
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

The Global Data Plane (GDP) provides a flat address space routing protocol to
endpoints (e.g. DataCapsules) identified by 256-bit hash names, rather than IP
addresses. DataCapsules are served over the network on DataCapsule servers,
which "Advertise" the logs that they support. These advertisements are signed
delegations from the DataCapsule owner stating that the owner of the
DataCapsule server is allowed to advertise.

A core component in the realization of the location independent naming of clients
and DataCapsules in a GDP network is routing. The current GDP routing
infrastructure consists of a two-layer communication scheme. A lower, routing
overlay layer, connecting GDP clients: applications, services, and DataCapsule
servers; and an upper location resolution layer which tracks the location of
DataCapsule endpoints by mapping 256-bit hashed names to locations and other
nameable resources.

Our work aims to deliver a sketch of an architecture and also an implementation
of the location resolution layer that is scalable, secure and supports multiple trust
domains.

Abstract

Architecture

Results and Conclusions

References
Guor-Huar Lu, Sourabh Jain, Shanzhen Chen, and Zhi-Li Zhang. 2008. Virtual id routing: a scalable routing framework with support for mobility and routing efficiency. In Proceedings of the 3rd international workshop on
Mobility in the evolving internet architecture (MobiArch '08). ACM, New York, NY, USA, 79-84. DOI: https://doi.org/10.1145/1403007.1403025
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications (SIGCOMM '01). ACM, New York, NY, USA, 149-160. DOI=http://dx.doi.org/10.1145/383059.383071
Feng Hong, Minglu Li, Jiadi Yu and Yi Wang, "PChord: improvement on chord to achieve better routing efficiency by exploiting proximity," 25th IEEE International Conference on Distributed Computing Systems
Workshops, Columbus, OH, 2005, pp. 806-811.
Prasanna Ganesan, Krishna Gummadi and H. Garcia-Molina, "Canon in G major: designing DHTs with hierarchical structure," 24th International Conference on Distributed Computing Systems, 2004. Proceedings., Tokyo,
Japan, 2004, pp. 263-272.
Aviram, N. and Shavitt, Y. (2015). Optimizing dijkstra for real-world performance. Networking and Internet Architecture - arXiv preprint arXiv.

Out simulation is based on generated graphs as we are unable to acquire real-
world data sets that have as many nodes as we want there to be and is also
consistent in terms of topology for different number of nodes.

Our graph generation algorithm connects a newly joined node randomly with a
node that is already in the system with uniform probability, there by generating a
density-constraint connected graph. The generated topology is in fact similar to
the real topology as suggested by some papers. We have included how the
network would look like for 50, 100, 200, 400 nodes below.

University of California Berkeley

Li XiangJun (Jason)

Scalable Routing Information Base for the Global Data
Plane (GDP)

Simulation

• We do not assume any point-to-point connectivity at the switch layer. Each
switch is connected with other switches on a L2 layer. They connect through
dTLS with each other.

• Every switch needs to advertise their neighbors to the RIB which keeps track of
the top-level topology.

• RIB acts as the oracle and computes routes so that switches know where to
send the packet to for the next hop. RIB also caches the computed route so
that when the subsequent switches ask for routes, routes do not have to be
recomputed.

• The RIB maintains two databases.

• The first database maintains a key value store for the mapping from
log hash to switch id. Note that one log hash could be mapped to
multiple switch ids as one log could simultaneously be served by
multiple log ids. We anticipate trillions of logs in the system so the
key-value look-up has to be efficient. Here we used distributed key
value service Chord. Chord is very scalable because each node in the
system does not have to know all the other nodes. It just needs to
maintain connections with a subset of the nodes for lookup to happen
efficiently.

• The second database is to maintain the network topology and
compute routes. Route computation is reliant on the underlying data
and we can run many instances of it. The topology data is easy to fit in
memory for one million nodes. If we assume that each switch is on
average have 5 outgoing connects with 5 other top-level switches, the
total memory required to store this topology information would be
(10 ** 6) * 5 * 256 / 8 / 10 ** 9 < 2 GB. Graph computation on such
network graph has been proved to be efficient too. We were able to
get similar results in our experiment.

• A top-level switch maintains the following:

• Log entries for those this switch is a host for and how to reach the log
servers with in a trust domain.

• Cached routes to reach some log hashes so that RIB does not need to
be consulted again.

• A list of L2 connected peers in the system.

Generated Network Topology

System Architecture for RIB and switches

In order to investigate if such an architecture is a step towards a scalable
infrastructure, we have set up to 40,000 virtual switches and billions of logs using a few
xlarge instances on AWS and measured the single packet trip time of such systems
when deployed. Each switch is given a forwarding delay of a normal distribution of
around 3 milliseconds. We instruct the system to send 1 thousand packets between
tow randomly chosen nodes and collected the results. We then instruct the system to
send 1 thousand packets to the same set of source-destination again to measure the
trip time if there is route cache.

• When there is routing entry cache, the forwarding time taken is a lot smaller
than when there is not.

• While graph computation time increases with the network size, the single trip
time for 40,000 nodes looks acceptable and can even be further improved.
(Note that the above results are generated when there is no cache in the RIB
which means that each time a switch asks for routes, the RIB has to
recompute.)

• Vanilla Dijkstra might not be able to scale up to 1 million nodes for this purpose
because for routes that are hard to compute, it would take a long time as
evidenced by the spikes in the graph. Further research can look into how to
add heuristics to this computation. For example, maybe the geo-location of the
switches can be used as a guide.

