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Abstract
Secure stateful computation in the edge environment is a dif-
ficult problem to solve due to limitations on storage capacity
and compute hardware. With the advent of Internet-of-Things,
the need for confidential computing and secure storage on top
of untrusted hardware is increasing.

In this premise, we present CapsuleDB, a key-value store
for edge devices that provides confidentiality through trusted
execution environments (TEEs). CapsuleDB stores data in
cryptographically hardened containers called DataCapsules,
which allow for maintaining data integrity and provenance
even on top of remote untrusted storage systems. Instead of
porting existing key-value stores into a TEE, we build the
application from scratch, providing several optimizations in
caching, compaction and indexing to overcome the memory
limitations of a TEE. We find that even with all TEE and
cryptographic overheads, CapsuleDB is only 1.9-3.1x slower
than RocksDB, a state-of-the-art unsecure key-value store,
for moderate workload sizes.

1 Introduction

Edge computing is a computing paradigm that involves using
resources at the edge of a network, rather than relying on
centralized resources in data centers (e.g., cloud computing).
The main advantage of edge computing is that it can offer
low latency and high network bandwidth. However, edge
computing is not widely used in practice due to security con-
cerns. Because edge resources are often managed by small
groups, they may not be seen as trustworthy as larger cloud
providers. In addition, the physical security of edge resources
may be more vulnerable to being compromised. These se-
curity concerns have limited the use of edge computing in
practice.

To address this issue, the Global Data Plane (GDP)
project [14] proposed a systematic approach based on trusting
data rather than infrastructure. GDP uses a storage abstraction
called a DataCapsule to securely utilize storage resources at
the edge. A DataCapsule is a cryptographically hardened di-
rected acyclic graph (DAG) of records, similar to a blockchain.
Each record in a DataCapsule is signed and encrypted, includ-
ing the pointers between records, and is addressed by its
hash name. This design ensures the confidentiality, integrity,
and provenance of records written to DataCapsules without
having to trust the underlying infrastructure.

While the Global Data Plane (GDP) and DataCapsule make
it easy and reliable for applications to use edge storage re-
sources, the DataCapsule interface is not user-friendly for

applications. DataCapsules only allow a single writer and
has an append-only interface for writing new records, which
may not be suitable for all types of applications. Additionally,
DataCapsules do not provide any performance optimization
features, such as caching or signature reduction. To address
these limitations, there is a need for storage systems that pro-
vide familiar interfaces or Common Access APIs (CAAPIs),
such as key-value stores and file systems, and incorporate per-
formance optimization features. On top of that, such storage
systems should also be able to securely process data on un-
trusted machines in order to take advantage of edge resources
for computation.

To this end, we present CapsuleDBv2, a key-value store
that can keep input key-values in memory secure from the
untrusted machine it runs on and securely stores data to un-
trusted remote storage. While CapsuleDBv2 achieves the
latter requirement naturally by using DataCapsules for stor-
age back-end, it achieves the former goal through the use
of Trusted Exeuction Environment (TEE). Although Cap-
suleDBv2 mainly targets deployment in edge computing in-
frastructure, it can be used for any case where an application
developer wants to run a key-value store on a cloud machine
without exposing their data to the cloud provider.

The design of CapsuleDBv2 poses several challenges. First,
it has to be designed to show comparable performance with
existing key-value stores while providing strong securiy guar-
antees. To achieve this, CapsuleDBv2 follows the design of
LSM tree-based key-value stores and implements several per-
formance optimizations that take into account the use of TEEs
and DataCapsules. Second, the behavior of CapsuleDBv2
must respect the interfaces provided by DataCapsule. To meet
this requirement, we define the record format and the Data-
Capsule structure for CapsuleDB. In addition, CaspuleDB
supports eventual consistency and a recovery mechanism in
coordination with DataCapsules.

We prototype CapsuleDBv2 using Openenclave and use
the following metrics of success to evaluate it.

1. We compare CapsuleDBv2 with the unsecure state-of-
the-art key-value store, RocksDB in YCSB, and measure
how much slowdown it causes compared to other secure
key-value stores.

2. We test the correctness of the consistency and recovery
mechanism of CapsuleDBv2. We had to manually verify
this part as we could not build a standard multi-user
benchmark to check the consistency guarantees.
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Figure 1: The structure of DataCapsule. The hash of the
metadata uniquely defines a single DataCapsule and works as
hash name.

2 Background and Motivation

2.1 Trusted Execution Environment

A Trusted Execution Environment (TEE) is a secure mem-
ory region that is protected by hardware-based security and
mechanisms used to isolate the secure region [8]. TEEs are
designed to protect sensitive data and code running in an un-
trustworthy environment. The isolated area of the machine’s
memory, known as an enclave, is protected by the proces-
sor, which denies access from everything else, including the
privileged software such as the operating system and hyper-
visor, but the code in enclave. This ensures that the sensitive
code and data running in the TEE are protected from unau-
thorized access or tampering, even if the rest of the system is
compromised.

One downside of using a TEE is the overhead it can in-
troduce. First, TEEs introduce additional context-switching
overhead when the control flow switches between enclave
code and host code. The context switching into enclave code
requires security check for access control, and the switch-
ing out of enclave requires the flush of cache and TLB in
order to maintain the isolation of the enclave memory. Ad-
ditionally, the limited size of enclave memory (e.g. 128 MB
on Intel SGX) can be a constraint. Although most vendors
support the paging of enclave memory to make it possible
for applications to use more memory, though this introduces
additional overhead as the paged memory must be encrypted
and check-summed for security.

2.2 DataCapsule

DataCapsule is a secure storage platform that uses crypto-
graphic techniques to protect data stored on the platform. It
is designed for use in untrustworthy infrastructure, where
the confidentiality, integrity, and provenance of data must
be ensured without relying on the underlying infrastructure.
A DataCapsule is a directed acyclic graph (DAG) of Data-
Capsule records that are encrypted and signed by the writer
and use hash pointers to link to each other, as shown in fig-
ure 1. The true potential of DataCapsules are realized with
a routing infrastructure, which allows DataCapsules to be
accessed using their hash names without knowing their exact

location. With such an infrastructure, DataCapsule can be
shared, replicated and migrated across multiple nodes very
flexibly.

One problem with DataCapsules is the intentionally lim-
ited interface in order to make the consistency simple and to
provide flexibility. DataCapsules allow append-only access
for writing and record-level access. This means that a storage
system must be built on top of DataCapsules to provide a
more familiar interface for applications.

2.3 LSM Tree-based Key-value Store

The idea of Log-structured Merge Trees (LSM Trees) was
introduced by O’Neil et al. in [16] as a data structure for
fast key-value pair writes and lookups. A simple LSM Tree
consists of two components: a fixed size Memtable located
in volatile memory and disk-stored collection of sorted string
tables (SSTables). When a key-value pair is written to an LSM
tree, the write goes to the Memtable. When a Memtable fills
up, its contents are marked immutable and the keys are sorted
to create an SSTable. The generated SSTable is flushed to
disk. This process is called Minor Compaction. Periodically,
a background thread combines multiple SSTables together
to remove redundant keys. This process is known as Major
Compaction. Google uses the LSM tree as the basis for
LevelDB and BigTable [5].

Facebook introduced RocksDB [10] with leveled com-
paction. In RocksDB, SSTables are organized into multiple
levels with increasing sizes. The first level (L0) remains the
same as before, whereas, L1 and above contain SSTables with
non-overlapping sorted key ranges such that a given key can
only exist in one SSTable per level. If layer Li is filled, one of
the SSTables is selected for eviction. The chosen SSTable is
combined with SSTables containing overlapping key ranges
in layer Li+1. In this way, old key-value pairs trickle down
the layers, reducing the tail latency of reads.

3 Design

CapsuleDB is an LSM tree-based key-value store that uses a
Trusted Execution Environment (TEE) for secure computa-
tion and DataCapsules for secure remote storage. CapsuleDB
guarantees the confidentiality and integrity of data even in
untrustworthy environments. Additionally, the use of Dat-
aCapsules for storage allows for the persistent state of the
database to be location-independent, replicated, and migrated
easily. Designed for use with edge resources, CapsuleDB
is also suitable for any scenario where strong privacy and
remote computation are jointly required.

3.1 Overall Architecture

The figure 2 shows the overall architecture and components
of CapsuleDB. CapsuleDB is designed for remote users and
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Figure 2: The overall architecture of CapsuleDB

remote storage while supporting eventual consistency for re-
mote clients (3.7). We refer to the machine on which the Cap-
suleDB’s key-value store management program runs as the
computation server. Machines that store DataCaspules and
provide the DataCapsule interface are DataCapsule servers.
The black arrows between the components represent the com-
munication through the network which has the capability to
route DataCapsule.

The computation server is responsible for maintaining in-
memory states required for LSM-tree structure and serving
key-value store queries from the clients (e.g., Get(), Put())
within the enclave. CapsuleDB assumes that there is secure
communication channel between the clients and the compu-
tation server, or that the input key-values are properly en-
crypted and check-summed. Similar to other LSM tree-based
database, the computation server first buffers key-value pairs
in a Put() query into Memtables and flushes(3.6) to a persis-
tent table (3.4) when a MemTable becomes full. The flush
thread wraps the table in a DataCapsule record and sends it
to the DataCapsule servers. The server maintains the hash
of newly created records in the LSM-tree index, categorizing
each record by the level it belongs to.

A Get() query is first served from the MemTables. If the
query is not found in the MemTables, the server searches
through the LSM-tree index to find the target record, which
contains the queried key-value. The index contains a bloom
filter and the keys of each record for efficient search (3.4). If
the target record is found in the enclave’s record cache (3.5),
where recently fetched records are cached, the query is served
promptly. Otherwise, the computation server sends a record
fetch request to the DataCapsule server and then serves the
query.
Threat Model. CapsuleDB assumes two different threat mod-
els depending on the type of server. For computation servers,
the "cloud/edge attacker" model [6] is assumed, where the at-

tacker has full control over the system software but is not able
to compromise the processor’s TEE. For DataCapsule servers,
the "untrusted utility provider" [14] model is assumed. The
owner of the DataCapsule servers is responsible for provid-
ing DataCapsule services but may still attempt to access the
data stored in DataCapsules. CapsuleDB does not guarantee
defense against availability attacks or side-channel attacks,
inline with existing works. One may replicate DataCapsules
over servers with different owners to guarantee high avail-
ability, but this is not considered in CapsuleDB’s security
guarantees.

3.2 DataCapsule Server

A single DataCapsule server is responsible for managing one
DataCapsule instance of CapsuleDB. A DataCapsule may
be replicated over different servers. In the case of replica-
tion, the servers are collectively referred to as DataCapsule
servers, and each server is responsible for managing consis-
tency between replicas. This job is relatively simple because
DataCapsules are CRDTs [13, 14].

The primary job of DataCapsule servers is to store and fetch
records in the DataCapsule requested from the computation
server. If there are multiple replicas, the computation server
simply sends a write request to every server and uses the result
of a read request coming from any server. Upon receiving a
new write request, each server verifies its signature to check
if the record is sent from the writer of the DataCapsule. The
record is encrypted by the writer (computation server). After
verification, each server stores the record in its local storage
as is and updates the storage index with the hash name. The
records sent from the computation server form a Data chain or
Meta chain depending on the type of the record (see 3.4). For
a read request, each server simply looks up its storage index
with the hash name and returns the record to the computation
server. It is the computation server’s responsibility to check
if the hash of the returned record matches the hash name.

In addition, DataCapsule servers manage a write-ahead log
of CapsuleDB. CapsuleDB assumes the clients (applications)
do write-ahead logging before sending a query to the com-
putation server. With this coordination with the clients, the
computation server can be recovered when crashes happen.
The write-ahead logs are maintained in a separate chain per
client called WAL chain.

Besides, we expect DataCapsule servers to provide one
more service to CapsuleDB: a freshness service. The fresh-
ness service returns the sources (the latest records of each
branch) in DataCapsule DAG. This service is needed for
CapsuleDB to recover its state after a normal shutdown or
crash (discussed in 3.8). However, the freshness service can
be used as a means of replay attack because our threat model
assumes a DataCapsule server may act maliciously. To solve
this issue, we replicate the DataCapsule over 3 f +1 servers
and use a Byzantine quorum among the replicas in generat-
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Figure 3: DataCapsule record format in CapsuleDB

ing the result of freshness service under the assumption that
there are at most f malicious DataCapsule servers. Note that
replay attacks are not possible while CapsuleDB is operating
normally as it knows what the latest records are.

3.3 Switchless Call

CapsuleDB is designed to minimize the overhead of switching
between enclave and host functions in the computation server.
To facilitate this, CapsuleDB uses a switchless design. En-
clave functions can indirectly invoke host functions through
a communication buffer, and vice versa, instead of calling
ecalls and ocalls directly. CapsuleDB uses separate worker
threads for the enclave and host functions to serve indirect in-
vocations. When a caller wants to initiate an indirect call, they
put the function name and arguments into the communication
buffer. The worker threads poll the buffer to see if it has been
filled. When a request is found, the worker thread invokes
the requested function in its thread context. The result of the
function is returned through the communication buffer.

3.4 Table and Record Format

CapsuleDB has a table format that is based on SSTable [5].
A table in CapsuleDB includes four blocks: a data block, an
index block, a bloom filter block, and a Merkle tree block.
The data block stores all of the key-value pairs flushed from
the MemTable. The index block contains an index for binary
search; an array of (key, offset in data block) pairs that are
sorted by key is stored. The bloom filter block is a bloom
filter used to filter out most false positives. The Merkle tree
block contains a Merkle tree whose leaves are the key-value
pairs in the data block. The Merkle tree is used to verify the
integrity of the key-value pairs when a table is moved from
host memory to enclave memory.

Although the four blocks conceptually belong to a single
table, CapsuleDB separates them into two separate records:
a DataRecord for the data block, and a MetaRecord for the
other blocks. This is useful when the key distribution is

1-21 3 1-4 5-65 7 5-8 9

Last Logical Timestamp pointers

Path followed by a Read request
Flushed records

Figure 4: Eager Compaction when c = 2, d = 2

highly skewed and some records in the working set do not
have any keys. The index and bloom filter blocks can be used
to check whether a queried key exists in the current set of
records. This removes the need to load irrelevant data blocks
from the DataCapsule server into memory. By storing the
DataRecord and MetaRecord in different hash chains (Data
chain, Meta chain), the computation server can avoid loading
the DataRecord unless absolutely necessary.

Figure 3 shows DataCapsule record format used in Cap-
suleDB. The payload of a record is the encrypted data of either
the data block of the table or the other three blocks depending
on the record type. Each record has a record header and the
hash of the header which uniquely identifies a single record
(i.e., the hash name). Finally, it contains a cryptographic sig-
nature forged from the header hash and CapsuleDB’s writer
key. The signature proves the CapsuleDB’s identity to Dat-
aCapsule servers and guarantees the integrity of the whole
record. The header includes the following fields: the hash
of the payload, the timestamp it is created, the hash pointers
to the previous records, and the type of the record. In our
prototype, each record only has a hash pointer to the most
recently written record in the same chain.

3.5 Enclave Caching

Since a DataCapsule record contains encrypted data and is
sent from unreliable storage and the network, its contents and
signature need to be decrypted and verified in the enclave.
The verification causes the latency of a single read involving
record fetching to be very high. Fortunately, the records
are accessed in the reverse order of flushing time (i.e., the
latest one is accessed first). Real-life workloads have a high
degree of locality; recently written keys will be accessed more
often than the older keys, and keys written together tend to
be accessed around the same time. Therefore, the cost of
the record fetching can be reduced by caching it. Concretely,
CapsuleDB maintains an in-enclave cache of the recently
fetched records. The enclave cache has a fixed number of
slots and stores an entire record that is decrypted and verified
in the enclave in each slot. It follows Least-Recently-Used
(LRU) for cache eviction policy.
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3.6 Eager Compaction

The process of compaction is essential to reduce the num-
ber of records searched for a key. Implementing Leveled
Compaction like RocksDB is difficult in CapsuleDB for three
reasons. (1) Reading older records separately for compaction
means more network bandwidth usage. (2) Enclaves can-
not efficiently handle multiple threads, especially if they are
pinned to the same physical core. Hence, the compaction
and main read-write procedures need to be multiplexed onto
the same thread, causing unnecessary long blocks in reads
and writes. (3) Since Leveled Compaction compacts older
records, reading in older records will evict recent hot records
from the cache.

Not compacting Memtables at all may lead to very long tail
latency in Read requests. To mitigate this problem, we intro-
duce Eager Compaction. CapsuleDB periodically combines a
few recently flushed records with the next record to be flushed.
Eager Compaction has two parameters: skip-length, c, and
max-height, d. For every ci-th (i ∈ {1,2, ...,d}) record to be
flushed, the last (ci−1) flushed records are combined with
it. The MetaRecord corresponding to each compacted record
contains a pointer (last_logical_timestamp) to the (ci−2)th

record before it. While searching for a key, the previous
(ci−1) can be skipped as all their information is effectively
stored in the new compacted record. The entries for these
records in both the index and the cache can be purged.

Eager compaction reduces the number of records to be
searched by a factor O(cd) and only requires O(d log(c))
more comparisons per record during binary searching for
a key.

Algorithm 2 describes the full flushing process with syn-
chronization (Section 3.7).

3.7 Consistency and Synchronization

CapsuleDB provides an eventual consistency guarantee. Al-
though a network adversary might partition the network for
brief periods of time, we work with the assumption that the
network behind the multicast provides ordered and eventual
delivery. We also assume that CapsuleDB knows a unique
identifier endowed with a total ordering for all of its writers.

Writing to CapsuleDB involves two stages:

• First, the writers send the write request to the DataCap-
sule server, where writes form separate hash-chains for
each writer. This acts as Write-ahead logging (WAL) for
CapsuleDB.

• After the first step successfully completes, the same write
request is sent to the computation server, which accepts
or rejects the writes based on a lossy vector clock (Sec-
tion 3.7.1) which the writer presents in each write re-
quest.

These two steps can be unified by broadcasting the write re-
quest over a multicast tree, but then the client should make
sure that writes to DataCapsule servers always pass, or have
DataCapsule servers call back to the computation servers
with confirmation. As there can be arbitrary network delay
between the first and the second steps, the computation server
periodically synchronizes between the DataCapsule servers
and itself (Section 3.7.2). It is important to note that the syn-
chronization procedure described below is different from the
Sync Report based synchronization used in CapsuleDBv1.
In this design, writes are not blocked, although they can be
rejected. Also, the need for an explicit Sync Report to be
flushed is eliminated. Instead of CapsuleDB globally instruct-
ing all clients to stop writing, it now informs the clients of
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potential conflicts and leaves it up to them to decide whether
to coordinate with each other or not.

3.7.1 Lossy Vector Clock

The state of a client ci is given by a Vector Clock, Vi =
{(c1, t1),(c2, t2), ...}, where the tuple (c j, t j) denotes that
client ci interacted with client c j at timestamp t j. We also
use the notation Vi.c j for t j. For i ̸= j, t j is incremented
by one each time ci exchanges message with c j. Client ci’s
own timestamp ti is incremented when it sends a message to
CapsuleDB.

However, to reduce the memory and bandwidth overhead
of using the Vector Clock with every message, a client only
retains the timestamp of a few other clients besides itself. This
idea is borrowed from the design of Dynamo [9]. A client
is free to choose which other clients’ timestamps it wants to
retain, defaulting to retaining the timestamps of clients with
which it has to interact.

We also define a merge operation on two clocks Vi and
Vj as merge(Vi,Vj) = {(c1, t1),(c2, t2), ...} such that if ck is
exclusively in Vi or Vj, tk = Vi.ck or tk = Vj.ck, respectively.
Otherwise, tk = max(Vi.ck,Vj.ck).

CapsuleDB causally orders writes to the same key using
the Vector Clocks which are sent to CapsuleDB with each
write. For causally concurrent writes, CapsuleDB breaks
the tie using the predefined total order of the clients’ unique
identifiers. The key-level granularity of ordering is achieved
by storing the timestamp Vi.ci with each key for the last writer
ci of the key. However, due to the lossy nature of these
clocks, two clients’ clocks may not have each other’s entries.
In that case, the causal relation may become indeterminate.
CapsuleDB defaults to a First-Writer-Wins policy here. This
is not a serious problem in practice, as Soft Sync (Section
3.7.2) happens with a short time period and a failing writer
can retry after a Soft Sync with an updated clock.

CapsuleDB maintains a global vector clock in the compu-
tation server which is merged with the vector clock of each
successful write request. If a client fails to write to a key, it
updates its own clock using CapsuleDB’s global vector clock
and retries the request.

3.7.2 Soft Sync

In order to periodically synchronize the WAL hash-chains
in DataCapsule with the state of Memtables, CapsuleDB
launches a Soft Sync protocol that synchronizes these entities
without blocking any writes or adding data to DataCapsule
(hence the name Soft Sync). This protocol is loosely based
on the Chandy-Lamport algorithm for global snapshots. [4]

CapsuleDB’s global clock also maintains a monotonically
increasing atomic counter called sync_timestamp. Periodi-
cally, CapsuleDB uses DataCapsule server’s freshness service
to get the latest WAL entries for each user and merges the

Vector Clocks in these records to get a target clock. When the
incoming writes cause the global clock of CapsuleDB to be
equal to the target clock, sync_timestamp is incremented and
its new value, with the latest global clock is broadcast to all
the clients using the multicast tree. The clients update their
vector clocks using this global clock broadcast.

Clients also include the last sync_timestamp seen by them
in the write requests. Writes are only accepted by CapsuleDB
if the sync_timestamp values match with that stored by the
global clock. This also helps to mitigate the problem of
overflow in timestamps of the vector clock. [19] A write
request with higher sync_timestamp than the last write that
updated the same key always succeeds.

The Soft Sync protocol is also performed before every
flush and a snapshot of the global clock is included in the
MetaRecord.

Although we do not prove here formally due to lack of
space, the combination of Vector Clocks and Soft Sync guar-
antees the following conditions:

• Condition 1: A write request is successful if and only
if it is done to a new key or if it causally happens after
the previous write of the key or if (for concurrent writes)
the new writer is ordered higher than the old writer.

• Condition 2: All write requests after Soft Sync causally
happen after any write request prior to the Sync.

Algorithm 1 summarizes the Soft Sync protocol.

3.7.3 Handling Stateless Clients

The synchronization protocol described above dictates the
clients store a vector clock as a state. However, in general-
purpose usage, many applications may need a stateless client.
We suggest two ways for achieving this:

1. The clients query the global clock from CapsuleDB be-
fore every write. This makes CapsuleDB the sole point
of coordination in the system.

2. A client proxy runs as a sidecar to CapsuleDB, which
handles sessions with multiple clients and maintains the
vector clock for each session.

The second method is more geared towards general-purpose
usage, where CapsuleDB can be used as a drop-in replace-
ment for any eventually consistent database.

3.8 Recovery
CapsuleDB provides atomic writes, but does not provide any
multi-operational transaction guarantee. Also, the writes are
not immediately flushed to the DataCapsule (similar to No-
Force policy in [11]). Hence, it suffices to have our WAL
hash-chains act as a logical redo log.
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When a crash or normal shutdown happens, CapsuleDB
can recover the in-memory state of the computation server up
to the last successful write to the Memtable before the event.
The recovery happens in two phases as follows:

• Using the freshness service provided by the DataCapsule
servers, the computation server identifies the last flushed
record in the MetaChain and rebuilds the index for that
record first. Then it follows the last logical timestamp
pointers (see 3.6) to build the in-memory index for all
the necessary flushed records.

• The global clock snapshot in the latest MetaRecord,
Vs, corresponds to one WAL record for each user. In
this phase, using the freshness service, the computa-
tion server finds out the latest WAL record for each user.
Then for each user, it walks backward in the WAL chain
to the first entry which causally happened before Vs. Cap-
suleDB now combines this per-user analysis of the writes
into a global order of writes to apply. Then it applies
them to its Memtable in a forward pass.

Assuming that the writes to the DataCapsule servers are
atomic, this recovery operation is idempotent. Therefore, if
a crash happens during recovery, the same process can be
applied again to regain the same state.

4 Implementation

We have developed a performant prototype for CapsuleDB in
C++ using the OpenEnclave SDK1, which is a cross-platform
vendor-agnostic framework for developing enclave applica-
tions. Our codebase contains about 7600 lines of code, ex-
cluding code for tests and client. Now we discuss the salient
features of our implementation.
Reducing copy overhead between host and enclave. To re-
duce the amount of data copied between the host and enclave
during switchless calls (Section 3.3), we exploit the fact that
host-side buffers allocated in the heap memory are visible to
the enclave. We identify large buffers that are passed to and
from enclave and host (e.g., the buffer containing the result of
a read query). We allocate these buffers on the host side and
pass the pointer as a raw 64-bit address to the enclave. We
also make sure that no sensitive enclave data is ever placed
on these buffers.
Memtable design. We use have tried a few lookup data struc-
tures for our Memtable. Initially, we developed our Memtable
using C++ STL’s std::map. This design stores keys in sorted
order, hence we do not need to sort the keys separately during
flushing. However, the average case complexity for insertion
and lookup is O(log(N)) which proved as a bottleneck in large
workloads. Hence, we switched to std::unordered_map
with MurmurHash32 hash function. This reduces the average

1https://openenclave.io
2https://sites.google.com/site/murmurhash/

time complexity to O(1), boosting our performance. In the
future, we want to experiment with other data structures like
Skip Lists, Tries, and B-trees.
Fast Binary Search in DataCapsule Records. If the index
stored the key strings in lexicographical order, each compari-
son during binary search would take time linear in the lengths
of the keys. To reduce this overhead, we compute 128 bit
hash of each key using MurmurHash3 and store ⟨hash,key⟩
in sorted order. While searching for a key, we first hash the
key and primarily use this hash for binary search and only
resort to string matching if the hashes match. This allows us
to compare two strings in amortized constant time (only 2
64-bit integer checks).
Bloom Filter. While searching for a key, in order to reduce
the number of index lookups in records where the key is not
present, we implement a simple Bloom Filter. Given a de-
sired false positive rate and Memtable size, we compute the
ideal size of the bitset and the ideal number of hash func-
tions.3 However, using very large Bloom Filter reduces the
throughput due to extra overhead of storing and flushing a
large bitset. We have experimentally determined the optimal
size of a Bloom Filter.
Communication. We have implemented two separate trans-
port mechanisms for communication between clients, compu-
tation server, and DataCapsule servers.

1. We implement a name-based overlay routing protocol
using gRPC4, called towncrier. Instead of specifying
IP addresses, processes can join a towncrier network,
by registering its name to a daemon running in the ma-
chine. For example, CapsuleDB can register with the
name cdb, DataCapsule servers as dc1, dc2 and so on
and clients as client1, client2 and so on. Messages
can be directed to a specific name (e.g., dc1) or can
be broadcast to all names with a given prefix (e.g., dc).
The towncrier daemon tries to forward the messages
it receives to the locally registered names. If not possi-
ble, it broadcasts the messages to other peering daemons
over the network. We use this transport mechanism for
our WAL and Soft Sync (Section 3.7) operations, but
since gRPC uses HTTP underneath, the communication
overhead is very high.

2. For low overhead communication, we make the com-
munication between the client and CapsuleDB on the
same machine using Named Pipes. The communication
between CapsuleDB and DataCapsule servers happens
over ZeroMQ5. We use this setup for our performance
evaluation.

3Adapted from https://corte.si/posts/code/bloom-filter-rul
es-of-thumb/

4https://grpc.io/
5https://zeromq.org/
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Table 1: Machine Configurations
DC8s_v3 D2ads_v5

CPU Intel Xeon
8370C 2.8GHz * 8

Intel Xeon
8272CL 2.6GHz * 2

Memory 64 GB 8 GB
Storage X 75 GB, 9000 IOPS
TEE Intel SGXv2 X

10040
15267 14792

30424
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Figure 6: Overall throughput of CapsuleDB and RocksDB.
1M keys and 1M queries used in YCSB-B and YCSB-C, and
500K keys and 1M queries used in YCSB-A. Read-Update
ratio is 50:50, 95:0, and 100:0 in YCSB-A, YCSB-B, and
YCSB-C, respectively

5 Evaluation

Methodology. We use the Yahoo Cloud Serving Benchmark
(YCSB) [7]. YCSB is a standard benchmarking tool for
DBMS’s with support for varying workloads; we develop a
CapsuleDB java client to link with YCSB. Across all com-
parisons, unless specified, we use 1M queries with 200B
records. We use Azure DC8s_v3 for the computation server
and D2ads_v5 for the DataCapsule servers (see table 1). The
client processes are spawned in the same machine with the
computation server for fair comparison as it is difficult to sim-
ulate remote clients for RocksDB.6. To simulate the network
cost incurred by CapsuleDB when communicating with the
Data Capsule Server, we use an NFSv4 for disk storage for
RocksDB.

5.1 Comparison with RocksDB
Performance. The figure 6 shows the processed queries per
second of CapsuleDB and RocksDB in YCSB benchmarks.
RocksDB shows 3.0x, 3.1x, and 1.9x faster performance than
CapsuleDB. Despite a little slower performance, CapsuleDB
still can offer comparable performance to the state-of-the-art
non-secure key-value store while providing security guar-

6While we tried to implement a YCSB java client for both Tweezer and
Speicher, we ran into several errors. We were unable to contact Tweezer’s
authors to sort this issues out.

DB Type Median Latency (µs) Max Latency (µs)
CapsuleDB 55 1141759
RocksDB 22 103551

Table 2: Median and max latency of processing each read
query in YCSB-C. The median represents the case the query
hits in the MemTables, and the max represents the case the
query causes fetching a record (or a block for RocksDB) from
the storage.

antees and flexibility. This makes CapsuleDB a promising
option for those looking for a secure and flexible key-value
store. As a comparison, secure CapsuleDBv1 was 10x slower
than non-secure CapsuleDBv1, which is much slower than
RocksDB [15]. In addition, although the results were mea-
sured at a much larger scale, Tweezer and SPEICHER showed
a slowdown of about 5x-30x compared to RocksDB [2, 12].
Overhead Analysis. We have identified two factors that affect
the slower performance of CapsuleDB compared to RocksDB.
The first factor is that the processing of read queries in the
MemTables is slower in CapsuleDB than in RocksDB, despite
our efforts to optimize the MemTable implementation and
use switchless calls. The first column in table 2 shows the
median latency of CapsuleDB and RocksDB in processing
read queries in the YCSB-C workload, where a read query
hits the MemTables. CapsuleDB’s median latency is 2.5x
longer than RocksDB’s median latency. We suspect that the
switchless architecture of Openenclave is not efficient enough
to hide microseconds-scale latency, and our MemTable imple-
mentation may not be as efficient as RocksDB’s.

The other factor is CapsuleDB’s limited ability to fetch
data, as it can only retrieve whole records from the DataCap-
sule, while RocksDB can read blocks of data in 4KB page
granularity from NFS storage. This design choice is enforced
by the interface provided by the DataCapsule, but it means
that CapsuleDB must read entire records even when only a
few key-value pairs are needed. The second column in ta-
ble 2 shows the maximum latency in processing read queries,
representing the case fetching a record (or a 4KB block for
RocksDB) from the remote storage. CapsuleDB’s maximum
latency is about ten times slower than that of RocksDB. This
is because CapsuleDB has to fetch the entire record, which
is tens of thousands times bigger than a single 4KB block,
even when it only needs one key-value pair from the record.
Improving this aspect of CapsuleDB’s performance would re-
quire changes to the DataCapsule interface to allow for more
fine-grained data retrieval.
Overhead of Cryptographic Functions. Contrary to expecta-
tions, cryptographic functions do not appear to be the primary
performance bottleneck in the current prototype and work-
loads. In CapsuleDB, the cryptographic functions are heavily
used in processing record creation and enclave cache miss
operations. We measured the effect of these functions on
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Figure 7: The effect of cryptographic functions on record cre-
ation. "all-crypto" represents the case where all of signature
creation, merkle tree creation, and encryption are enabled,
while "no-sign," "no-merk," and "no-enc" represent the cases
where only one of them is disabled, respectively. "no-crypto"
represents the case where all of them are disabled.
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Figure 8: The effect of cryptographic functions on the enclave
cache miss. The setup is the same as the previous figure. The
latency represents the time to verify and decrypt a single
record when the enclave cache miss happens.

these operations. Figure 7 shows the latencies of record cre-
ation with and without cryptographic functions. Even when
all cryptographic functions are disabled, the overall latency
only improves by 8.1%. Instead, composing the blocks of the
table and copying data take up most of the time.

Figure 8 shows the latencies of verifying and decrypting a
record when an enclave cache miss occurs, with and without
cryptographic functions. In this case, disabling signature
verification and decryption improves latency by 54.9% and
33.9%, respectively. The improvement increases up to 63.4%
when all functions are disabled. However, the overall latency
in enclave cache miss is relatively smaller than the record
fetching time, and the cache misses occur not so frequently.
Therefore it does not significantly affect overall throughput.
This overhead could be a serious performance bottleneck in
workloads where enclave cache misses occur frequently, but
we did not test this case due to limitations in the current
prototype, explained in 5.3.
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Figure 9: The effect of performance optimizations on through-
put. "all-opt" represents the case where all optimizations
are enabled and tuned in CapsuleDB, while "no-ec," "no-
bf," and "no-sl" represent the cases where only one of eager
compaction, bloom filters, and switchless calls is disabled,
respectively. "no-opt" represents the case where all three opti-
mizations are disabled. The YCSB-B workload is used in all
cases.

5.2 The Effect of Optimizations
We measure the performance of CapsuleDB in cases where
some of the performance optimizations are disabled in order
to quantify their effect on the end-to-end performance. Fig-
ure 9 shows the queries per second of CapsuleDB in YCSB-B,
measured in 5 different setups. "no-ec", "no-bf", and "no-sl"
cases demonstrate that eager compaction, bloom filer, and
switchless architecture improves the end-to-end performance
by 12.2%, 16.2%, and 13.4%, respectively. They work more
effectively when used together than when applied indepen-
dently. As a result, the overall performance of "all-opt" is
measured 48% faster than "no-opt" configuration, larger than
the sum of the effects of each optimization.

5.3 Current Limitations
The prototype of CapsuleDB is experiencing a thrashing issue
with the enclave cache in large-scale workloads. The current
design uses whole records as the unit of caching, which makes
it easy to verify their integrity using the DataCapsule header.
However, when the working set of clients is distributed over
multiple records, and the size of these records is larger than
the enclave size (e.g. 128MB in Intel SGX), the cache entries
need to be replaced frequently, leading to thrashing.

One solution to this problem is to split the data blocks into
smaller chunks that can be verified independently, and use
these chunks as the unit of caching. This design reduces the
overhead of each cache replacement and allows for larger
working sets. Other TEE key-value stores that use LSM trees
have successfully implemented this approach to avoid thrash-
ing. SPEICHER [2] uses the 32KB chunk size and builds the
Merkle tree for each record whose leaves are the hash of the
32KB chunks. Tweezer [12] makes every single key-value
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pair to be verifiable by augmenting each key-value pair with
HMAC of it. Implementing this design in CapsuleDB is an
important future task in order for it to be used in more realistic
scales.

6 Applications

We built CapsuleDB as a general-purpose secure key-value
store which can be used as a drop-in replacement of any
other database with similar eventual consistency guarantees.
This can be done with the help of client proxy services as
described in Section 3.7.3. The client model described in
this paper is, however, more suited to stateful clients who
themselves are running code on TEEs. One such environment
is Paranoid Stateful Lambda (PSL) [6], a secure Function-as-
a-service (FaaS) platform. PSL consists of workers running
code in TEEs. They themselves maintain a Memtable cache
and communicate with each other through a multicast tree.
CapsuleDB runs as a special worker in the PSL environment
and provides a method for secure concurrency.

7 Future Works

Aside from the future task in 5.3, we have some future plans
to extend CapsuleDB.
Verification of concurrency guarantees. Currently, our even-
tual concurrency has not been tested or proven rigorously. We
would like to develop a multi-user workload to verify the
correctness experimentally and also prove the correctness of
a formal model using model checkers.
Sharding and Load Balancing. We currently assume Cap-
suleDB to run in a single machine. However, as the load
increases, we should distribute it in multiple machines. Two
ways of performing this are sharding, where key ranges are
assigned to a machine, and State Machine Replication (SMR).
We want to investigate the security implications of Load Bal-
ancing among different machines and ways to perform SMR
with encrypted data.

8 Related Work

Persistent TEE Key Value Databases. There are currently
two existing persistent key value stores which leverage a TEE,
specifically Intel SGX: Speicher [2] and Tweezer [12]. Spe-
icher first introduced the concept of a secure persistent KVS
and extends the RocksDB codebase to address three secu-
rity concerns: (1) data confidentiality, (2) data integrity, and
(3) detection of stale data. In order to authenticate the LSM
tree stored in untrusted memory, Speicher computes a MAC
for each SSTable data block and builds a Merkle tree from
each block MAC. To meet the low memory constraints of
enclaves and to reduce EPC paging, Speicher performs two op-
timizations. First, the RocksDB MemTable is split into a key

MemTable and value MemTable, where the key MemTable
is stored in enclave memory and the value MemTable is en-
crypted and stored in untrusted memory. Second, in order
to prevent context switching between the enclave and host
memory process, a separate unsecured thread processes I/O
system calls. Finally, to ensure data freshness Speicher uses
a custom asynchronous monotonic counter secured by the
synchronous SGX monotonic counter to perform versioning
over the log and MANIFEST files.

Tweezer builds on the ideas of Speicher by addressing the
scalability issues encountered in Speicher. Tweezer generates
a unique MAC key for each SSTable. Using this key, fresh-
ness is checked by building a Merkle tree across SSTables.
The same MAC key is used to generate a new MAC over each
key-value pair within an SSTable, whereas Speicher gener-
ates a MAC for each data block. These two design choices
reduces read amplification and the number of decryption calls
performed. To address versioning, Tweezer uses a hash chain
since the synchronous SGX monotonic counter is deprecated;
the chain is extended by heartbeat transactions run by a client.

In contrast to both works, CapsuleDBv2 utilizes the Global
Data Plane and its benefits, including location-independence,
replication, and ease of migration. CapsuleDBv2 provides
many of the same guarantees afforded by Tweezer and Spe-
icher. However, CapsuleDBv2 currently lacks certain features
from RocksDB that both Tweezer and Speicher inherit due to
being extensions of RocksDB. We anticipate that, with time,
CapsuleDBv2 will provide some of the essential features and
comprehensive testing found in RocksDB.

Shielded Execution Environments. CapsuleDBv2 uses the
Openenclave SDK but there exists a variety of execution
environments to run an unmodified codebase within an en-
clave. Notably, Scone [1] (used by Tweezer and Speicher),
Haven [3], Graphene-SGX [18], and Panoply [17] are all
environments which port an existing codebase to run in an
enclave. However, porting an entire codebase, especially for
large persistent key-value stores, will run into EPC memory
limitations and severe overhead from EPC paging.

9 Conclusion

In this paper, we have presented the design of CapsuleDB
as a TEE-based secure Key-Value store running on top of
remote untrusted storage. We have suggested several perfor-
mance optimizations over the previous designs and experi-
mentally proven the efficacy of these design choices. We have
also benchmarked it against RocksDB, an unsecure key-value
store, and discussed our overheads over the same. Finally,
we also provide a simple protocol to establish eventual con-
sistency and discussed potential applications for the same,
especially in secure FaaS environments running on the edge.
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A Algorithms for Soft Sync and Flushing

In this section, we formally provide the pseudocode for Soft
Sync and flushing protocols.

Algorithm 1 Soft Sync
1: function SOFTSYNC

2: freshWAL← Fresh WAL records for each user from DataCapsule
3: target_clock← new VectorClock
4: for record ∈ freshWAL do
5: if record.sync_timestamp = global_clock.sync_timestamp then
6: target_clock[record.writer]← record.vector_clock[record.writer]

7: while target_clock > global_clock.vector_clock do
8: Update global_clock with each incoming write

9: global_clock.sync_timestamp++
10: Broadcast global_clock to all writers.

Algorithm 2 Flushing procedure
1: Global State: f lush_timestamp: Number of Memtables flushed till now.
2: Parameters: c: skip-length, d: max-height
3: Input: mt: Memtable (a set of key-value pairs) to flush
4: function FLUSH(mt)
5: SOFTSYNC( )
6: f lush_timestamp++
7: mt ′←{}
8: last_logical_timestamp← f lush_timestamp−1
9: for i← d to 1 do ▷ Eager Compaction

10: if ci | f lush_timestamp then
11: for j← f lush_timestamp− ci +1 to f lush_timestamp−1 do
12: Read jth DataRecord, dr j from cache.
13: mt ′← mt ′ ∪dr j ▷ Order Sensitive

14: last_logical_timestamp← f lush_timestamp− ci

15: break
16: mt ′← mt ′ ∪mt
17: SORT(mt ′)
18: dr← new DataRecord from the key-value pairs of mt ′

19: mr← new MetaRecord
20: mr.index← sorted keys from mt ′

21: mr.mtree← new Merkle tree from key-value pairs in mt ′

22: mr.hint← new BloomFilter from mr.index
23: mr.hash← HASH(dr)
24: mr.last_logical_timstamp← last_logical_timestamp
25: mr.global_clock_snapshot← global_clock
26: Encrypt and Sign dr and mr and send it to DataCapsule servers.
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