
Rocket CPU

DRAM

MMIO Endpoint DMA

Functional Model

Timing Model (Physical Layer)

Functional Model

Endpoint Shim

Protocol Adapter (PCIe <-> TileLink)

MMIO-Native Endpoint

TileLink Bus

Manager Client Interrupt
TileLink

Crossbars

1

3

5

2

4

Lanes Packet TileLink

Abstract Modeling of Complex Communication Protocols for High-Performance Hardware Simulation

Exploring Industry Standard System
Integration for HW/SW Co-design

Future Work

System Architecture

Functional Model

Motivation

o PCIe is a P2P serial computer expansion bus standard
widely adopted by industry

o 3 Layer Stack: Transaction, Data Link, Physical
o Common PCIe devices: Network Interface Controller

(NICs), disk drives, graphics cards (GPUs), accelerators
o Existing models do not both provide both functional

and timing modeling underneath a comprehensive
framework for system design exploration

Joonho Whangbo, Kevin Anderson, Coleman Hooper

Objectives

Linux Driver

o Create a synthesizable, performance validated PCIe
model for future academic research (accelerators,
chiplets, etc)

o Integrate model within FireSim to enable cycle-exact
execution of our model

o Create protocol adapters to allow users to test PCIe
integration with existing accelerators

o Boot Linux with FireSim and exercise accelerator
attached to model

o Bare-metal sufficient for simple, but limited tests
o Driver development in Spike, QEMU and FireMarshal
o Developing Linux driver to support core operations

o Better integration into FireSim/Chipyard platform
o Increased usability for complex devices
o Leverage existing code

q Project WIP:
q Finish Linux Integration and run everything full-

stack
q Comparative analysis of the benefits of modelling

flow control on bandwidth/latency

q Future Research:
q CXL modeling
q PCIe-to-RoCC shim
q Improve Linux driver (supporting firmware)

o Rocket CPU - host
o Configured using Chipyard

o TileLink-Based Communication
o CPU-RC connections: MMIO,

Endpoint, DMA
o RC-Endpoint connections: Protocol

Adapter and Xbars
o Root Complex Model

o Model of 3-layer protocol stack
o Timing model (latency)

o IceNIC (Chipyard peripheral)
o NICs are commonly integrated over PCIe
o Close-core NIC that typically sits over TileLink
o Objective: analyze how performance characteristics

change when it is attached over PCIe
o Used protocol adapter (natively an MMIO device)

o Endpoint
o Contains PCIe functional model

(protocol stack)
o Translation layer (shim) for

compatibility with non-PCIe devices
(additional feature)

o Protocol Adapter (Shim)
o Ease of use; plug-and-play capability
o Connects MMIO-native devices to PCIe

w/o modifying interface
o Handles interrupts, converts them to

PCIe TLPs

Table 1: Supported core
functions in model

All TLP types ECAM
(limited)

MSI Flow Control
8 Virtual

Channels
Up to 16
Lanes

DMA Address
Routing

Non-fetchable
Memory ACK/NACK

Case Study - NIC

Model Validation

Tool Uses
FireSim Cycle-exact simulation on hardware (FPGA)
Chipyard SoC design, simulation, verification platform

Spike/QEMU RISC-V ISA simulator for driver testing

FireMarshal Workload generation tool (builds Linux distros)
TileLink Interconnect protocol used within the SoC

Metasimulation Software RTL simulation of FireSim
Table 2: Tools utilized for design, simulation, and verification

Hardware Infrastructure

Arrows show how an
MMIO write is
converted to a packet,
serialized, and then
reconstructed to be
sent to the endpoint

Transmitter
(Parallel -> Serial)

Receiver
(Serial -> Parallel)

Add PL Start/End
Bytes

Remove PL
Start/End Bytes

Transaction Layer Packet

Data Link
Layer Packet

Transaction
Layer Packet Data Link

Layer Packet
Transaction
Layer Packet

Check if FC
Packet

Rx Buffers

Tx FC Counters

… …

……

Rx FC Counters

…

Tx Buffer
Virtual

Channels

Send Packet Receive Packet

Physical
Layer

Data Link
Layer

Transaction
Layer

Transaction Layer Packet

