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Abstract 
 
The number of edge devices has grown exponentially 
over the past few years and will continue to grow at an 
accelerated rate with the gradual adoption of 5G 
technology which brings even more bandwidth and 
connectivity to the world, and the normalization of 
smart devices and machines such as cars, refrigerators, 
and watches. Data, along with its transmission, storage, 
and eventual usage become an important issue for 
many. The Global Data Plane [1] project was created 
to address the challenge of collecting, accessing and 
managing data scalably with built-in security and good 
mobility for end devices by treating data as its first-
class citizen and providing support for distributed 
storage, fast retrieval, and rule-based efficient routing.  
 
Our work focuses on building a scalable and secure 
routing architecture for the top-level network that 
connects all the edge routers of different trust domains. 
Our proposed approach seeks to accommodate 
trillions of unique log hashes (or ids) and up to one 
million network devices which, in our view, should be 
more than sufficient to fulfill the promises of the GDP 
project. The objective of this paper is to propose a 
starting point or a sketch of how such a system should 
look like. Although we were not able to simulate the 
model and get results on 1 million nodes due to limited 
computing resources, our experimental results for the 
proposed architecture works reasonably well in a 
network of 400k top-level switches. We present our 
system architecture, design choices, and analysis of 
our simulation results in this paper.  
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Introduction 
 
Our work revolves around building a routing backbone 
for trillions of connected network devices via location-
independent identifiers for the Global Data Plane 
(GDP). The GDP project was first proposed by the 
Berkeley Swarm Lab and sought to deliver a higher 
level of abstraction for data that fits more with the 
requirements of modern edge devices. The GDP 
project proposes a “single-writer append-only log” 
model as the interface for its users. We present below 
a few important considerations in the conception of the 
GDP project and also our decision for the routing layer: 
 

1. Security and Configurable Privacy: Data 
privacy has become a huge issue recently. As 
our lives become more digital, more of our 
private life is exposed. A smart home device 
like Amazon Echo is constantly recording the 
voices in our house including our 
conversations. Google’s Nest thermometer is 
transmitting our room temperature to the 
cloud server around the clock. The GDP 
should provide an easy way for users to 
protect that data even when it is stored in 
cloud data centers. That is to say, encryption 
should come by default. No one but the 
owners of the data should have the rights to 
modify it. The owner should be able to give 
selective individuals READ permissions too. 
When the data is in transit from its source to 
the destination, the retriever should be able to 
specify regions through which he wants to 
avoid sending the data to prevent side-
channel attacks. Modern attackers have 
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grown increasingly sophisticated and side 
channels have become an important source 
for data leaks. 

2. Scalability: According to the latest MOMO’s 
report, it was estimated that over 2.5 
quintillion bytes of data are created every 
single day [2]. And with the rise of the IoT 
devices, a recent estimate shows that we have 
more than 22 billion devices connected to the 
Internet. This number is projected to rise to 
50 billion by 2030 [3]. The GDP thus has to 
accommodate potential data containers (a.k.a 
logs) on such a massive scale. 

3. Durability of Data: Data loss happens and it 
is essential for backup ability to be built into 
the GDP system – the system should allow 
data containers to be hosted by multiple 
network endpoints. During retrieval, the 
routing layers should make smart decisions 
about where to get the data from, taking into 
account latency and user’s explicit 
preferences, if any. 

 
One of the most important characteristics of the GDP 
is its naming. Rather than using IP to communicate or 
an overlay network that is powered by IP, the global 
data plane is envisioned to have a true flat namespace 
– they are unique, self-certifying (via the use of public 
and private key infrastructure), and location 
independent. The traditional architecture uses 
location-dependent identifiers (e.g. IPs) along with a 
hierarchical search path from the local router’s routing 
table all the way to tier 1 providers. Since IP addresses 
are typically distributed in blocks to providers in 
different countries and then further divided into 
different regions, the prefix of IP addresses can be 
used as a cue to make efficient decisions for routing. 
For example, if an IP address 216.190.0.0/16 belongs 
to the United States. If a user in Singapore wants to 
send traffic to any address covered by this range, his 
ISP can quickly figure out where the next hop would 
be. However, this approach has its own shortcomings. 
Many a time, routing and route computation, 
especially at the BGP layer, is not based on the shortest 
path possible but rather a set of complicated rules set 
by the ISPs which has more to do with business than 
efficiency. And we need to trust all the tier 1 providers 
in order for the system to function properly. Any 

misconfiguration by a top tier ISP, be it intentional or 
accidental, can disrupt traffic for customers beyond his 
service. As a quintessential example, a recent route 
misconfiguration by one of the top tier ISPs from 
China resulted in the traffic to Google from the US east 
coast being sent all the way to China and then Russia 
before going back to the US. In addition, the network 
does best-effort delivery. While this model works as it 
delivers the data, security is a big concern even when 
the data is transmitted over encrypted channels. Side-
channel attacks are possible and an honest but curious 
on-path attacker can extract a significant amount of 
meta-information by looking at the communication 
pattern. Our solution to this issue is to allow clients to 
specify a subset of trusted top tier switches or a set of 
switches to be excluded. 
 
While using a flat namespace can be an elegant 
solution for the problems faced by IP-based routing, 
there are a few challenges, especially if our network 
seeks to accommodate trillions of data containers. One 
of the biggest challenges is how to do lookup 
efficiently given that we might have such a huge 
amount of data and also how to route efficiently. This 
issue has implications regarding how we should 
construct our top-level topology. Various research has 
been done in the past. The first group of research on 
flat-name routing build on top of DHT technologies 
and led to the creation of Kademlia [4] and Chord [5] 
which essential store the hashes of a node’s 
information in a distributed fashion. What 
distinguishes it from the traditional distributed storage 
system is that each storage node in these network does 
not need to know everyone else that is in the system, 
they just need to know a subset of the machines. 
Regarding efficiency, lookup can be on in O(log n) 
with n being the number of storage nodes in the system. 
There are also other schemes that built on these ideas 
such as the “Canon in G Major” [6] which extends a 
planer DHT into a hierarchical structure which would 
allow different trust domains to operate. However, all 
these solutions presuppose an overlay network and 
uses the native routing on the overlay network which 
is IP. This is a major limitation if we were to choose 
them for our design. There are also approaches such as 
ROFEL [7] and VRR [8] which aimed to build an id-
based routing protocol by introducing a node id space 
upon which path discovery happens dynamically and 
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automatically. VIR [9] furthered the work of ROFEL 
and VRR by proposing an intermediate virtual id space 
to dynamically optimize the connection between hosts 
to lower the stretch. However, even VIR’s 
performance is not good enough for a large-scale 
network because of the following:  

1. The overhead of nodes joining and leaving is 
significant.  

2. Each node potentially has to store a lot of 
routing information. It is hard to impose such 
storage requirements on nodes if one does not 
have control over them as it is indeed the case 
in the top-level switch network in GDP.  

3. Stretch is still significant. With about 200 
nodes in the network, the stretch can go up to 
3.5.  

4. Security remains a top concern if all the 
nodes are not controlled by a single entity. A 
dishonest node in the network can potentially 
screw up the whole routing mechanism and 

affect routes that do not event pass through 
itself, much like the vulnerability in the GDP 
case. 
 

For this reason, we have chosen to use a centralized 
RIB with path computation done via an enhanced 
Dijkstra algorithm which offers both speed guarantee 
and can allow the injection of user preference into the 
computation of routes such as the set of nodes to avoid. 
Dijkstra algorithm can be very fast on graphs with 
millions of nodes offering about 1 second latency [10]. 
Some C implementation of the graph engine such as 
graph-tool have a latency of 0.5 seconds on real-world 
road dataset that consists of 1.4 million nodes. Various 
techniques are also available to further speed up the 
shortest path search such as contraction hierarchies. 
By centralizing the management of the top-level 
topology and route computation, it offers a lot of 
speed-up potential and flexibility for shortest path 
computation which always yields a stretch of 1.
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Overview 
 
The figure above offered a good overview of our top-
level architecture. There are two important elements in 
the system: switches and data containers(logs). 
Switches are responsible for forwarding the traffic and 
the containers are the actual data. While there might 
be trillions of containers, there would be at most a few 
million switches at the top level. 
 
Each switch in the figure above represents an edge 
switch of a trust domain. A trust domain could be a 
cooperation, a local IPS or a university, inside which 
there could be thousands of nodes and millions of data 
containers. Each data container is identified by the 
hashes of its metadata which includes the public key 
of the owner of the data container. This design will 
make the container self-certifying because anyone 
who is given the hash of the container can verify if the 
network indeed returned him genuine data. Any data 
temperament by malicious on-path switches or 
corruption due to an unreliable link will be detected 
because the hash value does not match.  
 
Our architecture does not assume any point-to-point 
connectivity at the switch layer. Nor is there a native 
routing capability such as the IP-based prefix routing 
capability. All switches are assumed to be L2 
connected and the connection does not have to be a 
fully connected graph. However, one simplifying 
assumption that we made is that each node can reach 
the RIB directly without going through another node. 
This is a necessary condition for a switch to qualify as 
the top-level switch. Top-level switches can peer with 
each other and communicate via dTLS. 
 
The routing information base is a huge cluster of nodes 
that mainly serve 2 distinct functions. The route 
computation node is responsible for maintaining an 
up-to-date diagram of the top-level switches and 
perform route computation. Assuming that we have 1 
million nodes and each node connects with 5 other top-
level switches, the total memory required to store this 
topology information would be (10 ** 6) * 5 * 256 / 8 
/ 10 ** 9 < 2 GB. Switches actively advertise their 
neighbor information to the RIB. The route 
computation modules are horizontally scalable 
because one computation instance is independent of 

another. The DHT based key-value store is used for 
efficient look up from the log hash request by the end 
user to the top-level switch that exports the container’s 
information.  
 
Edge switches, upon receiving a data retrieval request 
from its internal nodes will then contact the RIB for 
routes. The RIB computes the shortest path from the 
edge switch to the destination switch that holds the log 
id and then sends that information back to the switch 
which then sends the packet out according to the next 
hop switch id returned by the RIB. 
 
Route & Log Advertising 
 
RIB will receive route advertisement from the top-
level switches and also verify that those 
advertisements are indeed valid in that the 
advertisement has the consent of the data owner 
though a challenge-response mechanism via the use of 
public key cryptography. Each route advertising 
request from the top-level switch to the RIB will get a 
nonce which is a randomly generated 512-bit string. 
The nonce could potentially be signed by a publicly 
trusted certificate so that when the data owner received 
the challenge, he can validate that it is indeed from the 
real RIB. This way, man-in-the-middle attack can be 
prevented and we can make sure that the RIB, 
assuming that it is an honest player, will only advertise 
logs with the log owner’s consent. After receiving the 
nonce from the RIB, the client needs to send back the 
following information via the top-level switch: 
 

● Full metadata of the container information 
● Timestamp 
● Valid Window  
● Signature  

 
The full metadata will be used to compute the log hash. 
Timestamp and valid window will be set by the user to 
prevent purposefully delayed submission of a log 
advertising response by any on-path attackers. The 
RIB, upon receiving a request from the client will 
validate the time constraint by first checking if the 
timestamp exceeds its maximum age value. The RIB 
will then compute (Timestamp + Valid Window) and 
compare it with the current time. If the time is smaller 
than the currently time, this response has expired. The 



 

 5 

client will have to compute the following signature, 
using his private key to prove that he indeed owns the 
data that is about to be advertised: 
 

 
The computed signature will be verified by the server. 
Requests containing invalid data or invalid signature 
will be rejected. After the request is processed, a 
success message will be returned to the client. The RIB 
will then put a new entry into the distributed hash table 
cluster with log hash as the key and as the switch ID 
as the value. 
 
For switches, there are two major types of requests 
made to the RIB:  
 

● SWITCH_HELLO: when a new switch 
wants to register with the RIB 

● SWITCH_ADVERTISE: when the switch 
wants to update its peer table to the RIB 

 
SWITCH_HELLO has a very similar process as log 
advertising. Each switch also has its own public and 
private key pair. When a switch joins a network, it first 
sends a join request to the RIB. Within the same 
session, the RIB will reply with a nonce. The switch 
will then send the following information back to the 
RIB as the reply: 
 

● Public Key of the Switch which is also used 
as the ID 

● Timestamp 
● Valid Window 
● Signature 

 
The signature will be generated as follows: 
 

 
SWITCH_ADVERTISE is sent to the RIB whenever 
there is a change in its peer table. In this request, not 
only does the switch have to send his peers’ ids over, 
he also has to obtain proof from his peers that they are 
indeed connected to prevent malicious top-switch 

operators from impersonating other switches. A 
possible attack to maliciously intercept the traffic 
going to Switch X would be to claim to the RIB that 
the malicious switch is directly connected to X. The 
RIB may then forward all traffic going to switch X 
along a path that contains the malicious switch. 
Having a proof mechanism would prevent such attacks. 
The request follows the same format as 
SWITCH_HELLO. The response is as follows: 
 

● List of Proofs: (Peer ID, Timestamp, Valid 
Window, Proof) 

● Timestamp 
● Valid Window 
● Signature 

 
Proof must be returned by the peer and can be 
computed as follows: 
 

 
The inclusion of timestamp and valid window will 
prevent attackers from using the same proof even after 
some time. Although by that time the nonce might 
have expired, adding timestamp and valid window 
would still give the peer switch greater control. 
 
The requesting switch will then generate the signature 
as follows: 
 

 
When Switch A added a correct proof for Switch B it 
means that Switch B is going to accept A’s data, so the 
RIB will add a directed edge from Switch A to Switch 
B. Equivalently, A is saying to the RIB that I am 
reachable via Switch B. Notice that this has not 
changed anything about Switch B’s neighbor map. 
Traffic directed to Switch B will still never pass 
through Switch A because Switch B has not advertised 
Switch A as its neighbor yet. For there to be edges in 
both directions, both Switch A and Switch B will have 
to advertise each other to the RIB.  

Signature	=	PubKey_Sign(private_key,	SHA3_512(Full	
metadata	||	Timestamp	||	Valid	Window	||	nonce))	

Proof	=	PubKey_Sign(peer_switch_private_key,	
SHA3_512(Public	Key	of	the	Peer	||	Public	Key	of	this	
Requesting	Switch	||	Timestamp	||	Valid	Window	||	
“SWITCH_ADVERTISE_PEER_PROOF”	||	nonce))	

Signature	=	PubKey_Sign(switch_private_key,	
SHA3_512(List	of	Proofs	||	Timestamp	||	Valid	Window	||	

“SWITCH_ADVERTISE”	||	nonce))	

Signature	=	PubKey_Sign(switch_private_key,	
SHA3_512(Public	Key	of	the	Switch	||Timestamp	||	Valid	

Window	||	“SWITCH_HELLO”	||	nonce))	
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Switch Design 
 
Each edge switch will have to perform many roles. 
First and foremost, it has to establish and maintain 
connections with other peer switches via L2 links. 
Upon each new peer connection, the switch should 
send a HELLO message to the other switches and 
exchange public keys via a similar challenge and 
response mechanism. Whenever there is an update in 
the peer table, the switch should then send an update 
message of type SWITCH_ADVERTISE to the RIB.  
 
The figure on the right outlines the internal structure 
of a trust domain. There might be many nodes under 
the edge switch which acts as an egress gateway. If a 
log owner wants to advertise his log form somewhere 
within the trust domain, he has to advertise it and the 
message will first go to the edge switch and then to the 
RIB. Similarly, when he wants to access a log stored 
in other domains, he needs to contact the RIB via the 
edge switch of the trust domain. In a sense, the edge 
switch needs perform the functions of Network 
Address Translations typically found in a router 
because it needs to provide a proxy capability for 
nodes within the trust domain to reach the outside and 
for an incoming request looking for a particular data 

container to be directed to the right internal node. This 
function is performed by the Layer Translation Cache 
in our design. As this paper is not focusing on the 
tunneling between layers across the hierarchy, we will 
not go into the details of the architecture here. 
 
Cache Routing Table is a Least Recently Used (LRU) 
Cache to accelerate packet forwarding. It acts very 
much like the routing table in a switch. However, 
instead of doing prefix matching, this table maintains 
the destination switch ID and the next hop ID to speed 
up communication after the first packet passes through 
it. Since the very first time when a node P tries to 
retrieve content Q, routing resolution has to happen at 
each hop (switch), this layer can be used to efficiently 
forward packets after the very first trip because the 
next hop ID is cached in each switch along the route 
and no query to the central RIB is necessary. 
 
Finding a Route 
 
When a user sends a request to retrieve some data 
container by its ID. The request first hits a resolution 
service within the trust domain. If the data does not 
reside within the trust domain, the request will arrive 
at the edge router which will then make a 
ROUTE_COMPUTE request to the RIB. This 
message will include the following:  
 

● Log ID 
● (Not implemented) Trusted Switches to 

Include 
● (Not implemented) Untrusted Switches to 

Exclude 
 
The RIB will them perform route computation based 
on these parameters and return to the router the next 
hop ID. At the same time, the RIB will cache the 
computed route because very likely the RIB will be 
consulted again by the next hop router along the path. 
By putting the computed results in memory, the 
amount of computation can be reduced significantly. 
 
Note that we assume the channel through which such 
communication happens is already established and is 
secure. Identities should have been proven for both 
parties using the public key infrastructure. Procedure 
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to achieve this is very similar to that described in the  
Route & Log Advertising Section. 
 

Evaluation  
 
Our implementation has about 2,500 lines of code and 
is done in Golang because its friendliness with I/O 
intensive programming. For languages such as Java 
and Python, without using special packages every TCP 
connection established will create a new thread. 
Running simulations on the millions scale is simply 
impossible because the sheer amount of threads and 
context switch overhead will paralyze the operating 
system. Go, on the other hand, employs light-weight 
threads called go routines which are not real operating 
system threads. Go has its own user space runtime 
scheduler to coordinate the different virtual threads 
which are much faster than using the thread 
management of the Linux operating system. Another 
way to deal with the Linux limitation is to use kernel 
bypass techniques via packages such as DPDK and 
move the network stack into the user space along with 
the use of C/C++ which gives even more control and 
efficiency to the programmer. However, given the 
limited time we have, Golang seems to be our best 
choice as it strikes a balance between verbosity and 
efficiency.  
 

Due to limited time and resources, our prototype of the 
system did not include the security dimension of our 
outline architecture. All participants in the system are 
assumed to be trustworthy. We don’t think adding the 
security dimension would greatly impact the 
experimental results as most of the cryptography 
burden is one-time and only happens at the set-up time. 
Once a router enters its stable mode and starts passing 
packets, it has to do very little cryptography. 
 
Graph Generation 
To evaluate the scalability of our implementation, we 
tried to find publicly available datasets on the topology 
of tier 1 ISPs but we only found limited and dated 
information with about three thousand nodes which 
does not meet our needs so we need a way to generate 
large and density-constraint network graphs of 
different sizes and they have to resemble real-world 
network topologies. We used a very simple algorithm. 
Starting from the second node, each new switch is 
equally likely to be connected with switches that are 
already in the network. To show the reader how the 
produced graphs look like, we have included below 
visualizations for n = 50, 100, 200, 400. Visually, they 
do have the topology of a real network and 
theoretically, we feel it is a sensible model because 
when new switches connect, it is likely to peer with 
someone who’s already connected in the network. 
 

 
 
Experiment Set-Up 
 
Each switch instance is given a forwarding delay of a 
normal distribution with a mean of 1 millisecond. We 
instruct the system to send 1 thousand packets between 
1 thousand pairs of two randomly chosen nodes and 
collect the logs printed by each switch. We then 
instruct the system to send another 1 thousand packets 

to the same set of source-destinations to measure the 
trip time with route cache. 
 
A vanilla Linux installation is not capable of having 
more than 1024 concurrent TCP connections per 
process due to system limitations. To accommodate a 
large number of concurrent connections, we have to 
make the following change: 
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1. File Descriptors: We first increased the 
kernel max limit to 2 million by executing 
"echo 20000000 > /proc/sys/fs/nr_open” and 
then in the current shell, changed the per 
process file descriptor limit to the maximum 
value via “ulimit -n 20000000” 

2. Maximum TCP pages: We increased the 
maximum number of pages that could be 
allocated for TCP connections. By default, it 
is around 3 GB, we had to increase this limit 
by executing “sysctl -w 
net.ipv4.tcp_mem="383865   511820   
2303190" 

3. TCP specific settings: We edited the system 
configuration file at /etc/sysctl.conf to have 
the following  

a. fs.file-max = 20000000 
b. net.ipv4.ip_conntrack_max = 

20000000 

c. net.ipv4.netfilter.ip_conntrack_max 
= 20000000 

4. Buffer Size:  the following commands were 
executed to increase the TCP read and write 
buffer size 

a. sysctl -w net.ipv4.tcp_rmem="1024   
4096   16384" 

b. sysctl -w 
net.ipv4.tcp_wmem="1024   4096   
16384" 

c. sysctl -w 
net.ipv4.tcp_moderate_rcvbuf="0" 

 
Our Golang programs are compiled into statically 
linked binary files. They are then executed with sudo 
privileges on two AWS r5.metal machines, each with 
96 logical processors, 768 GB memory and 19,000 
Mbps bandwidth. 

 
 

 
 
 
 
 
 

 
Results and Analysis 
 
The result shows that the route latency goes up with 
the path length. This is mainly due to the increase in 
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path computation time. At 40,000 nodes, the single trip 
time still looks acceptable. It would be more 
informative to test how the system will perform when 
it reaches 1 million virtual switches. Another 
observation is that the cache hit time stayed almost flat 
with a small positive gradient for all network sizes 
which highlights that caching is an effective way of 
speeding up packet forwarding. 
 
We also noticed the unusual spikes when n = 4000 and 
400. Our conjecture is that the spikes could have been 
caused by Go’s garbage collector or it could be a very 
corner case in the graph that demanded a lot of 
computation time which has happened a few times to 
us. While our Dijkstra’s algorithm works well most of 
the time, it does take an unusually large amount of 
time to compute for some routes. It would definitely 
be interesting to continue investigating what is causing 
the performance degradation. 
 

Future Work and Discussion 
 
Discrete-time simulation  
In our set-up, we used a simple delay for the network 
switches and measured the single-trip latency. This 
approach, however, can be very inaccurate. It might 
overstate the actual latency by a significant amount 
because context switch, go routine switch, driver, and 
network overhead will add to the delay. Using a 
discrete time step simulation tool will help mitigate 
this problem and produce better results. 
   
Running for 1 million nodes using real-world 
topology 
 
Due to limited time and resources, we were unable to 
run our experiment with 1 million nodes. The next step 
for us is definitely to deploy more machines and 
simulate the architecture on more nodes perhaps with 
real-world data. It would be interesting to see to what 
extent does our graph generation techniques reflect the 
real-world network topology and the associated 
performance differences. 
 
Making tweaks to the shortest graph computation 
algorithm 
 

While the go program did deliver satisfactory 
performance with 40 thousand nodes, it might not be 
able to achieve a computation time below 1 second 
when there are one million nodes. Our graph 
computation engine is not as fast as the state-of-the-art 
graph-tool and in our future research, we will build on 
the c-library graph-tool and investigate other 
techniques to speed up the shortest path search. For 
example, a real-world switch network might also have 
some unbalanced traffic patterns. There might be a few 
switch-to-switch highways that efficiently connect big 
groups of top-tier switches and the rest are just like the 
country-side roads which do not usually carry a lot of 
traffic. Contraction hierarchies may be applied here to 
drastically speed up the shortest path search.  
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