversed order do

𝐺 ← back-propagation of 𝐿 with gradient 𝐺
Async send the output onto the previous pipeline
group.

Apply updates to 𝐿 with gradient 𝐺
Because now transmission of activation and gradient be-

tween layers are done asynchronously, microbatches in one
GPU can be running concurrently with another microbatch
in another GPU. This is shown in Figure 2. Compared to
sequential model parallelism, in pipelined parallelism, GPUs
are idle less of the time. Due to the dependency relationship
between the microbatches, there are still bubbles before and
after the forward and backward pass.

3.3 Partition Selection
As mentioned in Section 3, for each party, we need to parti-
tion the model / layers onto different GPU’s. Therefore, for
each specific model, we need to chose where to draw the
boundary for each partition. This choice of partition will
significantly affect the effectiveness of pipeline parallelism.
It is not feasible to find an optimal partition simply by

trial and error. For a network with 𝐿 layers and a setup with
𝑃 GPU’s, the number of possible partitions are on the order
of 𝐿𝑃−1. Therefore, we need some theoretical insight into
the execution time for each partition selection to make an
informed decision.

This is not as trivial a task as it may at first glance appear.
As seen in Figure 2 and Figure 6, each pipeline group consists
of different layers, with vastly different forward inference
and backward propagation times. Each microbatch is also
dependent on the results of the corresponding microbatch
from the previous group. Therefore, we need to take the
interdependency, varied memory use, and computation time
all into account during partitioning, to ensure that minimal
time is spent on waiting for previous pipeline groups to
complete.

We model the per iteration time as follows: For each layer
𝑙 , the forward time for each microbatch on a single GPU is 𝑓𝑙 ,
and the backpropagation gradient calculation time is 𝑔𝑙 . The
gradient update time is very small compared with gradient
calculation, so we ignore it in our modeling. Let the number
of pipeline stages / number of GPU’s be 𝑃 . Let the layers
assigned to each pipeline group 𝑖 be 𝐿𝑖1, 𝐿

𝑖
1, . . . , 𝐿

𝑖
𝑃𝑖
, where

each pipeline group has 𝑃𝑖 layers. Each minibatch is split
into𝑀 microbatches. Let 𝐹𝑖 be the time it takes for pipeline
group 𝑖 to complete the forward operation, starting from
the beginning of the whole iteration: that is, starting from
when the first pipeline group begins its forward calculation.
Similarly, let𝐺𝑖 be the runtime of the backpropagation gradi-
ent calculation, starting from the beginning of the gradient
calculation.



Yibai Meng, Shuxian Wang, and Alex Schedel

B2B1 L1

B1’

L1

L3

L2

B3

B2’

L3

L2

L1

L2

B1’’

B3’

B2’’L3

L1

L3

L2

B3’’

L1

L3

L2

GPU A1

GPU A2

GPU A3

B2B1 L1

B1’

L1

L3

L2

B3

B2’

L3

L2

L1

L2

B1’’

B3’

B2’’L3

L1

L3

L2

B3’’

L1

L3

L2

GPU B3

GPU B2

GPU B1

Inter-party communication

Inter-GPU communication

L1

L3

L2

L1

L3

L2

G3

G3

L1

L3

L2

L1

L3

L2

G2

G2

G3’

G3’

L1

L3

L2

L1

L3

L2

G1

G1

G2’

G2’

G3’’

G3’’ L1

L3

L2

L1

L3

L2

G1’

G1’

G2’’

G2’ L1

L3

L2

L1

L3

L2

G1’’

G1

Li
Active group of model layers Bi

Microbatch

Feedforward Backpropagation

Li
Idle group of model layers Gi

Gradient, per microbatch

Time

Figure 2: The pipeline processing with a 2-party protocol along time. Here we partition the model into three groups
of layers 𝐿1, 𝐿2, and 𝐿3. And to depict bubbles, we also partition the input batch into three microbatches 𝐵1, 𝐵2, and
𝐵3.

With the above formulation, the problem becomes mini-
mizing the maximum 𝐹𝑖 +𝐺𝑖 over all pipeline groups:

min
𝐿1,𝐿2,...,𝐿𝑃

{ 𝑃max
𝑖=1

𝐹𝑖 +
𝑃max
𝑖=1

𝐺𝑖 } (1)

Each microbatch might need to spend some time waiting
for its input from the previous or subsequent pipeline group
to become ready. We use 𝐵𝑚 to represent the time spent
waiting for the input to layer 𝐿𝑖1 of microbatch𝑚 to be ready
for pipeline group 𝑖 during forwarding (we use the letter B
because it represents the "Bubble" in the calculation). For
backward, we similarly define 𝐵𝑚 .
We can now express 𝐹 with 𝐵 and 𝑓 with the minimal

gradient update time safely ignored:

𝐹𝑖 =

𝑀∑︁
𝑚=1

𝐵𝑖𝑚 +𝑀
∑︁
𝑙∈𝐿𝑖

𝑓𝑙 (2)

We have a recursive relationship for the bubble:

𝐵𝑖𝑚 = max {0,𝑚
∑︁

𝑙∈𝐿𝑖−1

𝑓𝑙 +
𝑚∑︁
𝑗=1

𝐵𝑖−1
𝑗 − (𝑚 − 1)

∑︁
𝑙∈𝐿𝑖

𝑓𝑙 −
𝑚−1∑︁
𝑗=1

𝐵𝑖𝑗 }

(3)
and

𝐵1
1 = 0 (4)

The calculation of the backward time 𝐺 is similar:

𝐺𝑖 =

𝑀∑︁
𝑚=1

𝐵𝑖𝑚 +𝑀
∑︁
𝑙∈𝐿𝑖

𝑔𝑙 (5)

where

𝐵𝑖𝑚 = max {0,𝑚
∑︁
𝑙∈𝐿𝑖+1

𝑔𝑙 +
𝑚∑︁
𝑗=1

𝐵𝑖+1𝑗 − (𝑚 − 1)
∑︁
𝑙∈𝐿𝑖

𝑔𝑙 −
𝑚−1∑︁
𝑗=1

𝐵𝑖𝑗 }

(6)
and

𝐵𝑃
1 = 0 (7)

With the above relations, we can calculate the time per
training iteration for a given partition. In our implementa-
tion, we do "test training" of the network on a single GPU
for a few iterations and record the timing of the forward and
backward steps for each layer. We then search through all
the possible partitions, given the number of GPU’s / pipeline
stages and the number of microbatches per minibatch. We
then use the fastest possible partition.
Doing preliminary test training is necessary, as real life

neural networks can have vastly different runtimes for each
individual layer. In the context of MPC, this heterogeneity
is even more extreme. For example, counter-intuitively, the
forward calculation of the ReLU layer takes up the bulk of
the time, as the underlying algorithm requires significant
coordination between parties.

The partitioning can also be optimized for memory usage.
This is easily solved using dynamic programming. How-
ever, this might lead to the pipelined algorithm showing no
speedup, as layers with little memory usage such as ReLU



Multi-GPU for Piranha,
a Multiparty Computation Framework

may incur significant inter-party communication and run-
time costs. It would be better to consider both when selecting
the partitions.

3.4 Implementation Details
3.4.1 Inter-GPU communication. In the view of the control-
ling machine, or host, the GPU’s are attached PCIe peripheral
devices. By default, transfer between host and devices goes
through the PCIe channel, so inter-device communication
actually requires the host to relay the data (DMA is used for
most occasions, so fortunately no CPU cycles are wasted).
For newer models of NVIDIA GPU’s, however, it is possible
to add separate physical connections between GPU’s, called
NVLinks, and configure the communication to go through
the GPU’s directly, bypassing the host completely.
CUDA provides a inter-GPU memory transfer primitive

cudaMemcpypeer and cudaMemcpypeerAsync. CUDA can au-
tomatically detect the capabilities and topology of devices,
using NVLink when possible, defaulting back to PCIe when
NVLink is not available. More recent versions of CUDA
also provide Unified Virtual Addressing (UVA), allowing
addresses on hosts and different GPU’s to share a single
memory space, storing the memory location information
into the pointer itself. When UVA is enabled, we can use the
ordinary cudaMemcpy to transfer data between devices. For
our purposes of modifying Piranha, this approach has signif-
icant benefit: the current codebase heavily utilizes thrust
and cutlass, and these libraries do not contain facilities
for specifying which device the code is executing on. Using
UVA allows us to lessen the code change needed to support
inter-device communication, reducing the engineering effort.

3.4.2 Inter-GPU Synchronization. Synchronization is very
important when dealing with multiple independent flows
of execution. These flows include multiple parties, multiple
host threads for each pipeline stage, and one or more devices
for each pipeline stage. We want to make sure the depen-
dent input is ready before commencing further microbatches.
However, we also want to fully utilize the GPU’s computa-
tional resources. CUDA GPU’s have dedicated copy engines
for memory transfer, independent of computation by the
streaming multiprocessors. That is, we want the memory
transfer and computation to happen concurrently.

As mentioned before, each party runs on a host with mul-
tiple GPU’s and each pipeline group is controlled by a host
thread. For eachmicrobatch, the operators are enqueued onto
the GPU, and executed synchronously relative to the device.
After each microbatch is finished, the host thread synchro-
nizes with the device, and invokes cudaMemcpypeerAsync as
a different stream. This is necessary, otherwise the memory
transfer would block the execution of the next batch.

The next pipeline group needs to be notified when the
memory transfer is complete. Simply synchronizing on the
memory transfer stream would not work, as this would re-
quire the command be invoked after the start of the memory
transfer, the precise timing of which would be difficult for an-
other thread to know. Instead, we use cudaLaunchHostFunc,
to enqueue a host function into the CUDA stream to be
executed after the completion of the memcpy. The host func-
tion will then notify a mutex-protected conditional variable
in the following pipeline group, starting its microbatch. A
counter in used to differentiate the memcpy of different mi-
crobatches.
We also fixed two subtle issues with the original code re-

garding synchronization and parallelism. First is the use of
cudaThreadSynchronize. Despite its name, this primitive
synchronizes all the operations on the device. This depre-
cated function is scattered throughout the GPU kernels in the
codebase, sometimes causing the memory copy to be sequen-
tial regarding the computation. As all kernel executions on
the same stream are sequential, device level synchronization
is not needed.
Another issue is the "Default stream" synchronization

behavior[7]. By default, the default stream would exhibit
"legacy behavior". This would allow it to block relative to
other non-blocking streams. We changed the setting to "per-
thread" behavior, making different streams truly independent
of each other.

4 TENSOR PARALLELISM
Tensor parallelism is distributing thework of primitive tensor
operations, for example matrix multiplication, over multiple
GPU’s. Many operations are easily parallelized, and in fact
many operations even have multiple ways to divide up the
work. For matrix multiplication𝐴𝐵 = 𝐶 , we have three ways
of partitioning the work:

(1) We can divide along the first dimension of 𝐴, with[
𝐴1 𝐴2

]
𝐵 =

[
𝐴1𝐵 𝐴2𝐵

]
.

(2) Due to the symmetry of the problem, we can also
divide along the second dimension of 𝐵, with

𝐴

[
𝐵1
𝐵2

]
=

[
𝐴𝐵1
𝐴𝐵2

]
.

(3) And we can also divide by the second dimension of𝐴
and the first dimension of 𝐵 simultaneously, having[

𝐴1
𝐴2

] [
𝐵1 𝐵2

]
= 𝐴1𝐵1 +𝐴2𝐵2 .

Additionally, all the division schemes above can also be com-
bined and mixed recursively.
The main challenge in achieving efficient multi-GPU co-

ordination is cutting down the cost incurred by inter-GPU



Yibai Meng, Shuxian Wang, and Alex Schedel

communication. All the aforementioned schemes require
duplicating matrices or sending parts of matrices across dif-
ferent devices before and after the operations. Ideally, the
memory copy of these operations should involve a contin-
uous range for minimum communication cost, while the
part of memory being transmitted depends on whether the
matrices involved are stored in column-major or row-major
order. For example, dividing 𝐴 along the row dimension
if 𝐴 itself is written in row-major order requires copying
scattered memory between devices. Dividing and copying a
row-major matrix 𝐵 along the column-dimension, however,
only requires a single continuous memory copy command.
Accounting for how the matrix is stored in memory, we can
choose the division strategy based on the memory layout
scheme of 𝐴 and 𝐵. Specifically, we have the following table
for choosing the optimal strategy:

𝐴 is column major 𝐵 is column major Strategy
T T (1)
T F (1) or (2)
F T (2)
F F (3)

5 INTER-PARTY COMMUNICATION
OPTIMIZATION

As we can see from Fig 3, a significant portion of Piranha’s
runtime is spent on sending and receiving data from other
parties, making it a priority for us to optimize. Piranha does
the following to transmit and receive data across parties:
func transmit(size) {

hostBuffer = malloc(size);
cudaMemcpyDeviceToHost(deviceBuffer,

hostBuffer);
socketSend(hostbuffer);
free(hostBuffer);

}
func recv(size) {

hostBuffer = malloc(size);
socketRecv(hostbuffer);
cudaMemcpyHostToDevice(hostBuffer,

deviceBuffer);
free(hostBuffer);

}

This implementation has two inefficiencies: first, malloc
is frequently called to temporarily allocate a host size buffer
which are then immediately reclaimed. In our tests, the me-
dian size of a transmission is around 1 MiB and thousands of
transfers are made every iteration. Since the buffers are used
for transitory storage anyways and data are transmitted to
each socket sequentially, we can pre-allocate a shared buffer,
and use that instead of allocating every time transmit and
recv are called.

Pageable Data Transfer Pinned Data Transfer

Device

DRAM

Host

Device

Host

Pinned 
Memory

DRAM

Paged 
Memory

Pinned 
Memory

Figure 3: A comparison for host to device data transfer
onGPU, between pagablememory and pinnedmemory

Another inefficiency is the use of pageable memory during
host to device transfers. All user space memory is paged
memory. Virtual memory, specific to each process, is trans-
lated to physical memory on the fly during memory access.
Each page may be moved anywhere in physical memory
at any time, even to disk. This causes no issue to the host,
as the address translation happens under the hood by the
MMU. Even if the page is moved to disk, a page fault would
be raised and the page promptly be copied back to memory.
However, this causes issues when direct memory access

(DMA) is involved. CUDA uses DMA to transfer memory
between host and device. Considering the fact that pageable
data may change its physical location at any time, and that
the DMA controller is oblivious to activity on the CPU, it
is not advisable to conduct a DMA transfer on pageable
memory.

To solve this issue, CUDA uses pinned memory (also called
page-locked memory). Pinned memory is memory that can-
not be paged in or out. That is, it cannot be temporarily
moved to disk. With this constraint, it is safe for the CUDA
DMA driver to assume that the memory location will re-
main unchanged throughout the memory transfer process.
For each memory transfer, CUDA first allocates a temporary
pinned host array, copies the host data to the pinned array,
and then transfers the data from the pinned array to device
memory. This process is shown in Figure 3[3].
Given CUDA’s memcpy procedure, we can use pinned

memory to speedup our procedure. We modified our host
buffer to use pinned memory, and pre-allocate the buffer
at once during initialization. We also modified the transfer
logic to do host-device transfers and socket send receives
iteratively, so that we do not need to allocate our buffer to be
as large as the largest message, which could go into the GiB
rage given the batch-size and network structure. We have
seen significant speedup from this relatively simple change.



Multi-GPU for Piranha,
a Multiparty Computation Framework

6 RESULTS
Apart from the experiments for tensor parallelism, we con-
ducted our evaluations on a 8-GPU server, with NVIDIA RTX
A5000s, and 256 GiB of host memory. Due to our limited GPU
resources, all the multi-party computation was conducted
on the same machine with inter-party communication going
over localhost. All the measurements do not consider the
time for initialization, loading of training data and labels, as
well as evaluation on the test set. GPU resources are quite
expensive, therefore due to the limited time we had access
to the machine, we did not conduct end-to-end training, in-
stead opting to benchmark the behavior over 5 iterations.
Our metric of success here would be faster training time, and
lower memory consumption per GPU.

6.1 Inter Party Communication
Asmentioned in Section 5, wemodified Piranha to use pinned
memory during interparty communication. As shown in Fig-
ure 4, using pre-allocated pinned memory has a significant
effect on larger neural networks like VGG. For smaller net-
works the effects are more limited, but still noticeable. We
can see that computation time did not change in a significant
way, as expected.

The method of mallocing and freeing pinned memory
during each send and receive is not very efficient. This is
expected, as pinned memory allocation takes more effort
than a simple malloc: pinned memory allocation need to set
a whole page as pinned, while malloc does not care about
page boundaries.
There’s also a question of the amount of memory to pre-

allocate, or the cache size. A larger cache allow the procedure
to conclude in one iteration, calling memcpy and socket send
/ recv only once. Too small of a cache would result in too
many iterations. However, it is not the case that larger caches
always result in better outcomes. As we can see in Fig 5, a
"sweet spot" is around 5MiB. As TCP packets are only tens of
kilobytes, and the host network throughput is significantly
lower than that of the GPU memory bus, making the cache
larger is not very meaningful. For all our experiments on
parallelism, we use pre-allocated pinned memory as a buffer,
and set the cache size to 5 MiB.

6.2 Model Parallelism
Theoretically, pipelined model parallelism could show a sig-
nificant increase in training and inference speed. Based on
the per layer execution times of the baseline single GPU two
party training for a 4-GPU pipeline and 2 microbatches per
pipeline, the results in Section 3.3 indicate that we can see
a 50% speedup (splitting at the second, seventh and eigh-
teenth layer). However, our experimental results are some-
what underwhelming, as seen in Table 1. Here we can see

M
al
lo
c
Pa
ge
ab
le

Ca
ch
ed

Pi
nn

ed

M
al
lo
c
Pi
nn

ed

M
al
lo
c
Pa
ge
ab
le

Ca
ch
ed

Pi
nn

ed

M
al
lo
c
Pi
nn

ed

M
al
lo
c
Pa
ge
ab
le

Ca
ch
ed

Pi
nn

ed

M
al
lo
c
Pi
nn

ed

N
or
m
al
iz
ed

Tr
ai
ni
ng

Ti
m
e

Communication Time Computation Time

VGG16-CIFAR10 AlexNet-CIFAR10 LeNet-MNIST

Figure 4: Comparison of host buffer and allocation
method used during inter-party communication. Tim-
ing are normalized relative to the baseline (malloc page-
able). All uses two party protocol (SecureML), single
GPU with batch size 128.

some speedup for pipeline model parallel, for big network
like VGG16. For smaller networks like AlexNet and LeNet,
pipelining in fact makes it slower.
It’s important to note that the baseline is a modified ver-

sion of the original Piranha, only changing the inter-party
communication buffer to pinned memory, with everything
else remaining unchanged. For VGG, all the pipelined modes
outperform the original version.
We have some thoughts on why this might be the case.

Fig 6 contains side-by-side comparison of an example of
non-pipelined and pipelined training. We can see that the
pipelining is successful, as work on different GPUs are exe-
cuting concurrently. If we zoom in, we can see GPU compu-
tation kernels executing alongside each other. However, for
the pipelined run, the execution times of the subgroups are
noticeably longer than the corresponding groups in the se-
quential run. We compared the per GPU timing information,
as shown in Table 2. Although both the computation and



Yibai Meng, Shuxian Wang, and Alex Schedel

Neural Network Parallelism Mode Batch Size
Micro-
batch
Size

GPU’s
per party

Training
Time
(5 Iters)

Speedup Inter-Party
Comm. Time*/ s

Max Mem
/ MiB

VGG16-CIFAR10 None 128 - 1 39.83 1.00 25.13 4830.16
VGG16-CIFAR10 Sequential 128 - 4 40.30 0.99 23.54 3998.01
VGG16-CIFAR10 Pipelined 128 64 4 35.97 1.11 27.71 2134.01
VGG16-CIFAR10 Pipelined 128 32 4 44.39 0.90 58.92 1202.01
VGG16-CIFAR10 None 256 - 1 66.00 1.00 30.53 9660.32
VGG16-CIFAR10 Sequential 256 - 4 66.14 1.00 30.47 7996.01
VGG16-CIFAR10 Pipelined 256 128 4 59.40 1.11 49.06 4268.01
VGG16-CIFAR10 Pipelined 256 64 4 64.38 1.03 53.24 2404.01
AlexNet-CIFAR10 None 128 - 4 5.23 1.00 1.90 157.16
AlexNet-CIFAR10 Pipelined 128 64 4 6.30 0.83 3.59 74.89
LeNet-MNIST None 256 - 4 4.52 1.00 1.15 428.72
LeNet-MNIST Pipelined 256 128 4 4.05 1.12 1.45 232.03

Table 1: Experimental results on some neural networks. All are two-party computation with communications are
over localhost. *For pipelined model parallelism, the inter-party communication times are the "sum" of the time spent doing
interparty communication times in each pipeline group / GPU. As each pipeline group thread progresses independently, there
are overlaps between their communications. Therefore, some of the sums are greater than the total training time.

10−1 100 101 102 103

50

100

150

Pre-Allocated Pinned Buffer Size / MiB

In
te
r-
Pa
rt
y
Co

m
m
un

ic
at
io
n
Ti
m
e
/s

Figure 5: The relationship between time spent in inter-
party communication and pre-allocated pinned buffer
size. VGG16-CIFAR10, two party protocol (SecureML),
single GPU with batch size 128.

communication time are longer than that of the sequential
run, the gap in communication time is bigger.
We know the bottleneck isn’t GPU-host communication

or inter-GPU communication. Both of these operations are
lumped together by the profiler, and they occupied 4.80 s and
4.14s for the pipelined and non-pipelined version, respec-
tively, less than one tenths of the total time. Further more,
looking at the log, we can see the inter-GPU communication

are being conducted in concurrently relative to themain GPU
stream. We also know that the computation kernels them-
selves aren’t a bottleneck, as they take only 4.927s and 5.219s
for the pipelined and non-pipelined version, respectively.

We believe the most likely reason is that the PCIe became
saturated due to socket traffic. For the above example, more
than 60 GiB of data are transmitted and received in under one
minute, with the peak throughput on the order of 20 Gbps.
Although this is significantly lower than the bandwidth of
the GPU’s PCIe channels, it still puts a strain on other parts
of the system, as the inter-party data goes through a TCP/IP
connection, and then goes through OS internal systems to
reach the other localhost IP. The fact that networking condi-
tions significantly affect training speed is also noted in the
original piranha paper. Therefore, it might be beneficial for
us to conduct tests in more realistic networking situations,
such as in intra-datacenter LAN or WAN conditions.

Although our implementation of pipeline parallelism isn’t
able to notably increase overall speed, we are able to signifi-
cantly decrease memory consumption. As shown in Table
1, the pipelined versions have smaller maximum memory
consumption, enabling us to train larger neural networks
without requiring larger GPUs. In fact, the 512 batch sized
VGG16-CIFAR10 can only be training using pipeline parallel,
as the single GPU version would go OOM.

6.3 Tensor Level Parallelism
The speedup gained from the tensor-level parallelism de-
pends strongly on the specific hardware configuration. Par-
ticularly, the ratio between the inter-device data throughput



Multi-GPU for Piranha,
a Multiparty Computation Framework

(a) Sequential model parallelism

(b) Pipelined model parallelism

Figure 6: These are the GPU activities profiled by Nsight Systems. They represent one iteration during the training
of VGG-CIFAR10 using two party computation. Only one party is shown, as the progression of two parties are
identical. Each party uses 4 GPUs. The batch size is 256. a) is parallelized sequentially, while b) is pipelined, with a
microbatch size of 128. The horizontal timescale of these two lines are identical.

Total Time Inter-party Communication Intra-GPU Computation
Pipelined Sequential Pipelined Sequential Pipe / Seq Pipelined Sequential Pipe / Seq

GPU0 20.73 16.96 14.84 11.91 1.25 5.90 5.05 1.17
GPU1 24.70 16.73 17.78 11.32 1.57 6.92 5.41 1.28
GPU2 27.38 17.75 17.95 11.18 1.61 9.44 6.57 1.44
GPU3 20.82 12.53 12.25 7.10 1.73 8.57 5.43 1.58

Table 2: Per GPU timing comparison for the run shown in Fig 6. All time in seconds. Communication time includes
both socket send/recv and GPU host device communication.

and that of the on GPU tensor operation is the most impor-
tant factor. Lower ratios imply negligible communication
cost and thus enables more effective parallelism. The type of
inter-device connectivity greatly influences the data transfer
speed. NVLink and NVSwitch provides high bandwidth peer-
to-peer connections, while PCIe setups have more limited
bandwidth, and simultaneous transmission might contend
with each other. For NVLink setups, we can see a positive
speedup scaling with the number of GPU’s as shown in Fig-
ure 7, especially when the dimension of the matrices are
large enough.
Also, as shown in Figure 8, we profiled the GPU activity

during multi-GPU matrix multiplication of two contract-
ing setups. For a NVLink-connected setup in 8a, the pro-
filing diagram indeed shows a concurrent run of memory
transmission and operator execution, resulting in a shorter
total execution time. However, for setups with limited inter-
connectivity but fast processing power as in 8b, the cost of
memory transmission will impose a severe slowdown when
running tensor-level parallel algorithms. And the situation

is worsen by the fact that PCIe-connected GPUs usually
shares a global bandwidth, resulting in sequential memory
transmissions and much worse performance.
Even though we can achieve speedups for large size of

operands, our implementation does not perform well for
the smaller matrices more commonly found in typical train-
ing and inference workload. Hence the tensor parallelism is
not integrated into pipeline parallelism, and is not activated
during model training.

7 RELATEDWORK
Secure Multi Party Computation: Secure multi party compu-
tation provides privacy-preserving approaches to machine
learning. There’s a vast library of works on this topic, consid-
ering multiple factors, such as the number of parties involved
and the percentage of dishonest participants allowed. There
are frameworks intended for general secure multiparty pro-
tocol development, such as [2] and [8]. Piranha [10], the
work we are trying to improve on, is one of the first general



Yibai Meng, Shuxian Wang, and Alex Schedel

103 104 105
0.6

0.8

1

1.2

1.4

Matrix dimension

Sp
ee
du

p

2 GPUs
3 GPUs

1 GPU (baseline)

Figure 7: Matrix multiplication benchmark result. Test
performed on a system with three Tesla V100-SXM2
32GB, with NVLink interconnection (50GB/s of P2P
bandwidth)

(a) Matrix multiplication profile for NVLink setup

(b) Matrix multiplication profile for PCIe setup

Figure 8: GPU activities of matrix multiplication pro-
filed by Nsight Systems. The first setup has three
NVLink-connected Tesla V100. Here the red blocks
represent memory transmission through NVLink, the
green blocks represent memory transmission through
PCIe, and the blue blocks represents single-device ma-
trix multiplication.

purpose secure multiparty computation framework that ef-
fectively leverages GPU. However, we are not aware of any
framework leveraging multiple GPUs for improved perfor-
mance.
Multi-GPU parallelism: The idea of using multiple GPUs

for neural network training, and computation in general is
well known. Frameworks such as PyTorch implements vari-
ous data parallel and model parallel strategies. For pipeline
parallelism, PyTorch implements the methods shown in [4]
and [5]. Pipeline parallelism can also be done asynchronously,
as shown in [6]. [11] explores advanced methods to make

pipeline parallelism more effective. PyTorch and other frame-
works also support tensor parallelism. Model parallel and
data parallel are often used in concert with each other. There
are work o There are also work on utilizing both model
parallelism and data parallelism, such as [9].

8 FUTUREWORK
To further enhance Piranha, and allows for better scaling,
we can use more efficient pipeline parallel algorithms, such
as PipeDream[6]. PipeDream reduces the "bubble" by apply-
ing asynchronous backward updates. That is, each pipeline
group will be alternating between applying forward updates
and backward gradients. In it’s ideal steady state, PipeDream
have no bubbles, achieving 𝑁 fold speedup.

We can also use more efficient and more fine-grained par-
titioning algorithms, like in Alpa[11]. Alpa considers the
whole computation graph during partitioning, instead of
confining to layers. In the context of piranha, it means the
objects being partitioned areMPC functions andMPC Shares,
instead of neural network layers. Alpa also uses dynamic pro-
gramming during it’s search for the best partition, allowing
it to deal with deeper networks.
As we discussed in Section 6.2, MPC is a communication

bound protocol. As none of the computation take place on
the host, there’s no need for interparty communication to go
through the CPU at all. We could explore using GPU Remote
direct memory access (RDMA), to directly send the device
data through various transport to another party, for example,
using GPUDirect from NVIDIA [1] to directly send data from
GPU to NIC through their shared PCIe root.

The most important future work we believe is to integrate
Piranha into a modern deep learning framework. All the
parallel algorithms and optimization we’ve discussed in this
report have been implemented in deep learning frameworks
such as PyTorch and Tensorflow. Finding a way to integrate
piranha would make it easier to leverage the advances in
multi-GPU parallelism by industry and academia.

9 CONTRIBUTIONS
Yibai implemented pipeline parallelism and inter-party com-
munication optimization and wrote the report. Shuxian im-
plemented tensor parallelism and pipeline parallelism and
wrote the report. Alex wrote the report, report graphics and
testing.

REFERENCES
[1] 2022. GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-

rdma/index.html
[2] Yuanfeng Chen, Gaofeng Huang, Junjie Shi, Xiang Xie, and Yilin Yan.

2020. Rosetta: A Privacy-Preserving Framework Based on TensorFlow.
https://github.com/LatticeX-Foundation/Rosetta.

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/LatticeX-Foundation/Rosetta


Multi-GPU for Piranha,
a Multiparty Computation Framework

[3] Mark Harris. 2012. How to Optimize Data Transfers in CUDA
C/C++. https://developer.nvidia.com/blog/how-optimize-data-
transfers-cuda-cc/

[4] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, and Zhifeng Chen. 2018. GPipe: Efficient
Training of Giant Neural Networks using Pipeline Parallelism. CoRR
abs/1811.06965 (2018). arXiv:1811.06965 http://arxiv.org/abs/1811.
06965

[5] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek,
Boogeon Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020.
torchgpipe: On-the-fly Pipeline Parallelism for Training Giant Models.
(2020). arXiv:2004.09910

[6] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Se-
shadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons,
and Matei Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism
for DNN Training. In Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19).
Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3341301.3359646

[7] NVIDIA. 2022. CUDA Runtime API Stream synchronization behav-
ior. https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-
behavior.html

[8] OpenMined. 2022. PySyft. https://github.com/OpenMined/PySyft.
[9] Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Victor

Zhang, Szymon Migacz, David W. Nellans, and Puneet Gupta. 2019.
Optimizing Multi-GPU Parallelization Strategies for Deep Learning
Training. CoRR abs/1907.13257 (2019). arXiv:1907.13257 http://arxiv.
org/abs/1907.13257

[10] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha:
A GPU Platform for Secure Computation. Cryptology ePrint Archive,
Paper 2022/892. https://eprint.iacr.org/2022/892 https://eprint.iacr.
org/2022/892.

[11] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter-
and Intra-Operator Parallelism for Distributed Deep Learning. CoRR
abs/2201.12023 (2022). arXiv:2201.12023 https://arxiv.org/abs/2201.
12023

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
https://arxiv.org/abs/2004.09910
https://doi.org/10.1145/3341301.3359646
https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
https://github.com/OpenMined/PySyft
https://arxiv.org/abs/1907.13257
http://arxiv.org/abs/1907.13257
http://arxiv.org/abs/1907.13257
https://eprint.iacr.org/2022/892
https://eprint.iacr.org/2022/892
https://eprint.iacr.org/2022/892
https://arxiv.org/abs/2201.12023
https://arxiv.org/abs/2201.12023
https://arxiv.org/abs/2201.12023

	1 Abstract
	2 Introduction and Background
	2.1 Multi-party Communication
	2.2 Piranha
	2.3 Multi-GPU Parallelism
	2.4 Our Approach

	3 Model Parallelism
	3.1 Sequential Model Parallelism
	3.2 Pipeline Parallelism
	3.3 Partition Selection
	3.4 Implementation Details

	4 Tensor Parallelism
	5 Inter-party Communication Optimization
	6 Results
	6.1 Inter Party Communication
	6.2 Model Parallelism
	6.3 Tensor Level Parallelism

	7 Related Work
	8 Future Work
	9 Contributions
	References

