Diffusion Models Quantization

Xiuyu Li

Background: Diffusion Models

- **Diffusion models** slowly add random noise to data and then learn to reverse the diffusion process to construct desired data samples from the noise.
 - core technology behind AIGC applications (i.e. text-to-image generation, images inpainting...)
- Inference is slow take several seconds for a single image, while previous SOTA methods (e.g. GANs) generate multiple images under 1s.
- Memory consumption is high stable diffusion has a 860M parameters UNet and takes 7.7 (4.5) GB GPU VRAM to generate an image under FP32 (FP16) precision.

Background: Post-Training Quantization

• Quantization convert weights and activations to lower bit formats and reduce time and memory consumption

- Post-training quantization (PTQ) directly quantizes well-trained models without retraining
 - need training data to calibrate quantized models, usually unavailable due to privacy issues

Quantize diffusion models to reduce memory consumption and accelerate inference speed

Property 1: denoising process has multiple timesteps

 feeding model with previous output x_{t-1} at each t > 0,
 quantization errors can accumulate

- Property 2: model at different timestep has different sensitivity w.r.t quantization
- Property 3: we can sample gaussians to generate data with FP32 model for calibration – always data-free

Calibrate quantized models with samples from different timesteps

- Naively using SOTA data-free PTQ methods (e.g.
 SQuant) greatly undermines images quality under INT4
- Measure timesteps importance using Peak signal-to-noise ratio (PSNR)
- Calibrate mode using a hessian-based optimization with weighted sampled data from multiple timesteps

INT4 w/ simple INT4 (ours) calibration

Quantitative results

Fréchet inception distance (FID) on CIFAR10

FP32	INT8 (Linear)				INT4 (SQuant)	INT4 (Ours)
5.07	5.93	42.56	28.03	176.88	190.28	13.79

- Model size reduction: scale linearly with #bits e.g.
 FP16 -> INT4 can usually reduce the size by 2-4x
- Speed-up: largely dependent on the architecture / weights and activations precisions. But FP16 -> INT4 usually can have around 2-3x speedup

Qualitative example: Stable Diffusion

INT4

FP32 INT8

Prompt: a photograph of an astronaut riding a horse

Next steps

- Investigate the optimal timesteps importance sampling for the calibration process
- More stable diffusion results
- Use mixed-precision to further lower bits
- Implement customized CUDA kernels to measure the real speed-up in wallclock time

References

- [1] Ho et al. Denoising Diffusion Probabilistic Models. 2020
- [2] Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. 2022
- [3] Lee. What are Diffusion Models? 2021.
- [4] Li et al. BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction. 2021
- [5] Guo et al. SQuant: On-the-Fly Data-Free Quantization via Diagonal Hessian Approximation. 2022