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Abstract

With the wide availability of data in recent years, ma-
chine learning has taken off as an effective general solu-
tion with an abundance of use cases. Collaborative learn-
ing can yield benefits for all parties involved, but parties
may be unwilling to share sensitive data in plaintext. In
this paper, we explore the collaborative training of gradi-
ent boosted decision trees while hiding each party’s data
from all other parties. We do this by extending the popu-
lar XGBoost framework to two different modes. Federated
mode leverages a modified communication pattern to offer
more privacy than vanilla XGBoost and has similar perfor-
mance, but still leaks some information. Coopetitive mode
leverages secure enclaves and novel oblivious algorithms to
leak no information, but has an order of magnitude worse
performance than vanilla XGBoost.

1. Introduction
There has recently been growing interest in collaborative

machine learning, where multiple parties work together to
perform a machine learning task such as training or infer-
ence over their collective data. Collaboration among parties
often yields significant benefits; having more data that may
be complimentary or of different distributions may yield
more robust models. However, parties may not be willing
to reveal their own data to other parties for reasons includ-
ing legal regulation, privacy policies, or business compe-
tition. This presents a need to develop systems that can
jointly compute on sensitive data sets belonging to differ-
ent parties all while hiding the contents of the data from all
parties. Below, we provide two concrete uses cases where
the benefits of jointly computing on sensitive data are evi-
dent.

Banks today attempt to detect fraud by training models
on customer transaction data, but criminals often mask their
actions by moving their assets across different banks. As a
result, trained models will be much weaker if only trained
on one bank’s data – this elevates the need for banks to share
data. However, customer financial data is sensitive and can-

not be shared in plaintext. Joint computation can occur only
if the shared data is not revealed to any party.

Hospitals also may want to collaborate to obtain more
effective models for diagnoses or treatment plans. This
collaboration requires the sharing of sensitive patient data,
which should not be done in plaintext. Secure collaboration
is ideal for this situation – hospitals will be able to lever-
age the data of other hospitals to improve their own models
and consequently patient care, but will also not see the exact
contents of the data.

There are currently many machine learning methods out
there, each suitable for their own tasks. One such method is
decision trees, a powerful algorithm that can efficiently and
accurately model non-linear relationships in data. A power-
ful extension to decision trees is gradient boosted decision
trees, a popular machine learning algorithm that has given
state-of-the-art results in both production environments and
in machine learning and data mining competitions. Face-
book uses it to predict clicks on ads [12], while XGBoost
[8], an existing gradient boosted decision tree framework,
has yielded state-of-the-art performance on Kaggle, a ma-
chine learning competition website: of the 29 challenge
winning solutions published on machine learning compe-
tition website Kaggle’s blog in 2015, 17 used XGBoost.
Since its inception in 2016, XGBoost has become incred-
ibly popular, garnering attention on popular Medium blogs
[21, 25, 19], adoption on Amazon’s managed cloud ma-
chine learning platform SageMaker, and nearly 18k stars
on GitHub.

Our work aims to bring the benefits of XGBoost to the
secure collaborative setting. First, we improve XGBoost’s
security by redesigning it to run in the federated setting
[20]. This enables multiple parties to collaborate without
having to send data offsite, meaning that the potentially sen-
sitive data owned by each party will never be exposed to an-
other party. Instead, Federated XGBoost relies on a central
trusted aggregator to coordinate training among all parties;
the aggregator requires only data summaries to update the
model during training, as opposed to all data. Second, we
employ hardware enclaves [10] and obliviousness to bring
even greater security to XGBoost. We redesign XGBoost



under the hood to perform all functionality on sensitive data
inside the enclave, making all data processing opaque to
even the host. Therefore, even if data is transferred across
the network to foreign sites, even the parties at those sites
have no way to access the data. Hardware enclaves, how-
ever, have side channel leakage, and consequently are prone
to side channel attacks [7]. To counteract this, we modify
the existing XGBoost algorithms’ access patterns to make
the algorithms oblivious, i.e. independent of the input data,
which in turn makes our system resistant to access pattern
attacks. Following prior work [28], we define this version
of XGBoost to be coopetitive XGBoost.

To summarize, our contributions are as follows:

• federated XGBoost with a trusted centralized aggrega-
tor and mutually distrustful parties

• coopetitive XGBoost with hardware enclaves and
obliviousness that provides security against even a ma-
licious adversary

• a Python interface supporting both federated and
coopetitive mode that enables data scientists and de-
velopers to easily adopt our system

2. Background
2.1. XGBoost

Gradient boosting is a technique used to build a decision
tree ensemble by iteratively improving on the errors of the
last ”weak learner” (singular tree) that was produced. To-
gether, this ensemble of decision trees can perform better
than just one. XGBoost, created by Tianqi Chen, is a gra-
dient boosting decision tree framework which aims to pro-
vide a ”Scalable, Portable and Distributed Gradient Boost-
ing (GBM, GBRT, GBDT) Library.” It has recently gained
widespread popularity – the algorithm is used by many win-
ning teams in machine learning competitions.

XGBoost supports both single machine and distributed
workloads. In the distributed version of XGBoost, an ”ap-
proximate” split finding algorithm is run during training at
every node to find the decision tree splits optimal for that
node’s partition of data. All nodes’ splits are then aggre-
gated to obtain the optimal split over all data. Details on the
split finding algorithm and XGBoost’s ”weighted quantile
sketch” can be found in the original XGBoost paper.

2.2. Secure Enclaves

Secure enclaves provide private regions of memory iso-
lated from the rest of the host. Other processes, the hy-
pervisor, and even the host kernel cannot access this secure
region of memory. The trusted execution environment that
secure enclaves create provide confidentiality and integrity
guarantees, making them fit for sensitive data processing.

There are currently a selection of hardware enclaves
available on the market, e.g. Intel SGX [10], AMD Memory
Encryption [14]. Microsoft Azure Confidential Computing
[24] and IBM Cloud [15] also offer cloud offerings of en-
claves.

2.3. Obliviousness

Ideally, secure enclaves provide confidentiality and in-
tegrity for applications running inside of them. However,
recent work has shown that secure enclaves are vulnerable
to many forms of side channel attacks.

We employ oblivious algorithms [27] to make program
execution independent of data inputs, removing side chan-
nel attacks that exploit memory access patterns. As a
naive example of an oblivious algorithm, an oblivious ar-
ray access may scan the entire array rather than access-
ing the desired index. This way, the desired index is hid-
den from attackers exploiting memory access side channels.
Concretely, the compiled code should not have conditional
branches dependent on data inputs.

3. Related Works
3.1. Decision Trees

XGBoost was designed to improve upon existing tree-
boosting frameworks such as those provided by scikit-learn
and R.gbm. Both of these two libraries support the exact
greedy algorithm for split finding, but not the approximate
histogram algorithm. This gives XGBoost greater perfor-
mance with little cost in accuracy. In the original XGBoost
paper [8], there are figures outlining the drastic difference in
runtime for a variety of inputs comparing XGBoost to these
other two choices.

Another widely used tree-boosting algorithm is Mi-
crosoft’s LightGBM [16], developed after XGBoost for the
purpose of enhancing the speed and performance of ex-
isting tree-boosting frameworks. To do this, LightGBM
employs two novel techniques called Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB). These methods are intended to improve both the
exact greedy algorithm and the histogram based algorithm
that XGBoost uses. GOSS works by downsampling data
instances with small gradients, since those are typically
well trained with small training error. EFB takes advan-
tage of sparse feature spaces with many features that are
almost exclusive to create fewer, denser features that drasti-
cally reduce training time. Bundling effectively transforms
the complexity of histogram building from O(#data * #fea-
tures) to O(#data * #bundles) with proven negligible effect
on accuracy. Determining how to implement obliviousness
for these modifications would be an interesting challenge.

SecureBoost [9] is similar to our Federated XGBoost –
it extends gradient boosted decision trees to the federated
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setting. It assumes that each party in the federation holds a
vertically partitioned subset of the data; our federated mode
assumes that each party holds a horizontal partition. Our
system in coopetitive mode also provides greater security
against more powerful adversaries. Additionally, we were
unable to find any open source implementation of it.

3.2. Cryptographic Approaches

ID3 is a general algorithm used to create a decision tree
from a given dataset. The idea is that the tree is constructed
in a top-down approach; at each node, the attribute that is
chosen is done so in order to maximize the information
gain. Lindell et al. [17] examines a method to compute
ID3 in a privacy preserving, horizontally distributed man-
ner for two parties. Some obstacles of a traditional secure
MPC approach are that Yao’s generic protocol and using an
oblivious transfer protocol for each bit of input would both
be too inefficient for exceptionally large datasets. Comput-
ing entropy values in the ID3 protocol also requires taking
logarithms, which is problematic when dealing with com-
putation over finite fields. Instead, the paper demonstrates
calculations done using an oblivious polynomial evalua-
tion where the logarithm function is approximated using the
Taylor approximation.

Hoogh et al. [11] outlines a secure ID3 algorithm im-
plemented using the Virtual Ideal Functionality Framework
(VIFF), a general software framework for doing secure
MPC with Shamir secret sharing. This paper improves upon
the efficiency of Lindel et al [17]. while maintaining an
identical quality of decision trees as provided by vanilla
ID3. The protocol works with n ≥ 3 parties, and has the
threat model of semi-honest servers where no more than
n/2 will collude in an attempt to learn more information.
The methods described work for settings where the data is
horizontally distributed among the parties, much like our
modifications to distributed XGBoost.

3.3. Hardware Approaches

Hardware enclaves provide a trusted execution environ-
ment that is protected against a malicious operating system.
However, side channel leakage is still possible at the mem-
ory layer. Ohrimenko et al. [22] outlines oblivious varia-
tions for various machine learning algorithms, including de-
cision trees inference. Oblivious primitives for assignment,
comparisons, array accesses, and sorting are used to provide
the building block for these new algorithms. Namely, evalu-
ating a decision tree without obliviousness can leak the path
taken through the tree. This enables an observer to infer in-
formation such as the instance itself and the size of the tree.
This is prevented by storing each decision tree as a 2D array,
where each individual row corresponds to the nodes at that
depth. The tree is traversed by using an oblivious lookup
at each one of these rows. In the case that a leaf is reached

before the deepest depth, dummy nodes are traversed on the
remaining layers to hide this. For ensemble tree methods,
all tree decisions are accumulated obliviously into an array;
the final output is the prediction with the largest weight.

4. System Overview and Threat Models

Our system can be run in two modes – federated mode
and coopetitive mode. The modes represent a tradeoff be-
tween performance and security. Federated mode offers
lower latencies but provides less security, while coopetitive
mode has greater security guarantees but higher latencies.

4.1. Federated Mode

In federated mode, we consider a federation of size N ,
separated into 1 trusted aggregator and N − 1 parties. The
aggregator may or may not have data, while all other parties
own sensitive data.

Together, the parties run a federated version of XGBoost
to collaboratively train a model. As in federated learning,
no data ever leaves its original site. Instead, over iterations,
the aggregator broadcasts the current global model, which
all other parties individually use their data to locally train.
All local updates are sent to the aggregator, who then aggre-
gates the N − 1 updates into one global update and applies
it to the global model.

4.2. Coopetitive Mode

In coopetitive mode, we introduce secure enclaves at ev-
ery node. All computation and data processing running at
the node executes inside the enclave, making them opaque
to the host. Thus, even an attacker who has compromised
the root and has root access cannot observe training.

However, because hardware enclaves are susceptible to
side channel attacks, coopetitive mode modifies the existing
XGBoost algorithms to make them oblivious. Oblivious al-
gorithms eliminate access pattern leakage, erasing a set of
attacks [13, 18] in which the adversary can infer character-
istics of the data by observing access patterns.

Because all computation is hidden by the enclave,
coopetitive mode requires no trust in any party. Therefore,
the training paradigm can be flexible. For example, coopet-
itive mode is suitable for centralized training – parties can
encrypt and send all their data to a centralized enclave clus-
ter, which then aggregates all the data into one large dataset
and subsequently trains on this large dataset. Coopetitive
mode can also be coupled with federated mode to hide in-
termediate summaries and intermediate models, as the ag-
gregation of summaries on the aggregator and the training
on intermediate models all occur inside the enclave.

Depending on the use case, the final model can or can-
not be inspected by all parties. Predictions can also be re-
quested by parties. What is allowed and not allowed is a
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matter of policy, and out of the scope of this paper. We
assume that parties all agree on a shared policy that deter-
mines what parties can and cannot request and receive be-
fore initiating training.

4.3. Threat Models

We next present threat models of each mode of our sys-
tem. Out of scope for both modes are adversaries that can
launch model poisoning attacks or denial of service attacks.

4.3.1 Federated Mode Threat Model

In federated mode, we assume the presence of a trusted
party that serves as the centralized aggregator during fed-
erated learning. All parties trust this party to follow the
protocol, properly aggregate update summaries, and redis-
tribute the updated model. They also trust the aggregator
with summaries of their own data.

All parties other than the aggregator are honest-but-
curious. They all agree to follow the federated learning pro-
tocol but are eager to observe the data of other parties.

4.3.2 Coopetitive Mode Threat Model

In coopetitive mode, we assume a powerful adversary that
can compromise nearly the entire software stack of the host,
including the operating system, the hypervisor, and other
processes. The adversary can also gain root access to the
host and modify any data or program outside the enclave.
Additionally, the adversary can monitor the memory access
patterns of the enclave to untrusted memory, as well as mon-
itor network traffic, and thus can launch access pattern at-
tacks. Other side channel attacks based on timing or power
analysis are out of scope.

We assume the adversary cannot observe any processing
occurring within the trusted hardware and cannot gain ac-
cess to the memory of trusted hardware. We also assume
that the enclave’s private key is unknown to the adversary.
In summary, we assume a malicious adversary with full
control of the host but who has not compromised the secure
enclave.

Figure 1. Tree Topology

Figure 2. Ring Topology

5. Federated Mode
The design of federated mode involved architecture and

communication modifications to the original distributed
XGBoost system. We do not change the underlying deci-
sion tree or gradient boosting algorithms.

5.1. Architecture

Our system requires 1 aggregator to collect summary
statistics of the N−1 workers. To build our federated mode,
we changed the node topology that determines node com-
munication patterns. In original distributed XGBoost, node
communication can either happen in a tree structure (Figure
1) or a ring structure (Figure 2). We replace both of these
with a star structure, in which no node is able to communi-
cate with another node. (Note that a party is logically a node
in the federated setting). Rather, parties communicate only
with the aggregator. This prevents all other parties (except
the aggregator) from seeing the data summaries of any one
party but allows the trusted aggregator to compute a global
model during training (Figure 3).

5.2. Communication

Communication happens in two stages. On the aggrega-
tor, a process deemed the tracker is initialized to set up the
communication pattern. First, the tracker assigns each party
a numbered rank representing its position in the topology
and sends that party relevant information about the federa-
tion, e.g. the URI of its parent node and the federation size.
After the tracker sends this information out, the nodes all
initialize socket communication with the aggregator. The
second stage leverages the Allreduce paradigm [23] for par-
allel learning. The training process described in §4.1 is per-
formed with Allreduce. All communication happens over
TLS to protect against a network eavesdropper. Communi-
cation ends when a certain threshold of model improvement
fails to be reached, at which point the workers may receive
the final, global model from the master.

5.3. Information Leakage

We informally discuss the security guarantees provided
by federated mode. Federated mode enables global compu-
tation over sensitive data through the transfer of summaries
of model updates over the network, meaning that all data
stays on site. Summaries, though observed by the aggre-
gator, by definition contain less information than the data
itself. As a result, federated mode provides greater security
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Figure 3. Federated Workflow

than a multiparty XGBoost that would involve sending data
to a centralized location.

In federated mode, there are two main sources of in-
formation leakage: intermediate updates and intermediate
models. Intermediate updates are sent from each party to
the aggregator in each training iteration. Intermediate mod-
els are broadcasted by the aggregator to all parties, leaking
the intermediate models. Therefore, all intermediate up-
dates from all parties are seen by the aggregator, and the
intermediate global model at each iteration is observed by
all parties.

6. Coopetitive Mode
6.1. Architecture

In coopetitive mode, at least one enclave is present at
each node. This enables all computation on sensitive data
to be run in a trusted environment such that the data and the
processing can never be observed by the host. The inability
of the host to see the computation gives us flexibility when
designing the architecture – the nodes can be logically po-
sitioned in a variety of ways, leveraging hardware enclaves
for security. We present two possible architectures in the
multiparty setting that take advantage of secure enclaves to
provide malicious security.

Figure 4. Centralized Coopetitive Architecture

Figure 4 showcases a centralized training scenario. All
parties send their encrypted data to a centralized enclave
cluster, where the data is loaded into the enclave, decrypted,
aggregated, and used to train. All training occurs within the
cluster, meaning that all data must leave its original site.
This architecture involves a one time transfer of data be-
tween parties and the central cluster and contains a central
point of attack.

Figure 5. Federated Coopetitive Architecture

Figure 5 demonstrates hardware enclaves on top of our
federated mode described in §5. Every party has an enclave:
at the aggregator, all summary aggregation occurs within
the enclave, and at all other parties, all intermediate mod-
els are received and further trained inside the enclave. The
aggregator doesn’t see the intermediate summaries, and no
party sees any intermediate model.

6.2. Enclaves

6.2.1 Pre Computation

In this section we describe the process of data transfer from
each party to a centralized enclave cluster. This is relevant
for an architecture like the centralized training architecture
mentioned in the previous section.
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Before data transfer, remote attestation [26] must be per-
formed to verify that each enclave is genuine, has not been
tampered with, and that it is running at the latest security
level. Second, if the enclave cluster can be trusted, data
must be sent to the enclave cluster so that training can oc-
cur. This process of data transfer happens with a five step
protocol.

1. Each party encrypts its data with a symmetric key k
and sends it over the network with TLS to the enclave
cluster.

2. Each party requests remote attestation from each en-
clave, which responds with a report of its identity and
its public key PKe.

3. Each party verifies each enclave report locally. This
completes the process of remote attestation.

4. Each party encrypts k with PKe, signs the ciphertext
with its own public key PKp, and sends the ciphertext
and the signature to the enclave.

5. Each enclave verifies the ciphertext, decrypts the ci-
phertext to get k, then decyrpts the encrypted data with
k

6.2.2 Computation

We leverage hardware enclaves to perform secure computa-
tion. We move computation on data that occurs in vanilla
XGBoost into enclaves, making it unobservable to the host.
Thus far, we support the following functionality inside en-
claves:

• Model initialization

• Data matrix loading

• Model parameter setting

• Model training

• Model evaluation

• Model serialization

• Model deserialization

• Inference

6.3. Obliviousness

To remove possible side channel attacks on the Coopet-
itive Mode system, we modify the XGBoost split finding
algorithm and summary merge operations to be data obliv-
ious. Our contributions toward this effort thus far have
been in identifying and implementing the oblivious prim-
itives that the novel oblivious algorithms require. Specifi-
cally, XGBoost relies on an oblivious sort operation, which
is built on oblivious compares, assignment, and array ac-
cesses.

Below is a code snippet for an oblivious assignment
function supporting integral types, written in inline assem-
bly.

1 / / R e t u r n s t v a l i f p r ed i s t r u e e l s e f v a l
2 t e m p l a t e <typename T>
3 T o a s s i g n ( boo l pred , T t v a l , T f v a l ) {
4 T r e s u l t ;
5 a s m v o l a t i l e (
6 ”mov %2, %0;”
7 ” t e s t %1, %1;”
8 ” cmovz %3, %0;”
9 : ”=& r ” ( r e s u l t )

10 : ” r ” ( p r ed ) ,
11 ” r ” ( t v a l ) ,
12 ” r ” ( f v a l )
13 : ” cc ”
14 ) ;
15 r e t u r n r e s u l t ;
16 }

The motivation behind writing this function lies in our
desire to achieve the behavior of the following pseudocode:

1 i f ( p r ed )
2 r e t u r n x ;
3 e l s e
4 r e t u r n y ;

However, we want to achieve this without having
branches in our compiled code. One direction we tried was
to use the ternary operator,

1 r e t u r n p red ? x : y ;

but when compiled with x86-64 gcc 9.2 in the online com-
piler explorer, Godbolt, the resulting assembly contained
jump instructions. This motivates our need for custom writ-
ten assembly to implement the oblivious primitives. In par-
ticular, we use the CMOVcc (conditional move) x86 in-
struction to implement oblivious conditional assignment.
This approach was discussed in [22].

We plan to optimize these primitives, as well as imple-
ment efficient oblivious array access using vectorized in-
structions.

6.4. Information Leakage

Because all computation on sensitive data occurs within
enclaves, no information is leaked. Furthermore, oblivious-
ness makes the system resistant to access pattern leakage
attacks, eliminating a set of potential inference attacks on
side channels. Though other side channels like timing and
power analysis attacks exist, they are out of the scope of this
paper.
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7. Implementation
Thus far, we’ve implemented prototypes for both feder-

ated and coopetitive mode. Below we discuss in more detail
the implementation of each.

7.1. Federated Mode

Federated mode is written in Python and C++. Much
of the tracker code for topology initialization is written in
Python, while Allreduce and the XGBoost algorithms are
in C++. We provide a Python API as an interface to our
system.

1 # Instantiate FederatedXGBoost
2 fxgb = FederatedXGBoost()
3

4 # Get number of federating parties
5 print(fxgb.get_num_parties())
6

7 # Load training data
8 fxgb.load_training_data(’hb_train.csv’)
9

10 # Train a model
11 params = {’max_depth’: 3}
12 num_rounds = 40
13 fxgb.train(params, num_rounds)
14

15 # Load the test data
16 fxgb.load_test_data(’hb_test.csv’)
17

18 # Evaluate the model
19 print(fxgb.eval())
20

21 # Get predictions
22 ypred = fxgb.predict()
23

24 # Save the model
25 fxgb.save_model("fxgb_model.model")
26

27 # Shutdown
28 fxgb.shutdown()

Federated mode is logically split into two stages. First,
the aggregator initializes connections with all parties and
sends a request to start training. Second, all parties perform
federated training. Stage 1 leverages gRPC [1] to enable the
aggregator to remotely commence training on all parties’
machines. Stage 2 leverages Mbed TLS [2] to encrypt all
communication between the aggregator and the parties.

Thus far, Federated XGBoost has required about an addi-
tional 100 lines of code over the existing XGBoost system.
However, we do not yet have a fully functioning integration
of TLS.

7.2. Coopetitive Mode

Coopetitive mode is written in Python, C++, and x86 as-
sembly. We support a Python frontend for ease of use with a
C++ backend – the C++ encapsulates all the cryptography,
the data processing functionality within enclaves, and the

remote attestation logic. We implement some of the oblivi-
ous primitives with assembly code. Below is example usage
of our Python API

1 enclave = xgb.Enclave("xgboost_enclave.signed")
2

3 # Remote Attestation
4 enclave.get_remote_report_with_pubkey()
5 enclave.verify_remote_report_and_set_pubkey()
6

7 dtrain = xgb.DMatrix("train.encrypted")
8 dtest = xgb.DMatrix("test.encrypted")
9

10 booster = xgb.Booster()
11 booster.set_param(params)
12

13 for i in range(n_trees):
14 booster.update(dtrain, i)
15 booster.eval_set([(dtrain, "train"), (dtest, "

test")], i)
16

17 booster.predict(dtest)

In our implementation, we use the Open Enclave SDK
[3] to integrate enclaves with XGBoost, Mbed TLS [2] for
cryptography and gRPC [1] to enable party/central-cluster
architecture. We’ve also tested our system on Microsoft
Azure Confidential Computing, a cloud offering of Intel
SGX enclaves.

We have not yet fully added TLS to coopetitive mode.
Obliviousness has also not been completely implemented.
The distributed version of coopetitive XGBoost is also still
buggy. Our implementation thus far has required about
4,000 lines of additional code.

8. Evaluation
We use the Higgs Boson [4] and Allstate Insurance

Claim [5] datasets for evaluation, as the original XGBoost
paper [8] also did. The Higgs Boson dataset has 27 fea-
tures, while the Allstate Insurance Claim dataset has 34 fea-
tures. We present both accuracy and performance numbers
for federated and coopetitive mode.

8.1. Federated Mode

Our evaluations regarding federated mode pertain to
measuring both accuracy and training time for the star
topology and comparing metrics to training using the orig-
inal tree topology. These results are simulated locally on a
Macbook Pro running Catalina 10.15.1 with 16 GB of RAM
and a 2.3 GHz 8-Core Intel Core i9-9880H CPU by run-
ning 7 ”workers” in different processes. As a result, metrics
in this experiment do not include network latencies. Each
worker node has around 140,000 rows of data, randomly
selected from the Higgs Boson dataset[4].

Figure 6 shows the results of these experiments. Both
training time and accuracy in federated mode are compara-
ble to those of vanilla XGboost.
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Figure 6. Tree vs Star Topology Metrics

8.2. Coopetitive Mode

Since our coopetitive mode implementation does not yet
support obliviousness, the numbers we present for coopet-
itive mode do not include the overhead of obliviousness.
Usually, obliviousness adds a 2x-10x overhead to existing
performance.

We ran our coopetitive experiments on Microsoft Azure
Confidential Computing, on machines with 4 vCPUs and
16 GB RAM. Secure XGBoost ran on Standard DC4s ma-
chines with Intel SGX enclaves, while vanilla XGBoost ran
on Standard D4s v3 machines.

Because our enclave integration and oblivious algo-
rithms do not touch the learning part of XGboost, we do
not expect the accuracy to differ at all. This is reflected in
our measurements, as the accuracies we obtain for the Higgs
Boson data and the Allstate Insurance claim data on test sets
are the same for coopetitive XGboost vs vanilla XGBoost.
For Higgs Boson, both our coopetitive implementation and
the vanilla implementation achieve an AUC of 0.7461556
after training on 1 million rows. For the Allstate dataset,
both our coopetitive implementation and the vanilla imple-
mentation achieve an AUC of 0.7830182 after training on 1
million rows.

We also present performance metrics for both the Higgs
Boson and Allstate Insurance claim datasets for our coopet-
itive implementation. We compare training times of our
coopetitive implementation (with Intel SGX hardware en-
claves but no obliviousness) to the vanilla implementation
on various data sizes. Our results are in Figure 7 and Figure
8.

Figure 7. Benchmarking training times on Higgs Boson dataset,
comparing Secure XGBoost vs Vanilla XGBoost. We measure the
training time on a varying number of rows.

Figure 8. Benchmarking training times on Allstate Insurance
Claim dataset, comparing Secure XGBoost vs Vanilla XGBoost.
We measure the training time on a varying number of rows.

9. Real World Use Cases
We’ve been fortunate enough to collaborate with some

folks in industry, in the realms of banking and network ser-
vice providers. Unfortunately, due to NDA, we cannot dis-
cuss the details of our collaboration in this paper.

10. Future Work
Our first next steps are to finish implementations of both

federated mode and coopetitive mode. Federated mode is
nearly complete – we just need to finish supporting en-
crypted communication. Coopetitive mode requires a bit
more work – we need to finish adding obliviousness, debug-
ging our distributed implementation, and support encrypted
communication.

Once our implementations are complete, we’ll need
to optimize our systems for more practical performance.
Though our systems do provide strong security guarantees,
the faster we can make them run, the better.

The issue of authentication is also present in our system.
In federated mode, how does the aggregator ensure that the
parties are indeed part of the federation? How do the par-
ties know that the aggregator is their trusted aggregator? In
coopetitive mode, some of the same issues arise, but in a
party-to-party manner. Either our system needs to adopt
and integrate a public key infrastructure, or we need to rely
on an existing one and trust that the users of our system can
properly use it.

The field of secure collaborative learning has much po-
tential for exciting new work. To us, there are two main
directions that secure collaborative learning is heading –
towards hardware enclaves and towards secure multiparty
computation (MPC) [6]. Some directions to go include re-
designing other existing machine learning frameworks to
run inside hardware enclaves, designing MPC frameworks
that support specific machine learning algorithms, or even
designing new machine learning libraries with security in
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mind. We believe that current and novel work in secure col-
laborative learning will yield great benefits, enabling data
that could previously not be shared to be leveraged to pro-
duce better performing models.

11. Conclusion
In this paper we presented Secure XGBoost, a secure

system built on top of XGBoost that enables collaborative
learning by multiple parties on sensitive data. Our sys-
tem offers two modes: federated mode, which requires a
trusted centralized aggregator but offers better performance,
and coopetitive mode, which leverages secure enclaves and
obliviousness to protect against malicious adversaries. De-
velopment on both systems is currently in progress, and
the code is open source at https://github.com/
mc2-project/mc2.
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Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data,
2016. 1

[21] Vishal Morde. Xgboost algorithm: Long may she reign!,
2019. 1

[22] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on trusted
processors. In 25th USENIX Security Symposium (USENIX
Security 16), pages 619–636, Austin, TX, Aug. 2016.
USENIX Association. 3, 6

[23] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce
algorithms for clusters of workstations. Journal of Parallel
and Distributed Computing, 69(2):117–124, 2009. 4

[24] Mark Russinovich. The rise of confidential computing. 2
[25] George Seif. A beginner’s guide to xgboost. 1
[26] Hiie Vill. Sgx attestation process. 6
[27] Wenting Zheng, Ankur Dave, Jethro G Beekman,

Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica.
Opaque: An oblivious and encrypted distributed analytics
platform. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17), pages
283–298, 2017. 2

[28] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and
Ion Stoica. Helen: Maliciously secure coopetitive learning
for linear models. CoRR, abs/1907.07212, 2019. 2

10


