
Exploring Industry Standard System Integration for
Hardware-Software Co-Design of PCI Express

Joonho Whangbo, Kevin Anderson, Coleman Hooper

December 16, 2022

Abstract
There is a range of integration techniques for accelera-

tors. Close-core integration provides low-latency access
time, but since the device must be integrated on-chip, it
has higher design and verification costs. Conversely, far-
away integration strategies allow for greater ease of inte-
gration, but have longer communication latencies. These
extremes demonstrate a critical tradeoff for designers
between performance and ease of integration. However,
there is currently no comprehensive platform for explor-
ing the tradeoffs with different integration techniques at
the full system level. One of the many missing pieces is
PCIe, which is a widely used protocol for far-away inte-
gration in industry. Despite various attempts to model
PCIe, previous models do not provide both functional and
timing modeling in a high-performance hardware simu-
lation environment, and they are not integrated within a
comprehensive framework for system design exploration.

In this project, we developed a validated and synthesiz-
able high-performance PCIe model that is integrated into
Chipyard [4] and FireSim [12] and can be added to a
system design to evaluate device performance over PCIe.
Our model includes core functionalities related to band-
width and latency on top of a timing model. In addition,
we provide a shim that allows for existing MMIO periph-
erals to be attached without modifications, enabling de-
sign reuse and agile design space exploration. Finally, we
demonstrated the use of our platform through a case study
examining how a Network Interface Controller (NIC) be-
haves when placed close-core and far-away. With these
contributions we aim to provide a platform for design-
space exploration of system-level tradeoffs for different
accelerator placements.

1. Introduction
With the end of Dennard scaling and Moore’s law, inte-
grating specialized hardware accelerators into systems
is crucial to achieve performance improvements. De-
veloping these domain specific accelerators for various
disciplines such as ML, genomics[8], graph traversal[10]
and warehouse scale computing [11] has been a major
area of interest for both industry and academia. However,
there has not been enough focus on how the placement
of accelerators affects the full system design, and on the
analysis of optimizations along the latency and integration
effort spectrum.

Currently, there are a number of ways to integrate Do-
main Specific Accelerators (DSAs) into systems. In indus-
try, DSAs are attached to Network-on-Chips (NoCs) or
attached as I/O devices using interconnects such as PCIe
or CXL. Motivations to place devices at greater distance
from the core include restricted chip area, power con-
straints, and capability extensions for new use cases. The
high-level tradeoffs between close-core integration and
far-away integration are outlined in Table 1. On the other
hand, in academia, close-core accelerator integration is
the de facto practice due to lack of full-system infras-
tructure to experiment with placing accelerators off-chip
(further from the core). Accelerators are often attached to
NoCs [18] or are closely-coupled by being integrated into
the processor’s pipeline [5]. In summary, specific com-
panies may have undisclosed infrastructure to allow for
design space exploration of different placement strategies,
but there is no open-source infrastructure for exploring
accelerator placements within the overall system. This
exposes a deficiency in the current infrastructure; there
is no design platform and corresponding OS abstractions
that can be leveraged by both industry and academia to
allow for design space exploration of different accelerator
placement strategies.

Peripheral Component Interconnect Express (PCIe) is a
widely adopted communication standard. Many accelera-
tors are attached over PCIe as it is more cost effective and
places less constraints on resource and power consump-
tion compared to close-core integration. This presents
an interesting opportunity to develop a full-stack PCIe
model: a model that is synthesizable on FPGAs and runs
with a Linux driver can not only provide accurate latency
and bandwidth models for the PCIe protocol, but also
open hardware-software co-optimization opportunities.

Hence, we propose a performance verified PCIe model
generator written in Chisel [6] as an extension of Chip-
yard [4]. This model emulates core PCIe functionality
by supporting the exact packet formats, virtual channels,
flow control, and ACK/NACK protocol. The model’s
parameters are highly configurable, enabling exhaustive
design space exploration of the device microarchitecture
for different PCIe configurations.

To the best of our knowledge, our PCIe model is the
first that can be incorporated into a cycle-exact simula-
tion platform like Firesim [12]. With our model, system

1



designers can plug in their custom software abstraction
layers to coordinate the transactions between general pur-
pose processors and DSAs, enabling software/hardware
co-design opportunities.

This paper is organized as follows. Section 2 provides
background on the PCIe protocol stack and its message
types, as well as on the hardware infrastructure used in
this project and on PCIe modeling. Sections 3 and 4
explain the microarchitecture of our model and how it is
integrated into an SoC. Section 5 explains how the device
driver is designed. Section 6 shows validation of our
model and a case study of attaching an existing Network
Interface Controller (NIC) over PCIe. Section 7 provides
a discussion about our results and next steps and Section
8 provides related work to contextualize our efforts.

Proximity Latency Integration Costs
RoCC Near Low High
MMIO Near Low Medium-High
UCIe Near-Far Medium Medium-High
CXL Near-Far Medium Low
PCIe Far High Low

Table 1: Simplified relative comparison between common
interfaces and protocols.

2. Background

2.1. PCIe

A critical design point within a system is the connectivity
between devices. Designers are increasingly opting for
PCIe becaue of its high throughput, high transfer rate, and
relatively small footprint. PCIe is a high speed, point-to-
point (P2P), dual simplex, serial communication protocol
widely adopted in both small-scale and large-scale com-
puting platforms. PCIe was developed from the earlier
iterations of PCI and PCI-X which replaced the older
ISA bus. PCIe 5.0, the latest generation currently being
adopted in industry, has 64 GB/s unidirectional through-
put (when utilizing 16 lanes). Common devices attached
through PCIe include: graphics cards (GPUs), networking
controllers (NICs), and storage devices (HDD, SSD). The
specification is elaborate, therefore exact details will be
omitted, and only a general overview of the architecture,
structure, and core functionality relevant to the presented
work will follow.

2.1.1. Architecture PCIe is a bus-based architecture
with a central controller termed the root complex (syn-
onymously known as a PCI/PCIe controller). The root
complex is a single or multi-ported device orchestrating
all PCIe communication on behalf of the processor and is
connected to the memory bus granting DMA capabilities

to the attached devices. All buses in the architecture are
numbered, with the root bus, the bus directly underneath
the root complex, numbered as bus 0. Bridges connect
two buses together and switches connect multiple devices
to a single port (internally virtual PCI-PCI bridges). De-
vices live on a PCI bus where information and data is sent
as packets across links composed of up to 16 lanes. An
example of a simple topology is shown in Figure 1.

Figure 1: Diagram of the PCIe bus topology.

2.1.2. Protocol Stack The specification defines a three
layer protocol stack, containing a Transaction Layer (TL),
a Data Link Layer (DLL), and a Physical Layer. Each
device, including the root complex, follows this proto-
col using these layers to participate in communication.
All transactions from applications originate as Transac-
tion Layer Packet (TLPs) in the Transaction Layer, which
are then passed to the Data Link Layer where additional
metadata is prepended and appended, before finally be-
ing transmitted to the Physical Layer where additional
metadata is prepended and appended prior to transmis-
sion. In addition to TLPs, the DLL can form and transmit
Data Link Layer Packets (DLLPs), which are for control
signals initiated by the DLL. The TLP and DLLP packet
formats are outlined in Figure 2.

2.1.3. Configuration Space Configuration Spaces are
a set of registers contained in each device, including the
root complex, which define particular behavior within the
PCIe topology. Each configuration space has a 64 byte
header of either Type 0 (root complex or endpoints) or
Type 1 (bridges). PCIe introduces 4K-byte Extended Con-
figuration Spaces, increasing the size of the configuration
spaces from 256 bytes in PCI and PCI-X. This additional
space contains optional capability registers which specify
functions such as power budget. Configuration registers
are accessed through the legacy I/O indirect access or
through memory mapped registers.

2.1.4. ACK/NACK The ACK/NACK protocol occurs
with TLP transmission. On a TLP reception, the DLL of
the completer transmits an ACK to the transmitting device

2



if no errors are detected or a NACK if errors are detected
(where ACK and NACK are both DLLPs). This handshak-
ing is used to flush stale TLPs from the replay buffer in the
DLL of the requester, which holds transmitted TLPs until
receiving the corresponding ACK DLLP (and retransmits
the TLP in the case of a NACK). These packets consume
bandwidth without transferring information.

2.1.5. Completions Completions are TLPs sent by
the completer to respond to any non-posted transactions.
Completion packets can return data depending on the re-
quest transaction type and are used to indicate errors to the
requestor. Similar to ACK/NAK TLPs, completion pack-
ets without data consume bandwidth without transferring
information.

2.1.6. Quality of Service QoS is maintained through the
use of Virtual Channels (VC). VCs are separate logical
communication channels with different priority that reside
in the Transaction Layer. Each VC contains buffers which
hold transactions (both TX and RX). A device can have
a maximum of 8 VCs. Several possible VC arbitration
schemes exist. For simplicity, we categorized the options
as software-dependent or hardware-dependent. Software-
dependent arbitration uses the configuration space to im-
plement several distinct arbitration schemes. Hardware-
dependent arbitration implements a fixed strict arbitration
scheme in hardware.

Figure 2: Transaction Layer Packet (TLP) and Data Link
Layer Packet (DLLP) packet formats.

2.1.7. Flow Control The flow control mechanism in
PCIe is credit-based and is handled entirely by the DLL.
The receive side of the TL sends the buffer size in credit
units to the transmission side of the DLL. The DLL sends
DLPs indicating the amount of credits that can be received.
The completer of these DLLPs forwards the credit infor-
mation to the transmission side of its TL. This exchange
of credit information occurs both ways. Each device will
check the credit information in the TL prior to sending
TLPs to ensure the completer can receive the full amount
of data.

2.1.8. MSI The specification requires PCIe to support
either MSI or MSI-X, which are messaged-signaled in-
terrupts that are passed as packets across the PCIe bus.

However, it is not required for PCIe to support legacy
interrupts (INTx).

2.1.9. DMA A noteworthy feature of PCIe is the ability
for endpoints to become the bus master and execute DMA
accesses to memory through the root complex. The exact
mechanics of enabling this feature are beyond the scope
of this section, but will be discussed at length in Section
3.

2.2. PCIe Modelling

Several PCIe models exist, however these models either
model PCIe functionality or approximately match the tim-
ing of the protocol [3], [15]. The QeMU PCIe C++ model
is an example of a simpler model which only mimics func-
tional behavior of the PCIe protocol [7, 1]. In our work,
we aim to model the core functionality and timing of PCIe
in order to accurately capture its performance character-
istics. Another disadvantage of existing models is that
they are written in C++. These CPU-based simulators can
bottleneck high-performance hardware simulations if the
computation has to be offloaded to the core to be com-
puted in software. In contrast, our model is synthesizable
on FPGAs and runs in a cycle-exact RTL simulation to
allow for much faster simulation performance.

2.3. Leveraging Infrastructure

Our work utilizes several different pieces of hardware
infrastructure, and is integrated with these tools in order
to provide a full-system simulation platform. Chipyard is
an integrated design, simulation, and verification platform
for full system-on-chips (SoCs) [4]. It is an open-source
platform that contains a collection of tools and libraries to
help with integration (as well as providing hardware pe-
ripherals). FireSim is an open-source platform for cycle-
exact RTL simulations on cloud FPGAs. Firesim uses
the Golden-Gate compiler[13] to perform RTL transfor-
mations on the target RTL to enable decoupling of the
target clock and the FPGA clock. The transformed RTL is
then lowered to Verilog to be synthesized and placed on a
FPGA. Furthermore, it allows for scaled-out simulations
across many FPGAs. Our model was integrated into Chip-
yard such that it can be instantiated in the same manner
as any other Chipyard peripheral, and it can be used with
FireSim for high-performance RTL simulations.

A CPU was generated with RocketChip, which is a
parameterizable RISC-V core generator. The system bus
in our design uses the TileLink procotol, which is a cache-
coherent protocol for accessing the cache, memory, and
memory mapped devices. In this project, we support both
the lightweight and heavyweight uncached TileLink pro-
tocols. The heavyweight protocol is required for single
read or write requests that span multiple cycles, which
was necessary for supporting DMA for a broad range

3



of devices. TileLink uses Diplomacy for parameter ex-
change during configuration. Diplomacy creates a graph
of TileLink bus connections and then handles parameter
negotiation and exchange between nodes.

Spike[17], FireMarshal [16], and QeMU[7] were uti-
lized to develop our custom Linux PCIe driver. Spike is
a RISC-V ISA simulator that can boot Linux with cus-
tom MMIO hardware models. FireMarshal is a workload
generation tool which can be used to configure and gener-
ate custom Linux kernels. QeMU was primarily used to
exploit debugging features not available in Spike.

AWS F1 instances were used to run FireSim simula-
tions with our synthesized design. We ran simulations
with two nodes (each a copy of our SoC) on a single
c4.xlarge AWS instance.

3. Model Architecture
Our PCIe model, outlined in Figure 3, consists of several
principal components, which are the root complex, the
timing model, and the endpoint shim. The root complex
and endpoint shim each contain an instance of the protocol
stack. The root complex also contains additional routing
and packet conversion logic, as well as its own configu-
ration registers. The endpoint shim contains routing and
packet conversion logic, as well as additional protocol
adapters which will be discussed in more detail in Sec-
tion 4. The root complex is connected to the CPU and to
the memory hierarchy via TileLink. The transaction flow
through the model is as follows:
1. The core sends a request to the root complex over

TileLink.
2. The root complex receives the requests and translates

it into the appropriate PCIe packet (forming the packet
through the protocol stack).

3. The constructed packet is passed to the timing model
for transmission to the endpoint.

4. The timing model transmits the data to the protocol
stack for the endpoint, which deconstructs the received
packet.

5. The packet is then interpreted in the endpoint shim and
potentially passed to one of the protocol adapters to be
transmitted to the endpoint device.

6. The endpoint decides the correct operation, and if this
requires a response, the endpoint will reply with a
transaction that is issued by following this sequence in
reverse.

3.1. Protocol Stack

The protocol stack implements all of the core operations
of the PCIe three-layer protocol stack and contains an
additional packetization layer. A diagram of the protocol
stack is shown in Figure 4. The diagram highlights the
components involved in packet construction and decon-
struction on the TX and RX sides of the transaction layer,

Figure 3: System architecture of PCIe model. The oper-
ation sequence labelled a (solid fill) shows a CPU read
request and the sequence labelled b (hashed fill) shows a
DMA read request.

data link layer, and physical layer. The packetization layer
constructs the TLP on the TX side and handles routing on
the RX side.

3.1.1. Transaction Layer The transaction layer is re-
sponsible for staging packets for transmission as well as
receiving packets and buffering them until the device is
ready to receive them. The transaction layer contains a
parameterizable number of virtual channels. To be com-
pliant with the specification, flow control is implemented
in the transaction layer. Within each virtual channel, there
is a TX buffer for staging packets (waiting for correspond-
ing packet limits) as well as TX counters for tracking the
current credit limits for each packet type. There are also
three header and three payload RX buffers for receiving
packets of different types (posted, nonposted, and com-
pletion). The RX counters keep track of how many packet
chunks have been dequeued from the RX buffers in order
to send credit limit updates in the form of flow control
packets.

3.1.2. Data Link Layer Our model supports two types
of data link layer packets (DLLPs). The first type is ac-
knowledgement packets, which must be sent whenever
a full packet is received at the other end of the P2P con-
nection. The second type is flow control packets, which
send updated credit limits when packets are consumed.
The data link layer and transaction layer together arbitrate
between DLLPs and TLPs to ensure that entire packets
are transmitted before starting to transmit a packet of a
different type.

3.1.3. Physical Layer The physical layer is responsible
for adding start and end bytes, as well as serializing the
message to transmit it across the physical lanes. It consists
of a transmitter module (which serializes the incoming

4



PCIe packet chunks) and a receiver module which deseri-
alizes the incoming bits. Each physical lane is composed
of multiple logical lanes. This is to ensure we maintain
the same bandwidth as actual PCIe bus while avoiding
using a separate clock domain, since this would require
slowing down the rest of our system in FPGA simulations.

The physical layer communicates across our timing
model which consists of hardware queues. To model la-
tency, a group of bits that are sent simultaneously over the
physical lanes are given a timing token when enqueued,
which represents the cycle in which they can be dequeued.
Hence, a group of bits is dequeued only when the token
is greater than or equal to the current cycle. Validation of
the PCIe latency and bandwidth is presented in Section
6.1.

Transmitter 
(Parallel -> Serial)

Receiver 
(Serial -> Parallel)

Add PL Start/End 
Bytes

Remove PL 
Start/End Bytes

Transaction Layer Packet

Data Link 
Layer Packet

Transaction 
Layer Packet Data Link 

Layer Packet
Transaction 
Layer Packet

Check if FC 
Packet

Rx Buffers

Tx FC Counters

… …

……

Rx FC Counters

…

Tx Buffer

Virtual 
Channels

Send Packet Receive Packet

Physical 
Layer

Data Link 
Layer

Transaction 
Layer

Transaction Layer Packet

Figure 4: Diagram of the PCIe Protocol Stack (excluding
the packetization layer).

3.1.4. Packetization Layer The packetization layer sits
on top of the PCIe protocol stack and is responsible for
translating messages coming in from Tilelink to PCIe
packets and vice versa. It also handles routing for incom-
ing PCIe packets, which is performed based on packet
type since different message types will go to the CPU and
to memory; however, this could be extended to support
address-based routing (if we wanted to be able to model
a switch). Note that the endpoint shim also contains a
packetization layer to interpret incoming PCIe messages
and perform routing.

3.2. Root Complex

The root complex includes an instantiation of the proto-
col stack. Furthermore, there is a configuration space to
provide a compliant interface for Linux drivers. There
are four separate connections between the root complex
and the system bus; one to configure the root complex
(MMIO Node), one to handle CPU communications with
the PCIe endpoint (Endpoint Manager Node), and two

that allow the root complex to initiate DMA requests (to
read from or write to memory on behalf of the endpoint).

3.2.1. MMIO Node The MMIO node is responsible for
controlling the configuration registers of the root complex.
Mixing in the HasRegMap trait with the PCIeRootCom-
plexMMIORegs module allows us to instantiate memory
mapped registers which are connected to the Tilelink a
and d channels. Additionally, by making the PCIeRoot-
ComplexMMIO module extend the TLRegisterRouter
module and also contain a SimpleDevice object, we can
add the MMIO register addresses into the device tree
source (DTS) so that the driver can recognize it.

3.2.2. Endpoint Manager Node The Endpoint Manager
Node is a memory mapped region representing access to
the endpoint. Requests at the Endpoint Manager send out
root complex internal messages that are translated into
configuration read or write PCIe packets in the packeti-
zation layer. When the packet arrives at the endpoint, it
causes the endpoint to perform certain actions by writing
to the configuration registers.

3.2.3. DMA Node The DMA node supports memory
read and write requests on behalf of the endpoint. When
the root complex receives a memory read or write packet
from the endpoint, it routes the corresponding internal
message to the PCIeRootComplexDMA module which
forwards the message to the RootComplexDMAReader-
Control module or the RootComplexDMAWriterCon-
trol module according to the type of the transaction. The
control modules send the base address and length of the
DMA request to either the MemLoader module or the
MemWriter module, both of which chunk up the DMA
requests into transaction sizes that are compatible with
Tilelink. They both send memory requests through the
RootComplexDMAHelper module which makes sure
that the responses from Tilelink are reordered such that
they match the request order.

3.3. Endpoint Compatibility

An instantiation of the protocol stack follows the timing
model to ease compatibility concerns. Devices can con-
nect directly to this stack, or they can have a shim to con-
vert the data into an expected format. To support a wide
range of existing accelerators, an optional MMIO-shim
was created to make the model compatible with existing
MMIO accelerators. The shim latency is assumed to be
negligible relative to the PCIe transaction latency. The
shim converts PCIe packets into TileLink messages so
that MMIO devices in Chipyard can be plugged directly
into our model without changes. Figure 3 shows a concep-
tual diagram of the shim which can be used as the basis
for developing a shim for another protocol (eg. RoCC).

5



4. Chipyard Integration

Ease of use was a design goal, so the model was designed
to be integrated into Chipyard. It is easy to instantiate
our model in different systems and to connect different
MMIO-based peripherals to our model without modify-
ing the interface. The root complex is connected to the
system bus through several TileLink nodes following the
methodology of Chipyard (as outlined in Figure 3). The
MMIO node provides access to the internal root complex
configuration registers, as well as the ability to send in-
terrupts to the RocketChip CPU. The Endpoint manager
node allows for configuration reads and writes to be sent
to the endpoint (through our PCIe model). The DMA
client node facilitates DMA on behalf of the endpoint
(which sends memory read and write packets through our
PCIe model).

We developed two protocol adapters; one for a PCIe
client and TileLink manager (called PCIeToTL), and one
for a TileLink client and PCIe manager (called TLToP-
CIe). The PCIeToTL adapter converted PCIe configu-
ration reads and writes into corresponding MMIO reads
and writes. The TLToPCIe adapter converted TileLink
read and write requests into PCIe packets. Both adapters
had to handle both request and response messages. The
PCIeToTL adapter created TileLink requests and han-
dled responses, whereas the TLToPCIe adapter handled
TileLink requests and created corresponding response
messages. The TLToPCIe adapter had to be configured
to support multi-cycle memory writes and read comple-
tions to handle requests that were sent through our PCIe
model to the DMA module. The TLToPCIe adapter also
had to track source IDs to match completions when they
were returned to the adapter (as it allowed for multiple
in-flight read and write requests).

The high-level structure of our protocol adapters and
endpoint shim is outlined in Figure 5. The endpoint shim
arbitrates between the manager and client node (as well
as an interrupt line) and provides routing back to these
modules. When interrupts are asserted, the shim translates
them into corresponding MSI packets and sends them
through our PCIe model to the MMIO module.

One complication with translating requests between
the TileLink and PCIe protocols is that unlike our PCIe
model (which enforces strict ordering), TileLink allows
for out-of-order message delivery. This complicated the
design of our DMA module, which needed to be able
to support message reordering. Note that this doesn’t
impact the multi-cycle requests between the client node
on the MMIO peripheral and the manager node on our
protocol adapter, as these are connected using a simple
crossbar without internal arbitration (which ends up being
instantiated as a wire).

To manage the top-level design, we used Chipyard con-

Figure 5: Architecture of the endpoint shim and protocol
adapters for converting TileLink requests and responses
from the MMIO endpoint into PCIe packets. The endpoint
shim contains a protocol adapter with a client node to con-
nect to the endpoint’s manager node(for handling control
requests from the CPU), as well as a protocol adapter with
a manager node to handle DMA requests from the client
node. The shim also contains interrupt connections and
is able to convert TileLink interrupts into MSI packets.

figurations in order to manage the different SoC compo-
nents that were added. These include CPU configuration,
attaching our PCIe model to the main system bus, as well
as additional configuration for address spaces and mem-
ory. Additionally, during our case study in Section 6.2, we
had to develop configurations that also managed the place-
ment of the Network Interface Controller (NIC) (since
it was attached to the TileLink crossbars for our proto-
col adapter) as well as configuring the IO for the NIC to
punch out to connect to a loopback device. To be able to
run our design on AWS with FireSim, we had to develop
separate configurations to include additional commands
required for launching FPGA-based simulations.

5. Driver

Bare-metal applications are sufficient for simple, but lim-
ited, tests. As previously mentioned, devices connected
across PCIe are typically complex devices which are not
conducive to bare metal applications. To enable hard-
ware/software co-optimization and identify bottlenecks in
software, we have been developing a custom Linux driver
to interface with our PCIe model.

As this is a model, the driver avoids conventional con-
figuration space checks and operations related to enu-
meration. However, the driver utilizes the Linux PCI
subsystem and adheres to the Linux device driver model.
The advantage of such a driver is that existing code can
run with our model without adaption. This reduces the
effort on the software side for existing devices or novel
devices compatible with existing device software. Devel-
opment for the driver was performed in a combination of
Spike (RISC-V ISA-SIM), FireMarshal and QEMU.

In addition, the IceNIC device driver was adapted to
communicate over our PCIe MMIO interface. The modi-
fied driver allowed for control over the NIC without major
revision to the design. Since the PCIe driver exposes a

6



simple memory read and write interface to the endpoint
driver, adapting the endpoint device driver to work di-
rectly with the PCIe root complex has neglible impact
on the software overheads. Being able to reuse existing
MMIO drivers has clear advantages as it allows for soft-
ware reuse. However, completing the development of the
subsystem-integrated PCIe driver will still be important
for being able to precisely estimate software overheads
for PCIe devices.

6. Evaluation
Our evaluation consisted of two phases. The first phase
aimed to verify the functional correctness of our model
and validate its performance characteristics. Additionally,
in this phase we assessed the area of the proposed module
when synthesized on an FPGA. In the second phase, we
pursued a case study to show both the ease of integration
with existing MMIO-based peripherals in Chipyard, as
well as to show how our platform can be used for full-
stack analysis.

6.1. Model Validation

In order to verify our model and fully exercise different
features during testing, we used a fake PCIe endpoint
that connected directly to our PCIe model (in place of the
endpoint shim). This model was able to exercise differ-
ent functionality (for example, triggering different DMA
read and write access patterns for bandwidth analysis).
We maintained separate testbenches for exercising differ-
ent functionalities (for example, DMA reads and writes,
MMIO configuration, and interrupt signaling).

To validate the behavior of our model, we first set the
timing parameters of our model by matching the delay pa-
rameters for our physical layer with the measured round-
trip latency for a one-dataword packet (which was roughly
one microsecond for the 8-lane PCIe 3.0 configuration)
[15]. After matching the latency for a single dataword
for PCIe 3.0, we then explored both how the number of
lanes affects the model latency, as well as how the end-
to-end latency is affected by the packet size. Figure 6
shows the measured round-trip read latency for different
numbers of PCIe lanes and different packet sizes. Com-
pared to the measured results for the 8 lane configuration,
our model exhibited similar scaling, although our latency
scaled slightly faster with packet size compared to the
measured results, which went from roughly 1 to 1.25 mi-
croseconds as the payload increased from 1 to 512 bytes
(whereas our 8-lane configuration exhibited a latency of
1 to 1.35 microseconds). This could be the result of dif-
ferences in root complex design between our model and
the device used in the paper (as the root complex design
is not standardized).

Figure 7 showed the effective and total bandwidth for
our model. For this evaluation, we sent repeated DMA

writes from our fake endpoint to fully saturate the PCIe
lanes. We modelled the PCIe 3.0 configuration to mimic
the evaluation in [15]. Note that we used 16 lanes for
our bandwidth experiments, and so we observed twice
the bandwidth observed in [15] when they used an 8-lane
configuration (note that the plot in [15] uses bits rather
than bytes transferred). The effective bandwidth is the
bandwidth from only the payload for each packet, and the
total bandwidth includes the additional information such
as headers and ECRC bytes for each transaction layer
packet, as well as the required DLLPs for flow control
and ACK/NACK.

The model exhibits a saw-tooth pattern as observed
in [15] since at each 256-byte boundary, an additional
transmission is required for one additional byte (with
a separate header and separate ACK/NACK response).
Note that the maximum per-lane bandwidth observed
in our model was slightly higher than in [15]. This is
likely because we used large RX buffers (which limited
the number of flow control transmissions that needed
to be sent); future investigation into RX buffer sizing
could help us model different root complex and endpoint
implementations.

We limited our endpoint to 256-byte payloads to mimic
the evaluation in [15], which used a device with a maxi-
mum payload size of 256 bytes. The maximum acheivable
PCIe payload size is 4096 bytes so another device could
transmit more per payload, but it would still exhibit this
same pattern (just with the sawtooth pattern occurring at
4096-byte boundaries).

0 100 200 300 400 500
Packet Size (bytes)

1000

1200

1400

1600

1800

Ro
un

d-
Tr

ip
 L

at
en

cy
 (n

s)

1 Lanes
2 Lanes
4 Lanes
8 Lanes
16 Lanes

Figure 6: Plot of our model latency versus number of PCIe
lanes.

Table 2 shows the post-opt utilization of our design
incorporating the IceNIC attached over PCIe. We found
that the area of our PCIe model was using 3.39% of the
total available LUTs on an AWS F1 4x Large instance
while the in-order Rocket Core was using 0.82%. This
highlights the complexity of our PCIe model.

6.2. Case Study - Network Interface Controller

We pursued a case study to demonstrate the benefits of our
platform for analyzing the performance characteristics

7



Total LUTs Logic LUTs LUTRAMs FFs RAMB36 DSP Blocks
Digital Top 81505(9.10%) 65451(7.31%) 16054(3.56%) 28508(1.59%) 122(7.26%) 15(0.27%)

Rocket 7351(0.82%) 7271(0.81%) 80(0.02%) 2111(0.12%) 0(0.00%) 4(0.07%)
PCIe 30376(3.39%) 16774(1.87%) 13602(3.02%) 5414(0.30%) 0(0.00%) 0(0.00%) 

Table 2: Resource utilization on a Xilinx Virtex Ultrascale+ (xcvu9p) for a system with an SoC and our model.

0 256 512 768 1024
Packet Size (bytes)

3
4
5
6
7
8
9

10
11
12
13
14
15

Ba
nd

wi
dt

h 
(G

B/
s)

Total Bandwidth
Effective Bandwidth

Figure 7: Plot of the effective and realized bandwidth of
our model (for the 16-lane PCIe 3.0 configuration).

of a device when placed over PCIe versus close-core
integration. We tested the performance of a Network
Interface Controller (NIC) when connected over MMIO
versus when connected over PCIe. NICs are commonly
connected over PCIe, but can also be integrated close-
core for latency-sensitive applications [12]. The NIC
we used was IceNIC, which is a Chipyard peripheral for
networking [12]. The integration of IceNIC over PCIe
and over MMIO is outlined in Figure 8. IceNIC uses
separate TileLink client nodes for the read and receive
paths, as well as a manager node for receiving control
signals and sending interrupt signals. After receiving a
send signal from the CPU, the NIC’s send path reads data
from the desired memory address and then sends it out on
the network. When receiving a packet, the NIC will use
an address sent by the CPU to store the received data in
memory.

To connect IceNIC to our PCIe model, we used the
endpoint shim with two protocol adapters instantiated (a
manager adapter for handling DMA requests from both
the send and receive paths and a client adapter to han-
dle control messages sent to the NIC). The client adapter
translated PCIe read and write packets to TileLink read
and write requests and converted responses to read com-
pletion PCIe packets to be sent back to the CPU. The
manager adapter converted TileLink requests to read and
write PCIe packets and converted PCIe completion pack-
ets to TileLink responses.

Figure 9 shows the performance of the NIC when
placed over PCIe with different physical layer latency
parameters for a bare-metal latency test with a loopback
NIC attached as a endpoint. PCIe-X represents that it
takes X-cycles to cross the physical layer. As expected,
the NIC experiences a much greater latency penalty when

IceNICSend Path

Reader

Receive Path

DMA Writer
Controller 
(MMIO)

Network InNetwork Out

DMA DMA MMIO + 
Interrupts 

IceNICSend Path

Reader

Receive Path

DMA Writer
Controller 
(MMIO)

Network InNetwork Out

Shim + Protocol Adapters

DMA 

TileLink

DMA 
MMIO + 

Interrupts 

a) NIC Integration over MMIO

b) NIC Integration over PCIe

DRAMCPU

Figure 8: Diagram of the IceNIC network interface con-
troller, outlining how it is integrated over MMIO and over
PCIe.

Close-Core PCIe-250 PCIe-500 PCIe-1000PCIe-1500PCIe-2000
Placement

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y 

(n
s)

1e5 NIC baremetal loopback latency

Figure 9: Plot of the NIC latency on a bare-metal bench-
mark when attached over MMIO and when attached over
PCIe for different PCIe bus latencies.

attached over PCIe. Figure 10 demonstrates the perfor-
mance of the loopback NIC on a bare-metal latency test
with different numbers of PCIe lanes. These results show
that increasing the number of lanes has no impact on per-
formance (since the NIC is latency-bound for this bench-
mark), and also that the NIC is idle waiting for control
signals almost 50% of the time.

A significant amount of the slowdown when the NIC is
attached over PCIe is due to control overhead. This over-

8



MMIO 1 2 4
Number of PCIe Lanes (PCIe 3.0) / MMIO-Attached NIC

0

50000

100000

150000

200000

La
te

nc
y 

on
 B

ar
e-

M
et

al
 N

IC
 B

en
ch

m
ar

k 
(n

s)

Send/Recv
Idle

Figure 10: Plot of the NIC latency on a bare-metal bench-
mark when attached over MMIO and when attached over
PCIe for different lane configurations (using 500-cycle
physical layer latency). The breakdown highlights the
amount of time that the NIC has outbound memory re-
quests for the Send and Receive paths, and the amount of
time that it is idle waiting for control signals.

head is because the NIC is configured to have the CPU
transmit send and receive addresses for each packet and to
then wait for the CPU to accept send and receive comple-
tions for each packet. Even for the time that the send or
receive path is active, it is still underutilized since requests
aren’t batched. In [15], they outline several potential op-
timizations that can be implemented to avoid having the
NIC control signals become the bottleneck when attaching
a NIC over PCIe. Given additional time, one optimization
we could have pursued and tested would have been to
enqueue and dequeue send and read addresses and com-
pletions in batches to show how our platform allows for
system-level optimizations to be explored. A second opti-
mization is to increase the maximum number of outbound
requests that the NIC can support at one time in order to
saturate the PCIe model bandwidth.

7. Discussion

7.1. Results

The model validation experiments successfully demon-
strated two critical design points motivating the project:
(1) a root complex model incorporating both functional
and timing models, and (2) validation of our model using
published performance metrics. Our model’s latency and
bandwidth characteristics matched well with measured
PCIe characteristics [15]. It is important to note that the
exact performance characteristics over PCIe can be root
complex-dependent, as the root complex implementation
isn’t standardized. We were then able to use our tool to
both assess NIC placement and then to further analyze
bottlenecks in latency when the device is placed over
PCIe. In the future, we plan to use this tool to pursue and
test further optimizations.

Although the model was extensively tested in VCS
and metasim, despite significant effort we were not able
to accomplish our goal of full-stack simulation on FP-

GAs with FireSim. This was in part because the FireSim
linux networking simulations required multinode config-
urations, and the simulation setup was highly sensitive
to the exact placement of the NIC in the design. Several
time-consuming setbacks with configuring and launch-
ing jobs on AWS EC2 instances prevented running the
intended benchmarks and analysis prior to the deadline.
Running these tests on a standard RTL simulation tool
like VCS would have taken on the order of several days
and therefore was not a viable option to produce results.
The benchmark tests basically provide a stress test for our
model by constantly keeping the NIC active. We intended
to show two simulations using this benchmark: (1) the
NIC close core, and (2) the NIC connected through the
PCIe model. Our hypothesis was that the control packets
between the IceNIC and CPU added non-negligible over-
head when the device was connected over PCIe, which
would in turn reduce bandwidth. One optimization to
address this would be to alter the IceNIC to buffer non-
urgent control signals and send them as one TLP, instead
of multiple smaller TLPs. With this optimization, the NIC
could be attached as a PCIe device using our model with
comparable performance (for non-latency sensitive work-
loads). We also planned to investigate whether setting the
PCIe bandwidth too low can throttle the NIC performance,
preventing it from saturating the network connection.

7.2. Linux Driver

The Linux driver was eventually deferred for future work.
The default Linux kernel generated by FireMarshall was
modified to support the PCI subsystem and our custom
driver. Additionally, we created a DTB containing a node
referencing our model within our design. Matching oc-
curred and the device appeared in sysfs, however our
model failed probing during boot. We determined the
issue was due to the lack of enumeration once the kernel
attempts to scan the root bus. After this realization, the
Linux driver became out of scope for this project, but still
important for future work.

7.3. Takeaways and Lessons Learned

This project was very ambitious and several lessons were
learned in overcoming hurdles. Over the course of the im-
plementation, the project was rescoped from the original
proposal of a large framework for DSE with accelerators
to focusing on supporting PCIe in academia infrastructure
projects. As a result, even though setbacks with AWS
prevented us from attaining the benchmark results we
ultimately targeted, we have established a validated first
implementation of the model to expand upon. A gen-
eral takeaway from this project is to scope infrastructure-
related projects appropriately (accounting not just for
design time for our module, but also for integration and
setup overheads with existing infrastructure).

9



One lesson learned was the complexity with configur-
ing the PCI network in Linux. To configure and initialize
a PCIe bus on boot requires both configuration software
and firmware within the root complex. The configuration
software can be largely replaced by functions with the
Linux PCI subsystem, but even a reduced version of the
root complex firmware is complicated to model as it must
support complex functions like enumeration. Given the
timeline for the project, efforts dedicated to this were for-
went. However, missing such firmware complicated using
the PCI subsystem. Ultimately, the general Linux driver
for the root complex was relegated to future work, and we
opted to pursue the modified IceNIC driver instead.

Another lesson learned was to plan to discard the first
implementation of a system. Designing within the Chip-
yard environment simplified tedious tasks like connecting
to the system bus, but complicated other aspects like main-
taining several TileLink Nodes per desired function and
adhering to Diplomacy. The core Chisel was rewritten
twice as conflicts were discovered in the underlying in-
frastructure and intended design goal.

7.4. Future Work

There are several avenues for expanding on this work. The
first avenue is to develop additional protocol adapters to
convert between RoCC commands and MMIO commands
(which could then be converted into PCIe packets). Note
that we could not develop these adapters before the PCIe
to MMIO and MMIO to PCIe protocol adapters as they
relied on using the MMIO bus (meaning that we would
be going from PCIe to MMIO to RoCC or from RoCC
to MMIO to PCIe). This would allow for an even greater
number of open-sourced accelerators to be supported by
our platform.

Along with the PCIe to RoCC protocol adapter, we are
planning to build IOMMUs so that accelerators attached
over PCIe can access the virtual address space. This
feature is crucial to enable hardware-software codesign
for accelerators.

Additionally, there are multiple design space explo-
ration case studies that we plan to pursue. One accelerator
we plan to analyze placements for is a protobuf accel-
erator. Existing work already details possible software
optimizations such that the inevitable increased latency
can be cleverly hidden, and our tool provides a platform
to validate whether these optimizations can be performed
[11]. However, attaching the protobuf accelerator would
require protocol adapters for RoCC.

A second case study we plan to pursue is with Gem-
mini, which is a machine learning accelerator generator
[9]. We plan to investigate how the memory hierarchy
is affected by changes in placement for different types
of models (which have different memory bandwidth re-
quirements in order to be able to fully utilize the compute

units). However, this case study is also dependent on first
developing protocol adapters for RoCC.

Lastly, the Linux driver for the root complex is a high
priority goal. As previously mentioned, an accompanying
driver integrates into the Linux driver model, such that
device drivers can sit on top of our root complex driver
and communicate as if the model was a true root complex.
Furthermore, existing benchmark and applications could
run without modification. This is seen as a greater benefit
for designers wanting to test prototypes of newer genera-
tions of devices in industry, or academics leveraging an
established code base for hardware/software co-design.

8. Related Work

There have been many attempts to cycle-accurately model
PCIe performance in software simulators[3]. However,
software simulators are slow relative to FPGA-based sim-
ulations and do not scale out to many nodes. In contrast,
our PCIe model is FPGA synthesizable and can run in a
cycle-exact manner on Firesim [12] which can support up
to 1024 simulation nodes. Furthermore, as our model is a
hardware generator, it maintains the high configurability
of software simulators.

Examples of RTL implementations or IP for root com-
plexes exist in both academia and industry, however they
have limitations [14, 2]. The paramount drawback is that
these implementations are solely functional, and there-
fore timing analysis for particular scenarios cannot be
assessed unless the scenario is replicated. Additionally,
these studies only provide a root complex implementation,
and other components which compose the actual system
will still need to be acquired and integrated. In contrast,
our model is inherently integrated in an SoC generation
ecosystem providing all requisite infrastructure and addi-
tional components to emulate more complex SoCs. Lastly,
RTL root complex implementations typically target FP-
GAs which require additional effort in verifying electrical
connections as PCIe devices will be external, introducing
another failure mode which complicates debugging novel
designs.

Other works presented analytical models of PCIe per-
formance and compared it to the performance of PCIe
3.0 by running networking benchmarks [15]. However,
unlike our model that provides insight into PCIe perfor-
mance throughout the full compute stack, their work only
models the PCIe hardware performance.

9. Acknowledgements

Throughout the design and implementation phases of the
project, several members of SLICE provided advice about
orienting the project and shared their knowledge of the
Chipyard infrastructure. We would like to acknowledge
these collaborators and the SLICE lab as a whole for

10



their contribution. Lastly, we would like to thank Kubi
for offering this course and for providing direction and
feedback for the project; we discovered viable research
topics through this class project and are looking forward
to building on this work.

References
[1] QEMU Documentation.
[2] UltraScale+ Devices Integrated Block for PCI Express v1.3.
[3] Mohammad Alian, Krishna Parasuram Srinivasan, and Nam Sung

Kim. Simulating pci-express interconnect for future system ex-
ploration. In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 168–178, 2018.

[4] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb,
Sagar Karandikar, Harrison Liew, Albert Magyar, Howard Mao,
Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John
Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović, and
Borivoje Nikolić. Chipyard: Integrated design, simulation,
and implementation framework for custom socs. IEEE Micro,
40(4):10–21, 2020.

[5] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott
Beamer, David Biancolin, Christopher Celio, Henry Cook, Daniel
Dabbelt, John Hauser, Adam Izraelevitz, Sagar Karandikar, Ben
Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Mar-
tin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen
Twigg, Huy Vo, and Andrew Waterman. The rocket chip genera-
tor. Technical Report UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr 2016.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, An-
drew Waterman, Rimas Avižienis, John Wawrzynek, and Krste
Asanović. Chisel: Constructing hardware in a scala embedded
language. In DAC Design Automation Conference 2012, pages
1212–1221, 2012.

[7] Fabrice Bellard. Qemu, a fast and portable dynamic translator.
In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, page 41, USA, 2005. USENIX
Association.

[8] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng,
Reetuparna Das, David Blaauw, and Satish Narayanasamy.
Genax: A genome sequencing accelerator. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture
(ISCA), pages 69–82, 2018.

[9] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh
Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew,
Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John
Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic,
Borivoje Nikolic, and Yakun Sophia Shao. Gemmini: Enabling
systematic deep-learning architecture evaluation via full-stack
integration, 2019.

[10] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish,
and Margaret Martonosi. Graphicionado: A high-performance
and energy-efficient accelerator for graph analytics. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 1–13, 2016.

[11] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Di-
nesh Parimi, Borivoje Nikolic, Krste Asanovic, and Parthasarathy
Ranganathan. A hardware accelerator for protocol buffers. In
MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’21, page 462–478, New York,
NY, USA, 2021. Association for Computing Machinery.

[12] Sagar Karandikar, Howard Mao, Donggyu Kim, David Bian-
colin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel
Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle Ko-
vacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. Firesim: Fpga-accelerated cycle-exact scale-
out system simulation in the public cloud. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture
(ISCA), pages 29–42, 2018.

[13] Albert Magyar, David Biancolin, John Koenig, Sanjit Seshia,
Jonathan Bachrach, and Krste Asanović. Golden gate: Bridging
the resource-efficiency gap between asics and fpga prototypes. In
2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–8, 2019.

[14] Rekha B Manjunath. Implementation of pci express architecture,
2022.

[15] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury
Audzevich, Sergio López-Buedo, and Andrew W. Moore. Under-
standing pcie performance for end host networking. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, page 327–341, New
York, NY, USA, 2018. Association for Computing Machinery.

[16] Nathan Pemberton. Firemarshal, Feb 2022.
[17] Andrew Waterman. riscv-isa-sim, Dec 2021.
[18] J. Zhao, A. Agrawal, B. Nikolic, and K. Asanovic. Constella-

tion: An open-source soc-capable noc generator. In 2022 15th
IEEE/ACM International Workshop on Network on Chip Archi-
tectures (NoCArc), pages 1–7, Los Alamitos, CA, USA, oct 2022.
IEEE Computer Society.

11


	Introduction
	Background
	PCIe
	Architecture
	Protocol Stack
	Configuration Space
	ACK/NACK
	Completions
	Quality of Service
	Flow Control
	MSI
	DMA

	PCIe Modelling
	Leveraging Infrastructure

	Model Architecture
	Protocol Stack
	Transaction Layer
	Data Link Layer
	Physical Layer
	Packetization Layer

	Root Complex
	MMIO Node
	Endpoint Manager Node
	DMA Node

	Endpoint Compatibility

	Chipyard Integration
	Driver
	Evaluation
	Model Validation
	Case Study - Network Interface Controller

	Discussion
	Results
	Linux Driver
	Takeaways and Lessons Learned
	Future Work

	Related Work
	Acknowledgements

