

 1

Scalable Routing Information Base for the Global
Data Plane

Jason Li XiangJun1 and John D. Kubiatowicz2

Abstract

The number of edge devices has grown exponentially
over the past few years and will continue to grow at an
accelerated rate with the gradual adoption of 5G
technology which brings even more bandwidth and
connectivity to the world, and the normalization of
smart devices and machines such as cars, refrigerators,
and watches. Data, along with its transmission, storage,
and eventual usage become an important issue for
many. The Global Data Plane [1] project was created
to address the challenge of collecting, accessing and
managing data scalably with built-in security and good
mobility for end devices by treating data as its first-
class citizen and providing support for distributed
storage, fast retrieval, and rule-based efficient routing.

Our work focuses on building a scalable and secure
routing architecture for the top-level network that
connects all the edge routers of different trust domains.
Our proposed approach seeks to accommodate
trillions of unique log hashes (or ids) and up to one
million network devices which, in our view, should be
more than sufficient to fulfill the promises of the GDP
project. The objective of this paper is to propose a
starting point or a sketch of how such a system should
look like. Although we were not able to simulate the
model and get results on 1 million nodes due to limited
computing resources, our experimental results for the
proposed architecture works reasonably well in a
network of 400k top-level switches. We present our
system architecture, design choices, and analysis of
our simulation results in this paper.

1Jason is an undergraduate student in Computer Science and Business, University of California, Berkeley Email: lxj@berkeley.edu
2 John is a professor in the Department of Computer Science, University of California, Berkeley

Introduction

Our work revolves around building a routing backbone
for trillions of connected network devices via location-
independent identifiers for the Global Data Plane
(GDP). The GDP project was first proposed by the
Berkeley Swarm Lab and sought to deliver a higher
level of abstraction for data that fits more with the
requirements of modern edge devices. The GDP
project proposes a “single-writer append-only log”
model as the interface for its users. We present below
a few important considerations in the conception of the
GDP project and also our decision for the routing layer:

1. Security and Configurable Privacy: Data
privacy has become a huge issue recently. As
our lives become more digital, more of our
private life is exposed. A smart home device
like Amazon Echo is constantly recording the
voices in our house including our
conversations. Google’s Nest thermometer is
transmitting our room temperature to the
cloud server around the clock. The GDP
should provide an easy way for users to
protect that data even when it is stored in
cloud data centers. That is to say, encryption
should come by default. No one but the
owners of the data should have the rights to
modify it. The owner should be able to give
selective individuals READ permissions too.
When the data is in transit from its source to
the destination, the retriever should be able to
specify regions through which he wants to
avoid sending the data to prevent side-
channel attacks. Modern attackers have

 2

grown increasingly sophisticated and side
channels have become an important source
for data leaks.

2. Scalability: According to the latest MOMO’s
report, it was estimated that over 2.5
quintillion bytes of data are created every
single day [2]. And with the rise of the IoT
devices, a recent estimate shows that we have
more than 22 billion devices connected to the
Internet. This number is projected to rise to
50 billion by 2030 [3]. The GDP thus has to
accommodate potential data containers (a.k.a
logs) on such a massive scale.

3. Durability of Data: Data loss happens and it
is essential for backup ability to be built into
the GDP system – the system should allow
data containers to be hosted by multiple
network endpoints. During retrieval, the
routing layers should make smart decisions
about where to get the data from, taking into
account latency and user’s explicit
preferences, if any.

One of the most important characteristics of the GDP
is its naming. Rather than using IP to communicate or
an overlay network that is powered by IP, the global
data plane is envisioned to have a true flat namespace
– they are unique, self-certifying (via the use of public
and private key infrastructure), and location
independent. The traditional architecture uses
location-dependent identifiers (e.g. IPs) along with a
hierarchical search path from the local router’s routing
table all the way to tier 1 providers. Since IP addresses
are typically distributed in blocks to providers in
different countries and then further divided into
different regions, the prefix of IP addresses can be
used as a cue to make efficient decisions for routing.
For example, if an IP address 216.190.0.0/16 belongs
to the United States. If a user in Singapore wants to
send traffic to any address covered by this range, his
ISP can quickly figure out where the next hop would
be. However, this approach has its own shortcomings.
Many a time, routing and route computation,
especially at the BGP layer, is not based on the shortest
path possible but rather a set of complicated rules set
by the ISPs which has more to do with business than
efficiency. And we need to trust all the tier 1 providers
in order for the system to function properly. Any

misconfiguration by a top tier ISP, be it intentional or
accidental, can disrupt traffic for customers beyond his
service. As a quintessential example, a recent route
misconfiguration by one of the top tier ISPs from
China resulted in the traffic to Google from the US east
coast being sent all the way to China and then Russia
before going back to the US. In addition, the network
does best-effort delivery. While this model works as it
delivers the data, security is a big concern even when
the data is transmitted over encrypted channels. Side-
channel attacks are possible and an honest but curious
on-path attacker can extract a significant amount of
meta-information by looking at the communication
pattern. Our solution to this issue is to allow clients to
specify a subset of trusted top tier switches or a set of
switches to be excluded.

While using a flat namespace can be an elegant
solution for the problems faced by IP-based routing,
there are a few challenges, especially if our network
seeks to accommodate trillions of data containers. One
of the biggest challenges is how to do lookup
efficiently given that we might have such a huge
amount of data and also how to route efficiently. This
issue has implications regarding how we should
construct our top-level topology. Various research has
been done in the past. The first group of research on
flat-name routing build on top of DHT technologies
and led to the creation of Kademlia [4] and Chord [5]
which essential store the hashes of a node’s
information in a distributed fashion. What
distinguishes it from the traditional distributed storage
system is that each storage node in these network does
not need to know everyone else that is in the system,
they just need to know a subset of the machines.
Regarding efficiency, lookup can be on in O(log n)
with n being the number of storage nodes in the system.
There are also other schemes that built on these ideas
such as the “Canon in G Major” [6] which extends a
planer DHT into a hierarchical structure which would
allow different trust domains to operate. However, all
these solutions presuppose an overlay network and
uses the native routing on the overlay network which
is IP. This is a major limitation if we were to choose
them for our design. There are also approaches such as
ROFEL [7] and VRR [8] which aimed to build an id-
based routing protocol by introducing a node id space
upon which path discovery happens dynamically and

 3

automatically. VIR [9] furthered the work of ROFEL
and VRR by proposing an intermediate virtual id space
to dynamically optimize the connection between hosts
to lower the stretch. However, even VIR’s
performance is not good enough for a large-scale
network because of the following:

1. The overhead of nodes joining and leaving is
significant.

2. Each node potentially has to store a lot of
routing information. It is hard to impose such
storage requirements on nodes if one does not
have control over them as it is indeed the case
in the top-level switch network in GDP.

3. Stretch is still significant. With about 200
nodes in the network, the stretch can go up to
3.5.

4. Security remains a top concern if all the
nodes are not controlled by a single entity. A
dishonest node in the network can potentially
screw up the whole routing mechanism and

affect routes that do not event pass through
itself, much like the vulnerability in the GDP
case.

For this reason, we have chosen to use a centralized
RIB with path computation done via an enhanced
Dijkstra algorithm which offers both speed guarantee
and can allow the injection of user preference into the
computation of routes such as the set of nodes to avoid.
Dijkstra algorithm can be very fast on graphs with
millions of nodes offering about 1 second latency [10].
Some C implementation of the graph engine such as
graph-tool have a latency of 0.5 seconds on real-world
road dataset that consists of 1.4 million nodes. Various
techniques are also available to further speed up the
shortest path search such as contraction hierarchies.
By centralizing the management of the top-level
topology and route computation, it offers a lot of
speed-up potential and flexibility for shortest path
computation which always yields a stretch of 1.

 4

Overview

The figure above offered a good overview of our top-
level architecture. There are two important elements in
the system: switches and data containers(logs).
Switches are responsible for forwarding the traffic and
the containers are the actual data. While there might
be trillions of containers, there would be at most a few
million switches at the top level.

Each switch in the figure above represents an edge
switch of a trust domain. A trust domain could be a
cooperation, a local IPS or a university, inside which
there could be thousands of nodes and millions of data
containers. Each data container is identified by the
hashes of its metadata which includes the public key
of the owner of the data container. This design will
make the container self-certifying because anyone
who is given the hash of the container can verify if the
network indeed returned him genuine data. Any data
temperament by malicious on-path switches or
corruption due to an unreliable link will be detected
because the hash value does not match.

Our architecture does not assume any point-to-point
connectivity at the switch layer. Nor is there a native
routing capability such as the IP-based prefix routing
capability. All switches are assumed to be L2
connected and the connection does not have to be a
fully connected graph. However, one simplifying
assumption that we made is that each node can reach
the RIB directly without going through another node.
This is a necessary condition for a switch to qualify as
the top-level switch. Top-level switches can peer with
each other and communicate via dTLS.

The routing information base is a huge cluster of nodes
that mainly serve 2 distinct functions. The route
computation node is responsible for maintaining an
up-to-date diagram of the top-level switches and
perform route computation. Assuming that we have 1
million nodes and each node connects with 5 other top-
level switches, the total memory required to store this
topology information would be (10 ** 6) * 5 * 256 / 8
/ 10 ** 9 < 2 GB. Switches actively advertise their
neighbor information to the RIB. The route
computation modules are horizontally scalable
because one computation instance is independent of

another. The DHT based key-value store is used for
efficient look up from the log hash request by the end
user to the top-level switch that exports the container’s
information.

Edge switches, upon receiving a data retrieval request
from its internal nodes will then contact the RIB for
routes. The RIB computes the shortest path from the
edge switch to the destination switch that holds the log
id and then sends that information back to the switch
which then sends the packet out according to the next
hop switch id returned by the RIB.

Route & Log Advertising

RIB will receive route advertisement from the top-
level switches and also verify that those
advertisements are indeed valid in that the
advertisement has the consent of the data owner
though a challenge-response mechanism via the use of
public key cryptography. Each route advertising
request from the top-level switch to the RIB will get a
nonce which is a randomly generated 512-bit string.
The nonce could potentially be signed by a publicly
trusted certificate so that when the data owner received
the challenge, he can validate that it is indeed from the
real RIB. This way, man-in-the-middle attack can be
prevented and we can make sure that the RIB,
assuming that it is an honest player, will only advertise
logs with the log owner’s consent. After receiving the
nonce from the RIB, the client needs to send back the
following information via the top-level switch:

● Full metadata of the container information
● Timestamp
● Valid Window
● Signature

The full metadata will be used to compute the log hash.
Timestamp and valid window will be set by the user to
prevent purposefully delayed submission of a log
advertising response by any on-path attackers. The
RIB, upon receiving a request from the client will
validate the time constraint by first checking if the
timestamp exceeds its maximum age value. The RIB
will then compute (Timestamp + Valid Window) and
compare it with the current time. If the time is smaller
than the currently time, this response has expired. The

 5

client will have to compute the following signature,
using his private key to prove that he indeed owns the
data that is about to be advertised:

The computed signature will be verified by the server.
Requests containing invalid data or invalid signature
will be rejected. After the request is processed, a
success message will be returned to the client. The RIB
will then put a new entry into the distributed hash table
cluster with log hash as the key and as the switch ID
as the value.

For switches, there are two major types of requests
made to the RIB:

● SWITCH_HELLO: when a new switch
wants to register with the RIB

● SWITCH_ADVERTISE: when the switch
wants to update its peer table to the RIB

SWITCH_HELLO has a very similar process as log
advertising. Each switch also has its own public and
private key pair. When a switch joins a network, it first
sends a join request to the RIB. Within the same
session, the RIB will reply with a nonce. The switch
will then send the following information back to the
RIB as the reply:

● Public Key of the Switch which is also used
as the ID

● Timestamp
● Valid Window
● Signature

The signature will be generated as follows:

SWITCH_ADVERTISE is sent to the RIB whenever
there is a change in its peer table. In this request, not
only does the switch have to send his peers’ ids over,
he also has to obtain proof from his peers that they are
indeed connected to prevent malicious top-switch

operators from impersonating other switches. A
possible attack to maliciously intercept the traffic
going to Switch X would be to claim to the RIB that
the malicious switch is directly connected to X. The
RIB may then forward all traffic going to switch X
along a path that contains the malicious switch.
Having a proof mechanism would prevent such attacks.
The request follows the same format as
SWITCH_HELLO. The response is as follows:

● List of Proofs: (Peer ID, Timestamp, Valid
Window, Proof)

● Timestamp
● Valid Window
● Signature

Proof must be returned by the peer and can be
computed as follows:

The inclusion of timestamp and valid window will
prevent attackers from using the same proof even after
some time. Although by that time the nonce might
have expired, adding timestamp and valid window
would still give the peer switch greater control.

The requesting switch will then generate the signature
as follows:

When Switch A added a correct proof for Switch B it
means that Switch B is going to accept A’s data, so the
RIB will add a directed edge from Switch A to Switch
B. Equivalently, A is saying to the RIB that I am
reachable via Switch B. Notice that this has not
changed anything about Switch B’s neighbor map.
Traffic directed to Switch B will still never pass
through Switch A because Switch B has not advertised
Switch A as its neighbor yet. For there to be edges in
both directions, both Switch A and Switch B will have
to advertise each other to the RIB.

Signature	=	PubKey_Sign(private_key,	SHA3_512(Full	
metadata	||	Timestamp	||	Valid	Window	||	nonce))	

Proof	=	PubKey_Sign(peer_switch_private_key,	
SHA3_512(Public	Key	of	the	Peer	||	Public	Key	of	this	
Requesting	Switch	||	Timestamp	||	Valid	Window	||	
“SWITCH_ADVERTISE_PEER_PROOF”	||	nonce))	

Signature	=	PubKey_Sign(switch_private_key,	
SHA3_512(List	of	Proofs	||	Timestamp	||	Valid	Window	||	

“SWITCH_ADVERTISE”	||	nonce))	

Signature	=	PubKey_Sign(switch_private_key,	
SHA3_512(Public	Key	of	the	Switch	||Timestamp	||	Valid	

Window	||	“SWITCH_HELLO”	||	nonce))	

 6

Switch Design

Each edge switch will have to perform many roles.
First and foremost, it has to establish and maintain
connections with other peer switches via L2 links.
Upon each new peer connection, the switch should
send a HELLO message to the other switches and
exchange public keys via a similar challenge and
response mechanism. Whenever there is an update in
the peer table, the switch should then send an update
message of type SWITCH_ADVERTISE to the RIB.

The figure on the right outlines the internal structure
of a trust domain. There might be many nodes under
the edge switch which acts as an egress gateway. If a
log owner wants to advertise his log form somewhere
within the trust domain, he has to advertise it and the
message will first go to the edge switch and then to the
RIB. Similarly, when he wants to access a log stored
in other domains, he needs to contact the RIB via the
edge switch of the trust domain. In a sense, the edge
switch needs perform the functions of Network
Address Translations typically found in a router
because it needs to provide a proxy capability for
nodes within the trust domain to reach the outside and
for an incoming request looking for a particular data

container to be directed to the right internal node. This
function is performed by the Layer Translation Cache
in our design. As this paper is not focusing on the
tunneling between layers across the hierarchy, we will
not go into the details of the architecture here.

Cache Routing Table is a Least Recently Used (LRU)
Cache to accelerate packet forwarding. It acts very
much like the routing table in a switch. However,
instead of doing prefix matching, this table maintains
the destination switch ID and the next hop ID to speed
up communication after the first packet passes through
it. Since the very first time when a node P tries to
retrieve content Q, routing resolution has to happen at
each hop (switch), this layer can be used to efficiently
forward packets after the very first trip because the
next hop ID is cached in each switch along the route
and no query to the central RIB is necessary.

Finding a Route

When a user sends a request to retrieve some data
container by its ID. The request first hits a resolution
service within the trust domain. If the data does not
reside within the trust domain, the request will arrive
at the edge router which will then make a
ROUTE_COMPUTE request to the RIB. This
message will include the following:

● Log ID
● (Not implemented) Trusted Switches to

Include
● (Not implemented) Untrusted Switches to

Exclude

The RIB will them perform route computation based
on these parameters and return to the router the next
hop ID. At the same time, the RIB will cache the
computed route because very likely the RIB will be
consulted again by the next hop router along the path.
By putting the computed results in memory, the
amount of computation can be reduced significantly.

Note that we assume the channel through which such
communication happens is already established and is
secure. Identities should have been proven for both
parties using the public key infrastructure. Procedure

 7

to achieve this is very similar to that described in the
Route & Log Advertising Section.

Evaluation

Our implementation has about 2,500 lines of code and
is done in Golang because its friendliness with I/O
intensive programming. For languages such as Java
and Python, without using special packages every TCP
connection established will create a new thread.
Running simulations on the millions scale is simply
impossible because the sheer amount of threads and
context switch overhead will paralyze the operating
system. Go, on the other hand, employs light-weight
threads called go routines which are not real operating
system threads. Go has its own user space runtime
scheduler to coordinate the different virtual threads
which are much faster than using the thread
management of the Linux operating system. Another
way to deal with the Linux limitation is to use kernel
bypass techniques via packages such as DPDK and
move the network stack into the user space along with
the use of C/C++ which gives even more control and
efficiency to the programmer. However, given the
limited time we have, Golang seems to be our best
choice as it strikes a balance between verbosity and
efficiency.

Due to limited time and resources, our prototype of the
system did not include the security dimension of our
outline architecture. All participants in the system are
assumed to be trustworthy. We don’t think adding the
security dimension would greatly impact the
experimental results as most of the cryptography
burden is one-time and only happens at the set-up time.
Once a router enters its stable mode and starts passing
packets, it has to do very little cryptography.

Graph Generation
To evaluate the scalability of our implementation, we
tried to find publicly available datasets on the topology
of tier 1 ISPs but we only found limited and dated
information with about three thousand nodes which
does not meet our needs so we need a way to generate
large and density-constraint network graphs of
different sizes and they have to resemble real-world
network topologies. We used a very simple algorithm.
Starting from the second node, each new switch is
equally likely to be connected with switches that are
already in the network. To show the reader how the
produced graphs look like, we have included below
visualizations for n = 50, 100, 200, 400. Visually, they
do have the topology of a real network and
theoretically, we feel it is a sensible model because
when new switches connect, it is likely to peer with
someone who’s already connected in the network.

Experiment Set-Up

Each switch instance is given a forwarding delay of a
normal distribution with a mean of 1 millisecond. We
instruct the system to send 1 thousand packets between
1 thousand pairs of two randomly chosen nodes and
collect the logs printed by each switch. We then
instruct the system to send another 1 thousand packets

to the same set of source-destinations to measure the
trip time with route cache.

A vanilla Linux installation is not capable of having
more than 1024 concurrent TCP connections per
process due to system limitations. To accommodate a
large number of concurrent connections, we have to
make the following change:

 8

1. File Descriptors: We first increased the
kernel max limit to 2 million by executing
"echo 20000000 > /proc/sys/fs/nr_open” and
then in the current shell, changed the per
process file descriptor limit to the maximum
value via “ulimit -n 20000000”

2. Maximum TCP pages: We increased the
maximum number of pages that could be
allocated for TCP connections. By default, it
is around 3 GB, we had to increase this limit
by executing “sysctl -w
net.ipv4.tcp_mem="383865 511820
2303190"

3. TCP specific settings: We edited the system
configuration file at /etc/sysctl.conf to have
the following

a. fs.file-max = 20000000
b. net.ipv4.ip_conntrack_max =

20000000

c. net.ipv4.netfilter.ip_conntrack_max
= 20000000

4. Buffer Size: the following commands were
executed to increase the TCP read and write
buffer size

a. sysctl -w net.ipv4.tcp_rmem="1024
4096 16384"

b. sysctl -w
net.ipv4.tcp_wmem="1024 4096
16384"

c. sysctl -w
net.ipv4.tcp_moderate_rcvbuf="0"

Our Golang programs are compiled into statically
linked binary files. They are then executed with sudo
privileges on two AWS r5.metal machines, each with
96 logical processors, 768 GB memory and 19,000
Mbps bandwidth.

Results and Analysis

The result shows that the route latency goes up with
the path length. This is mainly due to the increase in

 9

path computation time. At 40,000 nodes, the single trip
time still looks acceptable. It would be more
informative to test how the system will perform when
it reaches 1 million virtual switches. Another
observation is that the cache hit time stayed almost flat
with a small positive gradient for all network sizes
which highlights that caching is an effective way of
speeding up packet forwarding.

We also noticed the unusual spikes when n = 4000 and
400. Our conjecture is that the spikes could have been
caused by Go’s garbage collector or it could be a very
corner case in the graph that demanded a lot of
computation time which has happened a few times to
us. While our Dijkstra’s algorithm works well most of
the time, it does take an unusually large amount of
time to compute for some routes. It would definitely
be interesting to continue investigating what is causing
the performance degradation.

Future Work and Discussion

Discrete-time simulation
In our set-up, we used a simple delay for the network
switches and measured the single-trip latency. This
approach, however, can be very inaccurate. It might
overstate the actual latency by a significant amount
because context switch, go routine switch, driver, and
network overhead will add to the delay. Using a
discrete time step simulation tool will help mitigate
this problem and produce better results.

Running for 1 million nodes using real-world
topology

Due to limited time and resources, we were unable to
run our experiment with 1 million nodes. The next step
for us is definitely to deploy more machines and
simulate the architecture on more nodes perhaps with
real-world data. It would be interesting to see to what
extent does our graph generation techniques reflect the
real-world network topology and the associated
performance differences.

Making tweaks to the shortest graph computation
algorithm

While the go program did deliver satisfactory
performance with 40 thousand nodes, it might not be
able to achieve a computation time below 1 second
when there are one million nodes. Our graph
computation engine is not as fast as the state-of-the-art
graph-tool and in our future research, we will build on
the c-library graph-tool and investigate other
techniques to speed up the shortest path search. For
example, a real-world switch network might also have
some unbalanced traffic patterns. There might be a few
switch-to-switch highways that efficiently connect big
groups of top-tier switches and the rest are just like the
country-side roads which do not usually carry a lot of
traffic. Contraction hierarchies may be applied here to
drastically speed up the shortest path search.

References
1. Jing, Xiangpeng, and Dipankar Raychaudhuri. "Global

control plane architecture for cognitive radio
networks." 2007 IEEE International Conference on
Communications. IEEE, 2007.

2. Internet Society Global Internet Report,
https://future.internetsociety.org/2019/wp-
content/uploads/sites/2/2019/04/InternetSociety-
GlobalInternetReport-
ConsolidationintheInternetEconomy.pdf

3. Global Connected and IoT Device Forecast Update,
https://www.strategyanalytics.com/access-
services/devices/connected-home/consumer-
electronics/reports/report-detail/global-connected-and-
iot-device-forecast-updateds

4. Maymounkov, Petar, and David Mazieres. "Kademlia:
A peer-to-peer information system based on the xor
metric." International Workshop on Peer-to-Peer
Systems. Springer, Berlin, Heidelberg, 2002.

5. Stoica, Ion, et al. "Chord: A scalable peer-to-peer
lookup service for internet applications." ACM
SIGCOMM Computer Communication Review 31.4
(2001): 149-160.

6. Ganesan, Prasanna, Krishna Gummadi, and Hector
Garcia-Molina. "Canon in G major: designing DHTs
with hierarchical structure." 24th International
Conference on Distributed Computing Systems, 2004.
Proceedings.. IEEE, 2004.

7. Caesar, Matthew, et al. "ROFL: routing on flat labels."
ACM SIGCOMM Computer Communication Review
36.4 (2006): 363-374.

8. Caesar, Matthew, et al. "Virtual ring routing: network
routing inspired by DHTs." ACM SIGCOMM computer
communication review. Vol. 36. No. 4. ACM, 2006.

9. Lu, Guor-Huar, et al. "Virtual id routing: a scalable
routing framework with support for mobility and
routing efficiency." Proceedings of the 3rd

 10

international workshop on Mobility in the evolving
internet architecture. ACM, 2008.

10. Aviram, Nimrod, and Yuval Shavitt. "Optimizing
Dijkstra for real-world performance." arXiv preprint
arXiv:1505.05033 (2015).

