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Abstract—Higher level DSLs have allowed for performant
computation on GPUs while providing enough abstraction to
the user to avoid significant deployment overhead. However,
the SIMD/SIMT model of programming still can encounter
unexpected performance drops when trying to translate naively
from CPU code. One example of these performance drops is
branch divergence, and this failure is especially exacerbated by
recursive methods, as the depth of these recursions can vary
greatly between threads.

This paper investigates ways to enable recursion and task
oriented programming using the Taichi DSL. We first present
different methods of accomplishing this task, and benchmark
each. Utilizing Taichi’s multiple back-end code-gen targets, we
investigate the performance of recursion tasks on different back-
ends.

We compile these results into a final model that automatically
chooses the best implementation for a given user program. In our
benchmarks, we see massive improvement in throughput over the
naive implementation, up to 500%.

Index Terms—GPU, Task-oriented Programming, DSL, CUDA

I. INTRODUCTION

General Purpose GPU Programming has boomed in recent
years, and enabled a new era of massively parallel computa-
tion. With hundreds of available cores, properly designed tasks
will see a massive performance boost as opposed to traditional
CPU programming.

The power of GPUs comes from the Single Instruction
Multiple Thread (SIMT) and Single Instruction Multiple Data
(SIMD) model. By running many threads with the same
program, the hardware can share the instruction / control side
hardware while duplicating the data-path hardware. Under this
model, a single program gets duplicated across tens of thou-
sands of threads. This model allows for massive throughput
on a variety for tasks [6] .

However, this type of programming also brings about the
need for a Domain Specific Language (DSL). Traditional
Programming Languages are not sufficient to describe these
intricacies of the SIMT and SIMD model.

Currently there are a lot of different DSLs and APIs out
there to program GPUs: some are proprietary and specific to
hardware, some are open standards that can run on multiple
hardwares. These languages include CUDA C++, OpenCL C,
GLSL used in OpenGL and Vulkan, HLSL used in DirectX,
and Metal shaders used in Apple hardwares.
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All of these languages follow a very similar paradigm: serial
functions and programs are compiled into GPU “kernels”, and
some extra bits of host side code commands the GPU to launch
different kernels with different amounts of threads. Kernels are
essentially sequential programs that work as a single thread,
while the same program gets duplicated to massive amounts
of input data (thus SPMD). Due to the quirks of the GPU,
traditional recursive programs can cause huge performance
issues due to cache divergence and control flow divergence.
Currently, only CUDA allows true recursion through dynamic
parallelism, and programmers using other languages or non-
Nvidia GPUs will need to manually write a stack themselves,
or convert their algorithms to an iterative one.

The process of converting a recursive algorithm to a
producer-consumer queue paradigm is nothing new, but doing
so takes a lot of programmer time and allows more bugs and
errors than necessary. There are ways to sort and reorder
queues to achieve higher performance on GPUs, but there
are few previous works that attempted to create a generalized
optimization system. Additionally, this process requires the
programmer to create multiple different kernels serving dif-
ferent functions, and they might need to split up their original
recursive program into multiple kernels. This process greatly
complicates the programming experience.

II. OUR CONTRIBUTIONS

In this paper we:

o Discuss how to utilize a global queue in order to enable
task-oriented recursion using a high level DSL called
Taichi.

o Present different methods of enabling task-oriented recur-
sion.

o Compare these different implementations, analyzing their
performance as well as their GPU resource utilization on
different backend APIs

o Use our findings to create an optimized model that queries
different parameters of the recursive method.

For this paper, our metrics of success are defined as:

o Enable a subset of recursive methods that is optimized
for the GPU through a high level DSL.

¢ Outperform naive implementations of these same recur-
sive methods in performance by eliminating divergence.



o Describe performance patterns we see on the GPU and
add additional optimizations to further boost perfor-
mance.

To this end, we were able to mostly succeed in our project.
We develop a global queue implementation that allows for
performant ray tracing and graph search methods. For Vulkan
and Metal backends, we see performance gains across different
ray tracing benchmarks. Additionally, we utilize these findings
to create an optimized model for different ray tracing bench-
marks, and discuss further optimizations in the final section.

III. BACKGROUND
A. SIMT/SIMD Programming model

GPUs exploit SIMD pipelines in order to run highly parallel
programs with massive throughput. The power comes form
running a single instruction across a vector of data elements,
where each element is processed with the same instruction.
Because a single control path can drive a vector of data path,
these types of programming models can run very efficiently
[6]. Usually, not all of the threads are running in lock-step. A
limited sized group called a warp will share a control path.
The thread group size might differ based on the hardware, but
for all GPUs, all threads on each group can only be running
the same instruction, or they will need to idle to wait for their
chance to use the control path.

NVIDIA, through the development of CUDA, decided to
unify all forms of parallelism available on their GPUs with a
base unit of work, a thread. They classified their programming
model as SIMT, as they expose an fully sequential and
scalar programming model instead of directly exposing the
underlying vector hardware [1].

An important feature of SIMT programming is that the GPU
hardware handles the parallel execution and thread manage-
ment. This typically limits the user to create isolated threads,
since the scheduling of threads are not user controllable and
global atomic operations are expensive. [6].

With the SIMT architecture the programmer must be very
careful. Introducing branches (if statements, while loops) can
cause GPU branch divergence. Since the GPU schedules only
one set of instructions for a block, branches can lead to issues,
as certain threads will require one set of instructions, while
others will require another. In order to compensate, the GPU
will run all sets of instructions together, and then throw away
any sets that are not chosen [2]. In addition, this may cause
forward progression issues and therefore dead-locks. Some
threads in the group are spin-waiting on the other group of
threads, while those threads never get scheduled as they are
on a different path of execution.

B. Recursive Programming

Recursive Programming is a method of find a solution using
solutions to smaller instances of the same problem. It is largely
defined by functions calling themselves, which then utilizes the
function stack data structure to make progress.

Many recursive problems are seemingly parallel. For exam-
ple, consider a large graph search. The recursive function calls

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
_ device__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*bTockDim.x + threadIdx.x;
if (i <n) y[il = a*x[i] + y[i];
}

Fig. 1: CUDA C++ Programming Language (Embedded DSL)

itself on all of its neighbors. So distinct neighbors can run this
recursive call in parallel, and leverage hardware such as the
GPU to run this efficiently.

Recursion is an example of data irregular workload for a
GPU [3]. One issue with using GPUs to parallelize recursion
is divergence. Different threads will recurse to different depths
or call different functions. As certain nodes in the graph run
out of neighbors to call, or if some nodes are calling different
functions to compute the results, some of the threads will
idle while the other threads in the same thread group finish.
This causes a massive drop in throughput and diminishes the
speedup gained from parallelization. Because recursion, is task
parallel rather than the classic SIMD data parallel paradigm,
some transformations must be applied in order to run [9].

C. Ray Tracing

Ray tracing is an algorithm that generates an image by
simulating light by using the concept of rays and ray-scene
intersection. To generate a photo-realistic image, people usu-
ally resort to path tracing which is a form of ray tracing
that uses recursive Monte-Carlo integration to produce a final
image. Because how the rendering equation is formulated,
this problem is inherently recursive. This problem is not
trivial either, usually requiring massive amount of samples to
compute an single image.

D. Domain Specific Languages

Due to the various intricacies and quirks of the GPU
hardware, there is a need for a simplifying compiler. These
Domain Specific Languages (DSLs) allow users to write fairly
simple code that can be executed efficiently by the underlying
hardware. There are several examples of DSLs used for GPU
programming including CUDA, OpenCL, OpenGL, Vulkan,
just to name a few. These different DSLs vary in overhead
and user complexity, but the main goal for all of them is to
enable GPU programming. An small example of CUDA can
be found in Figure 1.

E. Taichi

Taichi is a high-level parallel programming DSL that uses
a auto-parallelization scheme to convert for loops into GPU
kernels. Unlike the other DSLs, a single Taichi kernel can
be a combination of multiple backend kernels as a single



program might change its degree of parallelization mid-way.
For example, in the world of simulation, an material point
method based simulation might take many steps while each
step iterates on different grids of work. In a traditional graphics
API, the programmer will need to manage multiple kernels
and figure out how to pass values around these kernels. In
addition, Taichi also natively supports sparse data structures
and the ability to separately declare an algorithm and the data
structure it is running on, allowing great flexibility. For our
project, Taichi’s ability to generate code on many backends,
proprietary or vendor neutral, benefits us by allowing the same
program and data structure to be tested on different backends
and hardwares easily. We ran our program with OpenGL,
CUDA, and Vulkan on Windows and Linux computers, and
we also ran experiments on Macbooks on Apple’s GPU.
This gives us the ability to use multiple backends to test
our theory, and we won’t be limited by a specific backend’s
implementation.

IV. RELATED WORK
A. Persistent Threads

The idea of overriding the native hardware scheduler is
an idea that has shown up in several papers [4], [5], [12],
most prominently with persistent threads. While traditional
GPU programming requires the user to spawn many more
threads than there are physical executors, persistent thread
programming creates a small set of active threads. These
threads are enough to fill the GPU hardware, while generally
not enough for the GPU scheduler to interfere. Furthermore,
and more importantly, there are work queues created for a
block of threads to poll. When a block finishes, it checks
the queue for more and more work. By designing the queue
fetch and push policy, the user is able to control the order
and location of execution of tasks [5]. These queues are very
important to enable communication, so various techniques
such as creating queues with unfailing atomic operations and
large access techniques have been explored [11].

Due to this ability to override the hardware scheduler to
some extent, the persistent thread model of programming
can be used to implement recursion. Threads are able to
dynamically add a variable amount of work to the queue and
then relaunch. This queuing system avoids going back to the
CPU for synchronization and to launch a new kernel (which
is impossible in traditional GPU APIs, where only the host
can launch more threads). Due to these advantages, it is seen
that persistent threads outperform naive SIMD implementation
for small workloads and normal deeply-recursive algorithms
[5]. However, implementing these work queues in an efficient
manner is still yet to be available at a high level DSL due to
the complexity and control of the design.

B. GPU Scheduling enhancements

There is some work looking into optimizing divergent
workloads, such as recursion, by optimizing the way SIMD
GPUs schedules its instructions. Since all instructions must
execute in serial within a work group, it becomes a sorting

problem where the compiler is trying to find an serial order
of all instructions on different threads within the same group.
This method focuses on better scheduling and re-convergence
schemes within a single work group [7]. In practice, there is a
lot of optimization potential left in trying to do scheduling in
a global level. We will detail one example of this in the next
section.

C. Ray Tracing Performance

In addition to recursion, specific techniques for improving
ray tracing on GPUs is a massively explored field. Simply
taking the original CPU code and passing it to the GPU runs
into many standard GPU complications: divergence, memory
limits, scheduling, etc. In a paper by Laine, Karras, and Aila it
is shown that splitting the wavefront kernel into several smaller
kernels with local queues can help improve performance,
especially if there are many active processes. [8].

Workloads like path tracing can have divergence issues due
to different recursion depths and different material functions
to evaluate during each task. Due to the nature of Monte Carlo
simulation, a large amount of random tasks are generated.
While they might be random, it is conceivable that there are
still large amount of tasks running the same code. For example,
once a ray intersects with an object, random values are used
to generate out-going rays, and these rays may hit different
objects causing a branch divergence. On the other hand, other
samples from other locations may hit the same object, even if
they are not originally from the same work group. In this case
global scheduling can help significantly by grouping together
similar work globally and thus mostly eliminating divergence.

V. METHODS

In this paper, we focused on bench marking with ray tracing.
We took the relatively well known program called ray-tracing-
in-one-weekend by Peter Shirley [10]. It is not a full fledged
path-tracer, but it is representative of a real program. Because
it is relatively simple, we can modify it relatively easily, while
still getting representative benchmark results.

A. Naive and Iterative Ray Tracing Program
The naive / base version of this program is listed here:

1: for pixel ¢,j on the image do > Parallel for
2 for sample in 0... N do
3 x < Camera(i, j)
4: omega < CameraRay(i, j)
5 color; j < color; j + Lo(z,w)
6 end for
7: end for

Where C'lamera is the function that transforms the pixel 7, j
coordinate to a world space 3d coordinate, and CameraRay is
the function that generates a ray direction based on the sensor
plane coordinate. The L, function is the rendering equation,
and it is evaluated with Monte-Carlo integration that can be
described as following:

1: w, = RandomSample(z,w;)

2 Tpest = IntersectScene(x,w,)
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Fig. 2: Thread to task mapping of the Naive solution

3: if Has intersection then

4: L, = EvaluateBrdf (x,w;,w,) * Lo(Tnext, Wo)
5: else

6: L, = EvaluateSky(w,)

7: end if

Recursion is not traditionally supported on GPUs, however,
naive path tracing is a tail recursive algorithm. So, this can be
rewritten iteratively:

1: for pixel ¢,j on the image do > Parallel for
2 for sample in 0... N do

3 x + Cameral(i,j)

4 omega <+ CameraRay(i, j)

5: for depth in 0...maxrecursiondepth do

6: c..

7 end for

8 end for

9: end for

In this paper we will call this version the “naive” solution.
When this algorithm runs on the GPU, each pixel (i.e. each
iteration of the outer most loop) gets allocated a thread, this
can be illustrated by Figure 2.

This also means that we can just fold all the inner loops
into one single loop. The inner most loop in the naive
implementation can have different length as it is recursion
based on random samples. This means when a group of pixel
is launched, some of it may run long while the others are just
idling. We theorize that on GPU, folding all inner loops can
bring a decent performance uplift. We call this version the
mega-loop, and it is structured like this:

1: for pixel 7, 5 on the image do > Parallel for
2: sample < 0
depth <+ 0
x < Camera(, j)
omega + CameraRay(i, j)
throughput < 1
while sample < N do

® >N AW

9: throughput < throughput x Evaluate Brdf ()
10: depth < depth + 1

11: if depth > depth,,.. or no intersection then
12: color; ; < EvaluateSky() x throughput
13: sample < sample + 1

14: depth < 0

15: end if

16: end while

17: end for

B. Wave-front based Ray Tracing

Wave-front based ray tracing splits up the entire ray tracing
workload into batches of tasks, where each task is called a
wave-front. Usually each bounce is counted as the same wave-
front, so that after each bounce, the wave front shrinks in size
because some rays might not hit an object and gets terminated
on the last wave-front. This approach theorizes that by doing
things in wave-fronts, there are chances to sort the wave front
and compact them to remove work items that we know will
be just idling in a work group. Thus this approach is very
similar to the mega-loop approach, but instead of having the
GPU threads potentially waiting when we have threads that
have exhausted their work, a new wave front is launched that
compacts all thread groups. In essence, this approach pulled
the inner while loop to the outer most layer.

1: for pixel 7, 5 on the image do > Parallel for

2: sample; j < 0

3 depthm +~0

4 throughput; j < 1

5 x; ; < Camera(, j)

6: omega; j < CameraRay(i,j)

7: end for

8: while sample; ; < N do > Serial while
9 pizelSgctive < Vsample; ; < N

10: for i, in pixels,ciive do > Parallel for
11: e

12: throughput; ; < throughput; ; x Brdf()

13: depth; j < depth + 1

14: if depth; ; > depthy,qe or no intersection then
15: color; ; < EvaluateSky() x throughput; ;
16: sample; j < sample; ; + 1

17: depthi’j ~—0

18: end if

19: end for

20: end while

Wave-front style ray-tracing is quite a bit more complex
than the single kernel iteration based approach, as the pro-
grammer now needs to write multiple kernels, sequence them
correctly, and also manage the interfaces where previously lo-
cal variable now needs to live in global memory. In traditional
DSLs and graphics APIs, this is quite painful, as each shader
program only maps to a single parallel for, and a lot of host
side code is needed to manage multiple programs like this.
Fortunately in Taichi this is much simpler, as you can have
many different parallel or serial kernels that forms a larger
kernel.
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Fig. 3: Thread to task mapping of the Global Queue solution

C. Global Queue

This approach draws the same idea as the previous ones, but
now it breaks the fundamental mapping between threads and
pixels, where each thread may process different pixels. This
is essentially the persistent thread model we have discussed
earlier. A minimal group of threads is launched where it is
enough to saturate the GPU pipeline while avoiding over sub-
scribing the GPU’s resources. Under this model, the problem
truly transforms into a task oriented problem, where each
bounce, each sample, and each pixel are all transformed into
atomic (can not be further split) tasks. One task might spawn
more task, such as the situation where a ray bounce hits an
object. The benefit of this approach is that every thread is
going to be fed with tasks, thus no idling. With sufficiently
small kernels, each task will be mostly similar, thus reducing
control flow divergence. Multiple queues can also be used to
handle different situations, such as the if and else case of a
branch. In this case, there will be no control flow divergence.
This is achieved by breaking the sequential model of program,
where each time a branch of function call happens, this call
is buffered into a queue, where a bunch of coherent worker
threads will process this task without divergence. We theorize
that with enough memory bandwidth to back the queues, we
should observe maximum performance with this model, while
having almost full GPU utilization without wasting resources.

This can be illustrated by Figure 3.

Ray tracing workload using global queues can be described
as:

: for pixel i, j on the image do > Parallel for
sample; j < 0

depth < 0

throughput < 1

x < Camera(, j)

omega < CameraRay(i, j)

Enqueue({depth, throughput, x,omega,i,j})

A O i

8: end for

9: while Work available in queue do > Parallel while
10: {depth, throughput, x, omega, i, j} < Dequeue()
11: R

12: throughput < throughput x Brdf()

13: depth <+ depth + 1

14: if has intersection then

15: Enqueue({depth, throughput, x,omega, i,j})
16: end if

17: if depth; ; > depthy,qe or no intersection then
18: color; j + EvaluateSky() x throughput

19: sample; j < sample; ; + 1

20: if sample; ; < N then

21: depth < 0

22: throughput < 1

23: x < Camera(i, j)

24 omega < CameraRay(i, j)

25: Enqueue({depth, throughput, x, omega, i, j})
26: end if

27: end if

28: end while

However, in practice this approach is quite tricky due to a
few reasons. First, unless the parameters are fine tuned for a
specific workload on a specific hardware, it is very hard to find
an optimal amount of threads to fully utilize the GPU. We hope
to come up with performance models that can help provide
more insight into how to tune this parameter automatically.
The second issue is the implementation difficulty, as the
memory ordering are not well defined on many grpahics APIs
and different backends may have very different behaviour.
Locking is expensive on GPU, and without some care, it is
very easy to fall into a deadlock due to the fact that GPU
threads are executed in lock step within a work group. We
will discuss these difficulties later.

D. Benchmarking Method

We converted an existing naive Taichi implementation of
ray-tracing in one weekend to all of the methods we laid out
above. Then we utilize Taichi’s multi-backend capability to
run experiments on multiple backends and multiple hardware
devices. Mean while, we control the parameters of ray tracing,
and we also introduced complexity parameterization in the
scene intersection function, where we can make the task
more or less complex. Using these controls, we measured the
time spent to generate an image using various programs and
parameters.

We hope for a performance scaling to verify our theories
about the performance of various methods on GPU. We will
capture traces where the hardware allows (e.g. using NSight to
capture non-intrusive traces on Nvidia GPUs), and we will try
to use the traces to either verify our theory or provide insights
in case our theory does not match the actual behaviour.



VI. FINDINGS

A. Benchmark Results

We set our benchmark parameters to an 2048 x 1024
output image, with 1, 8, and 32 samples per pixel, and
with a maximum recursion depth of 32. Then, we ran the
different methods (Naive, Mega-loop, Wave-front, Lock-less
Global Queue) on all the different supported back-end on our
RTX3080 GPU, we got some very intriguing results.

In the previous sections, we have mentioned that we hy-
pothesize that the Naive approach will run the slowest, while
Mega loop and wave front will be faster than Naive by about
the same speedup. Additionally, we think the lock-less global
queue will run fastest, if implemented correctly. We present
our benchmark results in Figure 4, 5, and 6. In these results,
the vertical axis is time spent on the workload (smaller is
better), and we have different approaches paired with different
back-ends listed on the horizontal axis. We don’t have data
running on OpenGL for both Wave-front and Lock-less Queue
as the Taichi OpenGL backend lacks the required capabilities
to run these two tests.

We can see that in all of these results, if we compare
them horizontally across backends, OpenGL runs slower than
both CUDA and Vulkan, especially when the total amount of
tasks and complexity of the workload increase. (More samples
means more possible divergence and re-convergence). CUDA
in general out performs all the other back-ends consistently
except in lock-less global queue, where it consistently falls
behind Vulkan. To verify whether we can actually get better
performance out of global queue, we ran these benchmarks on
an Apple GPU (M1) so that we hope to isolate the problem.
The performance on Apple’s Metal API follows the same trend
as Vulkan on the Nvidia RTX3080, thus we can confirm the
strange behaviour here is limited to CUDA, and we will further
analyze why this might be the case later.

If we compare the benchmark between different methods,
a few odd things come into our view. We can see that the
wave-front approach can be significantly slower than other
approaches or even be slower than the naive approach, which is
very different from our prediction. We collected traces of this
program and we will present the reason why the performance
of wave-front ray-tracing looks like what it is later on.

Another discovery while we are making the benchmarks,
is that the parameters used in the lock-less global queue,
especially the amount of concurrent threads to spawn, is very
unpredictable. The optimal number changes from backend
APIs to another, and it also depends on the complexity of the
program in multiple ways (register pressure, memory access,
total amount of compute in the tasks, etc.) The numbers
here presented in the benchmarks are derived from the best
parameters which are tested and hand-tuned, instead of basing
on a heuristic. We find that this parameter influences the
performance a lot, and it is especially hard to tune: spawning
too little threads causes under utilization of GPU resources,
spawning too many threads seem to run into contention and
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forward progression issue, where it can slow down a lot or
even entirely lock up.

In order to further investigate the possible explanations and
solutions to the performance we observed, we ran GPU traces
with the Vulkan back-end, with N = 32. The traces can be
found in Figure 7, 8, 9, 10, 11, and 12.

B. Analysis of the Wave-front Approach

Previously we mentioned that the wave-front approach per-
formed much worse than we expected. Therefore we run traces
on both the mega-loop approach (Figure 7 and the wave-front
approach 8, and we compared the traces. We made several
discoveries:

1) The average GPU utilization when the kernel is active is
higher in the wave-front approach. This is as expected as
we stated that the compaction of wave-fronts before each
dispatch makes the thread group unlikely to have idle
threads. However it is still only maxing out at around
80%.

2) The wave-front approach have an extremely long tail
where both the GPU utilization (gray) and active
throughput (yellow) is low. While the mega-loop ap-
proach does have a tail, it is a relatively short tail.

3) If we zoom in to the individual wave-fronts (Figure 8),
we can see it is like a much shorter version of the mega-
loop trace, with some gaps in between. The gaps are
caused by host communication where the host waits until
a wave-front to finish, and then check whether it needs
to launch the next wave-front. As for why there is still
a tail in each wave-front, we suspect that is because the
memory barrier causing a GPU pipeline flush, where
the GPU waits for all pipelines to drain. Later we will
propose a solution of the host side communication delay,
but we are not able to come up with a solution for the
pipeline draining behaviour.

In order to fix the host communication issue, we need a way
for the GPU to dispatch more threads dynamically based on
the results of previous dispatches, without the intervention of
the host. This is called device-side enqueue, but it is currently
only available in CUDA and OpenCL 2.1, which means it
is not an commonly available API. The other option is to
exhaustively and conservatively enqueue additional kernels,
where you launch the maximum possible amount of wave
fronts from the host and in the later wavefronts when there is
no work, the kernel will immediately return. This is obviously
still inefficient as you are allocating computing resources for
kernels that would just immediately return, but at least it
eliminates the need or greatly reduce the need of host-device
communication. We benchmarked the conservative dispatch
approach against the host side enqueue (Figure 10 and 11), and
we found a performance improvement from around 500ms to
the number we are showing in our previous benchmark results.
(We are already showing the conservative dispatch version in
the benchmark results section)

As for the long tail for the entire workload and pipeline
draining behaviour between wave-fronts, we did not manage

to find out a way to solve it. However the analysis on the global
lock-less queue may give more insights onto this problem.

C. Analysis of the Global Lock-less Queue Approach

We ran trace for the global lock-less queue approach on
Vulkan with NV = 32. As mentioned before, in our benchmark
data, Vulkan and Apple Metal shows a positive performance
improvement of various scale. However, this is not the case
for CUDA where we see performance degradation or even
inconsistent performance.

We will first focus on the results from the Vulkan backend.
If we look at Figure 12, we observe that:

1) The GPU resource allocation and active throughput
tracks closely, which means we are achieving near
theoretical level of throughput. This is in huge contrast
to other versions where we always see a bit of under-
utilization of allocated resources.

2) It has an extremely short tail, suggesting that all threads
are still active till the last point. However this might
be deceiving, as in the persistent thread model, until
the queue is explicitly closed, all threads will spin-
wait, and this will be interpreted as useful work by the
profiler. This suggests an lack of appropriate tooling for
persistent-thread style programming on the GPU.

In addition, when we are debugging the lock-less queue im-
plementation, we encountered a lot of trouble. While the thread
count is a fairly easy to sort out problem by running tests and
finding the optimum, it is very hard to debug problems caused
by GPU’s execution model and memory consistency model.
For example, some version of the code may lock-up when the
thread count exceed a fairly arbitrary number. Sometimes we
also observed that the program may work on one back-end but
not on others albeit when they all run on the same GPU. We
suspect the driver uses different memory model for different
APIs and thus causing this inconsistency.

Troubles aside, we can still learn from the global lock-less
queue as it does provide a decent performance benefit on APIs
like Vulkan or Metal. The idea of decoupling the threads,
delaying and regrouping tasks are key to achieve consistently
high GPU usage.

VII. MODEL

With all of this data, it became clear that different the back-
end global queue must change based on the given program. In
order to fully realize this, we constructed a variable parameter
model to select the best backend queue for performance. Using
a basic ray tracing benchmark, we were able to vary the
benchmark across different axes. We chose to vary the max
depth of the pixel, the complexity of the hit() function, and
the number of pixels. The max depth of the pixel is directly
correlated to the depth of the recursion. The complexity of
the hit() function increases the branch divergence of each ray
tracing pixel. The number of pixels is linked to the number of
parallel tasks able to be launched on the GPU. The results of
these tests are displayed in Figure 13.
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Based on these results, we constructed a K nearest neighbors
model to predict the best queue for any particular task and
launch that as a backend end. The performance is shown in
figure 15. Note in this model, we were not able to run the
lockless queue for larger sizes due to backend issues with
Taichi, so that data is omitted.

VIII. NEXT STEPS

Our solution scaled as expected for some backends (Vulkan,
Metal) but clearly did not produce the expected results for
CUDA. Our first next step in this research project is to fully
understand the drop in performance for CUDA by tracing
through the entire Taichi compilation.

Furthermore, the model and benchmarks were specifically
run for ray tracing benchmarks. We want to extend this tool
for more generic task-basked recursive tasks. We developed a
basic tree search benchmark, but have not extended the tool
more generally than that. Initial results from the tree search
benchmark are shown in Table I.

Nodes | Taichi w/ locked queue | CPU
512 0.0281 | 0.0018
1024 0.0230 | 0.0019
2048 0.0221 | 0.0039
4096 0.0243 | 0.0089
8192 0.0250 | 0.0145
16384 0.0219 | 0.0281
32768 0.0227 | 0.0419

TABLE I: Graph search results outlining comparison between
CPU recursive tree search vs a basic Taichi dynamic global
queue. As seen, the GPU processing has additional overhead,
but scales better for larger graphs.

For all the recursive benchmarks, there is an additional
set of enhancements that can be implemented throughout

the compilation process. These include ordering the global
queue by some priority (while keeping it lockless) as well
as implementing microkernels. Our model is developed such
that choices for these lowering decisions can decided by the
program parameters, which can offer even greater performance
boosts.

IX. CONCLUSION

General Purpose GPU Programming is still a growing field,
but the performance boosts offered by the GPU is unfortu-
nately limited in its scope and requires low level understanding
to manage seemingly simple tasks. Higher level tools help to
remove this massive programmer overhead.

Our paper offers a solution to bridge a portion of this
gap, by enabling recursion in a high level DSL called Taichi.
We utilize principles of dynamic task queues to avoid GPU
branch divergence. In Section V, we present different methods
of enabling a simple ray tracing algorithm. These methods
vary in complexity and difficulty in implementation, and also
perform best in different with different parameters. Because of
this variance, we develop a variational model to best enable
performant ray tracing.

In the end, we were able to achieve our goals for this
paper. We performed a detailed analysis on the various forms
of ray tracing recursion, which all outperform the naive
implementation. Furthermore, by creating a model, the user
can simply specify a ray tracing function, and our tool can
lower down to the best implementation for their particular use
case.

Our ultimate goal is to enable all recursion on GPUs at a
high level. This paper focused mainly on ray tracing, which
showcases a useful example of a subset of this problem
space. In order to fully support the full range of parallelizable
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improvement as the image size scales up.

recursive problems, we expect additional structures to be
necessary, such as a local function metadata stack. We hope
that our findings here highlight the potential advantage of
higher level GPU support and outline one method of realizing
this advantage.
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