
Low-latency Mixed Reality Headset
Tan Nguyen

Department of Electrical Engineering and Computer Science
University of California, Berkeley

{tan.nqd}@berkeley.edu

Abstract—This work aims to build an open-source, low-latency
hardware-accelerated headset for mixed (virtual or augmented)
reality applications. A mixed reality headset is a complex system
that encompasses many components, such as displays, IMU
sensors, cameras, and processing units. Our motivation is that the
commercial headsets are still not fast enough to prevent motion
sickness caused by the lag between the display content and the
movement of the headset user: the so-called motion-to-photon
latency. Technique such as post-render warping (or timewarp)
can be utilized to warp the images right before the display based
on the tracking information, and is already implemented in many
commercial products such as Oculus or Hololens. Nonetheless,
the latency is still insufficient to combat motion sickness. In this
project, we delve into understanding and reducing the motion-
to-photon latency by leveraging specialized hardware platforms
as well as computer vision algorithms to build a headset from
scratch. Our headset is capable of running simple mixed reality
demo applications (cubemap rendering for VR, 3D static object
overlay for AR) with a motion-of-photon latency of 13.4 ms. More
importantly, it is fully open-source.

I. INTRODUCTION

The global market for Head Mount Display (HMD) of vir-
tual and augmented reality technology is forecasted to grow to
hundreds of billion dollars by 2025 [1]. Virtual reality renders
a surrounding that immerses users in a virtual world, whereas
augmented reality overlays artificial objects on top of the real
world. The technology is increasingly being found in many
applications ranging from entertainment, education, to health-
care, and manufacturing industry in the form of HMD/headset,
which notable products include Facebook Oculus, Microsoft
Hololens, or HTC Vive. A VR/AR headset is a complex
computing embedded system involving tracking sensors, depth
cameras, graphics processor, application processor, displays,
or even a deep neural network accelerator. It is of no trivial
engineering feat to fit all those blocks into a small form factor
as normal ergonomic glasses while functioning as an energy-
efficient computing platform.

However, to truly deliver an immersive experience to users,
the motion-to-photon latency of a headset is the utmost
important factor. The motion-to-photon latency is defined as
the time between the motion captured by the headset sensor
(IMU, or Inertial Measurement Unit), to the time when the
corresponding image gets displayed on the headset lenses
(photon). As an example, when a user turns his head to the
left, the displayed content should move to the right, thus
the motion-to-photon in this case can be understood as the
length of time when the user starts turning his head until
the displayed starts changing with respect to this movement.

Figure 1: A typical VR/AR Pipeline

Previous work demonstrated that a slow motion-to-photon
latency could lead to the mis-registration between artificial and
real worlds, and hence causes various effects on users such as
nausea or motion sickness. [2] suggests that a latency of 20 ms
or less for VR, and 5 ms or less for AR is sufficient to have
a decent experience without motion sickness. Nonetheless,
it is challenging to meet such lofty latency targets, given
that a VR/AR pipeline typically consists of many stages,
as shown in Figure 1. First, the IMU sensors sample the
motion data to give user’s pose information (3D translation
and orientation information). The information is passed to
the Rendering engine to create a framebuffer of the scene
based on the current pose. The framebuffer is then sent to the
Display to emit the rendered image onto the headset’s lenses.
By the time the user observes the image, it is already tens
or more miliseconds late in comparison to the current user’s
pose, depending on the latency of the rendering engine and the
display technology. The time lag may be noticeable and create
undesirable visual effects. To improve the latency, a classical
approach typically utilized in many commercial headsets (or
even gaming engines) is time-warp, or post-render warping.
That is, the framebuffer is warped based on the latest pose
information right before display, hence it completely bypasses
the renderer [3]. The technique effectively decouples the dis-
play stage from the rendering stage, thereby they can operate
at different frame-rates. One caveat is that the technique can
only be applied to 2D transformations, as the framebuffer
does not contain the depth information. Commercial headsets
already implemented this technique in one form or another.
Nevertheless, on personal accounts, the latency is still visible
to users.

In addition to post-render warping, it is a general consensus
that high frame-rate, low-latency display technology is also
vital to cut down the latency as much as possible. Typical
headsets utilize either OLED or LCD displays. Those displays
do not go as far as 120Hz. Another excellent display candidate
for VR/AR is Digital Light Projector (DLP) from Texas
Instrument. The projector can run at 240Hz or higher, hence



greatly improves the user experience.
In this work, we build an open-source mixed reality headset

(supporting both virtual and augmented reality applications)
shooting for low latency by using the post-render warping
technique and the 240Hz-projectors (DLP). We use the Xilinx
UltraScale+ ZCU102 System-on-Chip platform to prototype
the hardware architecture and system of our headset. In partic-
ulars, the post-render warping accelerators are implemented on
the FPGA of the ZCU102. The FPGA also provides great I/O
capability for driving the projectors with very high frame-rate
via HDMI output. The ARM processor of the ZCU102 runs
our primitive applications as well as interfaces with the IMU in
a Linux-based environment. Our headset frame is based on the
open-source project NorthStar [4]. However, we replaced their
LCDs with the DLPs. To the best of our knowledge, this is the
first academic work to build an open-source headset based on
DLP technology at 240Hz. More importantly, we would like to
emphasize the importance of having an open-source headset.
We do not rely on any proprietary software stack as in many
commercial headsets. On the contrary, Microsoft Hololens 2.0
can only run their own Microsoft RTOS and workloads [5].
By open-sourcing the architecture of the headset and hopefully
setting a standard, we envision that this could be extremely
useful for VR/AR researchers, developers, or even hardware
architects as an established and stable testing platform for
future novel applications.

In summary, our contributions are as follows.
1. We show how to build a hardware-accelerated, low-

latency, inside-out tracking mixed reality headset by utilizing
IMU sensor, FPGA, and DLP projectors running at 240Hz.

2. Our prototype headset is highly agile, simple, and mobile.
The visor can move around with ease.

3. Our headset is fully open-source.

II. RELATED WORK

Perhaps as closest as in terms of motivation to our work is
[6], [7]. They built an optical-see-through (OST) AR system
to examine motion-to-photon latency. However, their setup
involves a lot of complex mechanical parts and it is uncertain
how to move around in that setting. Their system supports only
two motions such as pitch and yaw using a shaft encoder. In
contrast, our headset can go as far as 6 DoFs (Degrees of
Freedom), including 3D translation and 3D orientation (roll,
pitch, and yaw) by leveraging consumer-grade IMU sensor.
Interestingly, they use DLP projector for their display, similar
to our approach. However, they generate binary frames instead
and implement a modulation scheme to vary the brightness
of the output image. Thus, the latency of their display setup
is very low, but it only supports gray-scale format. On the
other hand, our headset supports RGB color format. Notably,
we achieve stereo vision, while their system only works for
single eye. In overall, our headset is closer to being a realistic
VR/AR HMD in terms of form factor and the image quality
it can deliver.

NVIDIA also built their prototype glasses using laser scan
projectors for peripheral display [8]. However, it is unclear

what the motion-to-photon latency of their glasses is, and their
focus is not on optimizing latency, but rather on producing
foveated image using gaze tracking. Therefore, their work is
orthogonal to ours.

Recently, Leap Motion released an open-source AR project
called NorthStar [4]. It offers a prototype platform including
the mechanical components of the headset frame, the two
LCDs, and a hand-tracking module. The original NorthStar
does not have any built-in IMU or any processing unit. Our
headset (or at least the mechanical framework) is based heavily
on the NorthStar. However, we replaced the two existing LCDs
(1440x1600 at 120Hz) with the DLPs to go with higher frame-
rate.

Post-render warping is by no mean novel and is believed to
be available in many commercial headsets [2], [9], [10]. Post-
render warping can be implemented in commodity hardware
such as CPU, GPU, or DSP. For example, by leveraging
GPU preemption, the rendering is interrupted to start the post-
render warping so that the generated framebuffer is up-to-date
with the current tracking information from IMU sensors. In
some headsets, a dedicated hardware block (ASIC) is used
to accelerate post-render warping task. For instances, the
Holographic Processing Unit inside Microsoft Hololens 2.0
has a specialized (and large, by looking at the photo of the chip
floorplan) module named Late Stage Reprojection [5]. There
is not much public information regarding the functionality of
this block, however, one could as well understand that it plays
a similar role to post-render warping, but perhaps with some
additional support for 3D transformation. Regardless of the
implementation, it is desirable that the post-render warping
module is as close to the display as possible to minimize
the latency. In our work, we design a post-render warping
accelerator in the FPGA, since we also use the FPGA to drive
the HDMI output to the DLPs. We do not buffer the warped
image back to the main memory or the embedded memories
on the FPGA as it would incur additional latency, but rather
stream the pixels of the warped image directly to the HDMI
output in raster order.

III. BACKGROUND

A. IMU

IMU (Inertial Measurement Unit) is an electronic device
that gives a body’s tracking information in 3D world through
a combination of accelerometer, gyroscope, and sometimes
magnetometer. The tracking information is generally 6 DoFs,
i.e. translation in (x, y, z) coordinates as well as orientation
in roll, pitch, and yaw axes as shown in Figure 2. Thanks
to these features, IMU sensors are typically found in smart
phones, airplanes, ships, cars, or HMD, etc. as a means for
navigation and tracking. In a VR/AR pipeline, IMU is hardly
the bottleneck, since some IMU sensors has a very high
sampling rate (1000Hz or higher). In this work, we incorporate
the Intel Realsense T265 to our headset. It is a tracking camera
leveraging Bosch BMI055 IMU sensor to sample 6DoF pose
data at around 262Hz [11]. Through a combination with the
fish-eye sensors, T265 is able to perform visual odometry to



Figure 2: Translation and Orientation in camera’s coordinates

mitigate drifting effect which is a common drawback of most
IMUs.

B. FPGA

FPGA (Field Programmable Gate Array) is an electronic
platform enabling rapid prototyping of hardware circuits by
assembling heterogeneous primitive blocks such as Lookup
Tables (LUTs), Flip Flops/Registers (FFs), Embedded block
RAMs (BRAMs), and Digital Signal Processing blocks
(DSPs). FPGA is reconfigurable: the current implemented
circuits can be updated by downloading a new bitstream to
FPGA. Therefore, it presents a great flexibility to hardware
designers who may want to experiment with different cir-
cuit implementations. FPGA stands between general-purpose
processors and ASICs in terms of performance and energy
efficiency. For a project that is meant to build agile prototype
to which could be quickly adapted new ideas, FPGA is a
suitable platform. In our work, we leverage Xilinx UltraScale+
ZCU102 System-on-Chip [12]. This platform has a quad-
core ARM processor coupling with the FPGA fabric via AXI
buses. We use the ARM processor as a control processor,
and implement computer vision accelerators as well as video
processing logic on the FPGA. The platform also offers
rich I/O capability to interface with peripheral devices like
projectors. Since we need two HDMI output to drive two
projectors, we use the two available FMC slots to plug the
extension HDMI cards from AVNet [13] instead of the single
HDMI output onboard.

C. DLP

DLP (Digital Light Projector) is a display technology from
Texas Instrument that is typically found in digital cinemas.
DLP projects images using DMD (Digital Micromirror De-
vice) chips. The chips can be toggled to produce gray-scale
images. DLP enables color images by using a color wheel.
Therefore, the displayed image is not interleaved RGB frames
(line-sequential), but rather color-sequential sub-frames (R
sub-frame, G sub-frame, followed by B sub-frame). In this
work, we use TI DLP Evaluation Kit 2010 as a projector for
VR/AR display [14]. We flashed a new firmware (provided by
TI) to the boards to upgrade the frame-rate to 240Hz.

D. Post-Render Warping

Post-Render Warping is a technique that warps the image (or
framebuffer) using homography transformation. It transforms
an image captured at a specific camera pose to an image at
a new camera pose. The new camera pose is identified by a
homography matrix which defines how much translation and
rotation of the camera in 3D world coordinates. The transfor-
mation is essentially a vector-matrix multiplication operation
of the homography matrix and a particular pixel index; it
maps the pixel index of source image I(srcx, srcy) to a corre-
sponding pixel index of the destination image I(dstx, dsty).
The homography matrix is obtained from the IMU tracking
information. The T265 camera returns orientation/rotational
data in the form of quaternion qw, qx, qy, qz which we convert
to rotational matrix. The translation tx, ty, tz is optionally
incorporated if the 3D information of the scene is available
(we will discuss more in the demo application section).

a = qw; b = qx; c = qy; d = qz;

H =

a2 + b2 − c2 − d2 2bc − 2ad 2bd + 2ac tx

2bc + 2ad a2 + c2 − b2 − d2 2cd − 2ab ty

2bd − 2ac 2cd + 2ab a2 + d2 − b2 − c2 tz

0 0 0 1


I(dstx, dsty, dstz) = H × I(srcx, srcy, srcz)

IV. IMPLEMENTATION

A. Headset Architecture

Figure 3 shows the architecture of our prototype headset.
The head frame is 3D-printed and based on the NorthStar
headset. The reflectors (or lenses) are also from NorthStar.
We replace the rear LCD panels with the rear projection films
[15]. On each side, the film reflects the light emitted from
the projector to the reflector, then to user’s eye. They can
also enhance the brightness of the displayed image. We place
the two DLPs on the sides on the far back and ensure that
the placement of the DLPs gives a good throw ratio (i.e.,
the projected image fits well onto the film). We mount two
80/20 frames as handhelds for the headset. To make room for
the user’s head to wear the headset comfortably as well as
not block the light from the DLPs, the handhelds are slanted
apart instead of parallel. The T265 camera is mounted on
top of the head mechanical frame without any occlusion so
that it gives the best visual odometry performance, and also
ensures that it moves in accordance to the headset movement.
It connects to the ZCU102 by the USB3.0 interface. The two
DLPs are hooked up to the ZCU102 via HDMI cables. Given
the clunkiness of the ZCU102, it remains mostly stationary in
our experiments, but within a reasonable distance to the visor.
With this lightweight and agile architecture, the visor is able to
grip the handhelds and move around with ease. In addition, this
”open” architecture does not specifically tie to any hardware



Figure 3: Headset Architecture

Figure 4: Headset: View from the top

platform. One could replace the T265 with a better IMU, or
change the projectors. In future work, we could leverage more
novel hardware platforms with small form factor to make a
more portable headset.

Figure 4 gives a complete look of our headset.

B. Headset System

Figure 6 demonstrates an overview of our headset system
from the perspective of the ZCU102 SoC, as it is the main
processing unit of our headset. The ARM processor of the
ZCU102 can boot a full-fledged Linux (Ubuntu) operating
system. The Intel Realsense T265 camera is connected to
the ZCU102 by USB3.0 interface. Intel also provides ARM-
compatible Realsense device driver so that our applications are
able to query pose information from the T265 camera using
their API calls. Though the camera is said to have a sampling
rate of 262Hz (3.82 ms), we found that the actual time it
takes to read a pose data from the device is from 4.8 ms to

Figure 5: Inverse Homography transform causes non-
sequential reads of source image

5.2 ms. We suspect that the USB3.0 interface adds additional
I/O overhead. Moreover, the device occasionally returns NaN
error after running for a while, forcing a reset.

The ZCU102 also features a small embedded Mali GPU for
graphics programming. However, the existing kernel module
only supports displaying the GPU-generated framebuffer to
the Display Port (on-screen rendering). In this project, we do
not use the Display Port of the ZCU102. We were able to
get the GPU to perform off-screen rendering, i.e. storing the
framebuffer to main memory. However, it wastes significant
number of CPU cycles of copying the framebuffer to the
memory region which is physically allocated for the FPGA
to access. The overhead grows with the image resolution.
To solve this problem, one could write a device driver to
do a zero-copy using DMA engines without involving CPUs.
Due to time constraint, we did not figure out how to do it
properly, and this is subjected to future work. Therefore, in our
current pipeline, we do not have any GPU renderer. For our
applications, we assume that the rendered content is available
and is stored in the DRAM. Thus, we only support static
scenes (pre-rendered images) for now.

The programmable logic (PL, or FPGA) can directly access
the DRAM main memory via AXI High Performance (HP)
ports. There are 4 HP ports in total where each has a theoretical
memory bandwidth of 2.4 GB/s. Thus, the aggregated memory
bandwidth of the system is 9.6 GB/s [16]. However, we
were not able to take full advantage of the bandwidth for
our applications since our memory access pattern is random,
as illustrated in Figure 5. Since we would like to keep the
latency of our pipeline very low, we cannot afford to buffer the
result image back to the main memory or the on-chip BRAM.
Therefore, we perform an inverse-mapping operation of the
homography transformation: for each destination pixel, we find
the corresponding pixel of the source image by the inverse of
the homography matrix. This allows us to stream the output
pixels in raster order to the video controller implemented on
the FPGA, which requires pixel scanlines for the display to
behave properly. Due to this inverse-mapping operation, it is
virtually impossible to do burst accesses or data caching to
efficiently utilize the DRAM bandwidth. In addition, note that
we are building a stereo headset, thus, the amount of memory
traffic doubles to support both left and right channels.

As the ZCU102 only has one on-board HDMI output slot,
we utilize the dual FMC slots to provide two HDMI outputs.



Figure 6: Headset System Overview

Table I: Pixel clock values of different resolutions

Resolution Frame size Pixel clock (ns)
640× 480 800× 585 9.92
800× 600 1056× 628 6.28
1280× 720 1650× 750 3.37
1920× 1080 2200× 1125 1.68

In particulars, we use the HDMI FMC cards from AVNet.
The card has both HDMI In and Out ports. For our current
study, we only need to use the Output port to stream the output
image to the DLP. One advantage of using FPGA is that we
can easily modify the pixel clock to increase the frame-rate of
the HDMI Output. The pixel clock can be understood as the
amount of time to generate and output a single pixel. Given
a target frame-rate and resolution, we can calculate the pixel
clock using the following formula.

pixel clock = 1/(frame rate×frame width×frame height)

As an example, with a target frame-rate of 240Hz, one could
calculate the pixel clocks of different resolutions as in Table
I.

Note that we use the frame size instead of resolution
when calculating the pixel clock. The frame size includes the
horizontal and vertical blanking periods which are the period
of times the video controller waits before emitting next pixel
scanline or next frame. For our FPGA circuit design, the pixel
clock is used to clock the entire hardware circuit, so that
new pixel is output every clock cycle. As can be seen from
the table, the pixel clock becomes increasingly demanding as
one goes to higher resolution, and it is more challenging for
the CAD tool to do timing closure. In our current study, we
only target a resolution of 640x480 to reduce timing closure
effort (and another contributing factor is memory bandwidth).
Exploring different design spaces with higher resolutions is
definitely an important future work for our system.

C. Pixel Streaming Engine

Figure 7 details the architecture of our Pixel Streaming
Engine implemented on the Programmable fabric. This module

Figure 7: Pixel Streaming Engine Architecture

also performs Post-render warping (or inversed homography
transformation) as mentioned in previous section. The ARM
processor performs a AXI4-Lite bus transaction to write the
IMU pose data to the Memory-mapped IO registers from
which the module can read. The pose data includes the
rotational information in the form of quaternion as well as
translation information (optional). Besides, a lens distortion
map lookup table is stored in the BRAM for fast access (one-
cycle read) to do lens correction (which will be discussed
in the subsequent section). The pixel index calculation is
therefore a distortion map lookup operation followed by the
inverse homography transform.

Once the source pixel index is computed, the Pixel fetch
logic sends memory request to the memory controller for that
pixel. As discussed earlier, the memory accesses are hardly
sequential which lead to poor memory bandwidth utilization.
Another issue is the long memory access latency to the
external DRAM. In order to overlap the memory latency as
well as improve the memory throughput, we instead instantiate
multiple parallel Pixel fetch units, and in turn multiple Index
calculation units. The Pixel fetch units issue parallel memory
requests to the memory controller, and thus get multiple pixels
in return; the Pixel packing module packs those pixels to a
single wide pixel data that is sent to the video controller. Our
video controller is configured to work with multiple pixels per
clock, i.e., for each pixel clock, the video controller expects
to receive a multiple of pixels, but it still outputs one pixel to
HDMI display per clock cycle. Thus, some internal buffering
is required. In our implementation, we find that 8-pixel per
clock is optimal in terms of balancing the memory requests
to main memory and minimizing the amount of on-chip
buffering. Setting a smaller number of pixels per clock leads to
under-utilize the memory bandwidth, thus the Pixel Streaming
Engine takes longer to output each pixel. On the other hand,
a higher number of pixels per clock overwhelms the AXI bus
to the memory controller due to complex arbitration of the
AXI crossbars. Therefore, it results to longer memory access
latency and also wastes huge amount of FPGA resource due
to large crossbars and internal buffers.

Since the latency of external memory access is unpre-



dictable, we instantiate FIFOs among the units to ensure that
each unit is able to operate in its own rate and there is no stall
of execution in the system. The FIFO to the video controller
is particular important, as it needs to always have available
data so that the display remains steady and stable without
flickering. In our implementation, we set the size of that FIFO
to be 16,348 elements of eight-wide 24-bit (R, G, B – each
8-bit) pixel data. We also set a fill time – the time that the
video controller waits until the FIFO is filled with enough data
before it begins streaming pixels to ensure steady display. The
fill time is 16,000 cycle where each cycle is 9.92ns, hence it
is around 0.16 ms which is negligible to our pipeline. Note
that this latency is a one-time cost at the initialization of the
system. After the wait time, the video controller expects to
retrieve the pixel data from the FIFO every cycle. In addition,
the blanking periods also help to refill the FIFO. To produce
a 240 frames per second, our Pixel Streaming Engine must
finishes streaming a full frame in about 4.2 ms. Since this is
a stereo system, we have two Pixel Streaming Engines, one
for each display. A complication of such system is that the
demand for memory bandwidth as well as the fabric resource
will double.

D. 3D Vector Graphics

As noted in the previous section, the post-render warping
only works with 2D images, and we did not have time
to make the Mali GPU works optimally with our system.
To demonstrate that our headset can do some 3D tracking,
rendering, and display, we implement a simple 3D vector
graphics core on the FPGA. It is meant to build for the
AR demo application. The module can rasterize some basic
polygon shapes, such as quadrilateral or triangle. For each
incoming pixel from the previous stage of the pipeline, we
check if it lies within the polygon by doing line testing [17].
If yes, we color the pixel and no otherwise. We do not perform
any interpolation scheme or shading. Therefore, the vector
graphics is very compact and it is fully pipelined with a
few pipeline stages (two or three). Hence, it has a minuscule
impact on the latency of our headset system. We use the ARM
processor to do the 3D-to-2D projection of the objects. We
found that it is more efficient to do the projection on the
processor since it runs at a higher clock frequency and has a
better floating-point capability than the FPGA. Once the image
coordinates of the objects are computed, we send them to the
Pixel Streaming Engine, and then to the 3D Vector Graphics
Engine to draw the object. The new coordinates are sampled
every full frame.

E. Lens correction and Stereo

One of the biggest issues of a headset system is tackling the
lens distortion problem. As our headset uses elliptical lenses,
the reflected image get distorted. Worse yet, the left and right
reflectors distort the image in the opposite ways, thus render it
impossible to achieve stereo vision if one does not address this
problem beforehand. Figure 8 shows one example of a badly
distorted image on the lenses. The original image contains

Figure 8: An example of lens distorted images

multiple horizontal white bars along with a single vertical
white bar. The distorted images bent the bars differently for
left and right channels.

To do lens correction, we inversely distort the input image
so that the reflected image gets distorted again, thus become
undistorted. As an example, some VR headsets present a barrel
distortion on their lenses. The VR pipeline fixes this issue
by applying pincushion distortion on the displayed image,
so that when looking at the lenses, the user sees a rectified,
corrected image. In our work, we need to figure out what kind
of distortion effect is for our reflectors. Since we use the lenses
from project NorthStar, we simply follow their lens calibration
process. NorthStar performs a novel calibration process using
ray tracing technique [18]. The outcome of the process is the
distortion maps of the lenses. Due to time constraint, we did
not rerun the entire laborious calibration process as did by
NorthStar, but instead reuse their calibration file to generate
the distortion maps for our lenses. We anticipate that it should
as well work in our system since our headset frame is not so
different from the original NorthStar structurally. As a future
work, we will carry out our own calibration process to achieve
better visual result.

Figure 10 shows an overview of the lens correction process.
The distortion maps (in (u, v) coordinates) are used to perform
lens correction. Each is interpolated to 640x480 to match the
size of the input image. The input image is treated as a texture
to be mapped onto the distortion map (surface). Since texture
mapping operation requires GPU to run efficiently, we instead
use a lookup-based approach instead. We convert the distortion
maps to two lookup tables per map (one for column indices,
LUTx, one for row indices, LUTy) stored in the BRAMs of
the FPGA. This only requires one-cycle read latency from the
BRAMs with the trade-off of additional memory storage. Lens
correction is essentially a remap operation from the destination
image Idst to the source image Isrc.

Isrc(LUTx(x), LUTy(y)) = Idst(x, y)

We did not apply the input image on the full maps obtained
from the Northstar calibration file, as the remapped image
still had some lens-distortion artifacts. We speculate that there
might be some slight variation between our headset and
the Northstar used for the calibration, so that the remapped
results are not perfect. We made some adjustment to the
maps manually to fine-tune the re-mapped image until it
appears rectified on the lens. Basically, we attempt to find
the region of the maps to land the input image to obtain the



Figure 9: An example of lens corrected images

Figure 10: Lens correction process

best lens-correction output. However, by doing so, it results to
a reduction in field-of-view (FoV) our our headset. A FoV
defines the horizontal and vertical angles covered by each
headset’s lens. The original image in Figure 10 is generated
with a horizontal FoV of 90°and a vertical FoV of 113°. We
can see that the horizontal FoV of the remapped image is
somewhat around 45°or less.

Figure 9 shows how the reflected image of the previous
example looks like after applying lens correction. In addition
to lens correction, the distortion maps give us stereo vision as
well, i.e. the images of left and right lenses converged, since
the maps were generated in a stereo NorthStar setup, though
it is not entirely perfect and the user sometimes has to adjust
the handhelds to see a better stereo image.

V. EVALUATION

We evaluate our mixed reality headset with some simple
VR and AR applications. For all the experiments, our target
resolution is 640×480, frame-rate is 240Hz, and color channel
is RGB 24-bit.

A. Demo Applications

1) Cubemap Rendering: A cubemap consists of six im-
ages/texture that renders the surrounding of an object. The six
images define the top, bottom, left, right, up, down faces of the
virtual environment. For our application, we use the following
cubemap shown in Figure 11 where each RGB image has
a dimension of 1000 × 1000. The cubemap is stored in the
DRAM with an offset of 1000 × 1000 between each face.
Thus, the amount of storage is around 23 MB (we treat each
pixel as 32-bit or 4B data type). The cubemap is pre-loaded to
the DRAM at a known physical address once the application

Figure 11: Cubemap

starts running. The FPGA is informed of the physical address
of the cubemap for accessing.

By providing a complete surrounding, the cubemap
application functions as if the user sees a 360-degree image
when he rotates his head. Note that there is no translation
involved in this application; only the head orientation data is
taken into account. The orientation data forms a rotation matrix
which transforms the current displayed image based on the
head’s orientation. The transformed pixels are fetched by the
Pixel Streaming Engines to stream to the display. In addition
to the post-render warping transformation and lens correction,
there is additional task to determine the correct cube face to
render. As a supplemental material, the video of our demo can
be found at the following URL: https://drive.google.com/file/
d/1UkzO0RdaWEVSbzQ4hBjFIvm6jndyUH3g/view?usp=
sharing.

2) Static AR object overlay: Thanks to the 3D vector
graphics engine, we can draw some basic 3D objects such
as boxes to the displays. Our application first allows the user
to define the location and shape of a box as well as the number
of boxes in the environment (camera/headset coordinates).
When the visor moves around, the coordinates of the objects
are updated based on the latest pose information. Then, the
processor performs a 3D-to-2D projection to map the objects
to image coordinates. The 2D coordinates are then streamed to
the Pixel Streaming Engines to rasterize the objects. By taking
advantage of the Floating-point Unit and the Neon SIMD unit
on the ARM processor, the projection task can run very fast,
under sub-milisecond (depending on the number of objects in
the scene). This application supports both translation and rota-
tional movement. The visor should expect to see static objects
when walking around. However, as the time of submitting the
report, the demo does not work quite well. The AR objects ap-
pear to be drifted away after the visor moves for a while. This
could be attributed to the error accumulation of the Realsense
T265. In addition, object scaling is not very realistic when

https://drive.google.com/file/d/1UkzO0RdaWEVSbzQ4hBjFIvm6jndyUH3g/view?usp=sharing
https://drive.google.com/file/d/1UkzO0RdaWEVSbzQ4hBjFIvm6jndyUH3g/view?usp=sharing
https://drive.google.com/file/d/1UkzO0RdaWEVSbzQ4hBjFIvm6jndyUH3g/view?usp=sharing


Figure 12: Memory access pattern of pose 1

Figure 13: Memory access pattern of pose 2

the visor moves farther or closer to the virtual object. Further
investigation and calibration are necessary to make the appli-
cation work properly. The video of our demo can be found at
the following URL: https://drive.google.com/file/d/1UlA3nw
gSl9GVk3BWwzBNQu1g09GrzN /view?usp=sharing. In this
demo, three virtual boxes with different shapes are overlayed
in the environment. The boxes should ideally remain stationary
regardless of user’s movement.

B. Memory performance analysis

Since the AR application does not access external memory,
we focus on the VR application (cubemap rendering) for
memory access analysis. Figure 12, 13, 14 shows the access
patterns of different poses for the first 8 scanlines of the output
image when the application is running. The access pattern
in pose 1 exhibits a decent amount of spatial and temporal
locality. This is because this pose does not have much rotation
in any axis, therefore, the output image aligns well with a
corresponding cubemap face. Pose 2 and 3 are obtained when
the headset is rotated 90°and 180°in the z-axis (the user ”rolls”
his head) respectively, thus access patterns change drastically
and do not utilize cache memory well. In the three cases, there
is little overlap between the left and right channel. Hence, it is
challenging to design an efficient memory reuse strategy for
such application.

C. FPGA Resource consumption

Table II provides the resource consumption of our FPGA
hardware circuit implementation. The memory interconnect
consumes most of LUT and FF resources. We have a high
BRAM utilization due to internal buffering in order to mitigate
the unpredictable external memory read latency so that the

Figure 14: Memory access pattern of pose 3

Table II: ZCU102 Resource Utilization

LUT 55.84%
FF 32.70%

BRAM 87.28%
DSP 71.03%

video streaming remains stable. The DSP blocks are mainly
used for pixel index calculation as well as the vector graphics
core. The DSP resource grows as we increase the number of
AR objects that the vector graphics core can draw.

D. Pixel Streaming Engine Performance

To justify the decision of putting the Pixel Streaming
Engines in the Programmable fabric, we also did a soft-
ware version that runs in the ARM processor. The software
essentially performs index calculation by using homography
transformation and distortion remap operation, similar to the
hardware counterpart. However, the result image is stored back
to the main memory. The video controller in the FPGA then
streams the image to the display. In this setting, we only use
the FPGA to implement the video controller for interfacing
with HDMI output. Table III shows the performance of the
SW and HW implementations of the Pixel Streaming Engine.
The runtime of the SW version varies depending on the
sampled pose. Drastic pose change also causes cache misses,
thus degrades the performance. In overall, the HW version
outperforms the SW counterpart by 19.7x on average. More
importantly, it remains steady during the course of execution
regardless of pose change which is very critical to ensure
stable video streaming. Note that the SW version actually runs
two Pixel Streaming kernels, because we have left and right
channel, and we did not attempt multi-threading for further
improvement. Nonetheless, even with parallel execution of left
and right channel on the ARM processor, it still falls short to
meet the timing demand of our application (4.2 ms, or 240
FPS).

Table III: Pixel Streaming Engine Performance: SW vs. HW

SW (ms) HW (ms) Speedup (avg.)
78-86 4.2 19.5

https://drive.google.com/file/d/1UlA3nw_gSl9GVk3BWwzBNQu1g09GrzN_/view?usp=sharing
https://drive.google.com/file/d/1UlA3nw_gSl9GVk3BWwzBNQu1g09GrzN_/view?usp=sharing


Table IV: System Performance

Stage Platform Latency (ms)
IMU Sampling ARM 4.8-5.2
3D-to-2D projection (3 AR objects) ARM 0.013
Pixel Streaming Engines FPGA 4.2
Display DLP 4.2
End-to-end latency (avg.) 13.4

E. System Performance

In this section, we evaluate the end-to-end latency of our
pipeline. Table IV gives the latency of each stage of our
system. The latency results are measured internally using a
timer in Linux. We ignore the memory initialization time (e.g.,
loading cubemap to DRAM) because the cubemap does not
change over the course of our application. We also ignore the
FIFO fill time and the vector graphics pipeline since they incur
very minimal latency.

Our end-to-end pipeline, from motion to photon, latency is
13.4 ms on average. Interestingly, the DLP has an internal
latency of a frame (we verified it by using the high-speed
camera – detail is omitted). We suspect that because DLP
works as a color-sequential display, whereas the HDMI input
is an interleaved RGB frame, it needs to buffer the frame
internally first, then performs frame separation to different
color sub-frames, as described in [2].

VI. CONCLUSIONS

We have shown what it takes, at minimum, to build an
open-source, low-latency, mixed reality headset from scratch
that is fully functional with simple VR and AR applications.
Our headset achieves a motion-to-photon latency of 13.4 ms
which meets VR target but fails to satisfy AR goal. Our
prototype headset is fully open-source and does not tie to any
specific hardware platform or proprietary software stack; other
researchers could attempt to build the same architecture or
leverage ours to develop novel applications or features. Though
our accomplishment might seem humble, we believe this is a
baby step forward to make a great stride in democratizing
VR/AR headset and encourage future academic researches in
this direction.

VII. FUTURE WORK

As the time of writing this report, we have only finished
half of what we set out to do. We have shown that the headset
can be built with a low motion-to-photon latency. However,
we did not have time (and resource) to evaluate the motion-
to-photon latency of different headsets available in the market.
For our own system, we measure the latency internally using
the get-time function in Linux. However, to truly evaluate
the motion-to-photon latency of different devices, we need a
more systematic and cross-platform approach. One potential
approach is using a high-speed camera that captures both
the motion and the headset display, then measure the length
of time between them. Another method is conducting user
experience study. For example, paid volunteers might be asked

to use different headsets for a period of time, and report on
their feelings. This study might give an insight to how much
latency a person can tolerate before suffering from motion
sickness.

From the system perspective, many aspects could be im-
proved in the future. Our system only supports a resolution of
640x480 at 24-bit RGB color – clearly way below modern
VR/AR standard. Due to time constraint, we did not have
enough time to experiment with higher resolutions. Higher
resolutions at high frame-rate is definitely a challenging prob-
lem to solve, as it entails clever circuit design techniques to
meet the timing and the available on-board resource. For our
current work, we did not pay attention to best hardware design
practices; we used High-level Synthesis to quickly prototype
the required Computer Vision algorithms and ensured that the
entire circuit met target clock frequency. Therefore, our FPGA
circuit might not be optimal from resource stand-point.

From the user experience, besides low resolution, our
headset suffers from jaggy/pixelated effect since we only
use nearest-neighbor filtering. To achive higher-quality out-
put image, some advanced interpolation scheme is definitely
inevitable. One could apply a bilinear interpolation which
fetches four nearest pixels per pixel index calculation. How-
ever, as discussed before, memory bandwidth is the bottleneck
of our current implementation. We were not successful in
implementing bilinear interpolation in our circuit design, since
the FIFO to the video controller drains quickly due to high
memory request traffic. We attempted to configure the Quality-
of-Service block of the DDR memory controller, but failed to
get any substantial improvement. As a future work, we need to
think of a better strategy to organize memory accesses, perhaps
by bank allocation or custom memory controller. We also have
to carefully examine the memory systems of ZCU102 to see
how far we can push the limit. Our feeling is that we have not
yet exhausted its capability.

In this work, we only build the headset from the system
perspective. We have yet to pay attention to the programming
side. How to truly make a headset that is easy to port
mixed reality applications from the upper layer of the stack
is an open question. The industry is trying solve the VR/AR
fragmentation problem by introducing the OpenXR standard
[19] to cover application-space and runtime of mixed reality
devices. We could try to support it in future work.

A mixed reality headset can be viewed as an edge device
that functions in a networked computing environment. We are
working towards providing high frame-rate video streaming
input to the headset. The video could be coming from a
desktop with powerful rendering GPU to the network via
high-bandwidth, low-latency network, such as 5G/mmWave.
In addition, enabling multiple headsets to work collaboratively
is also an interesting problem.

To enhance the accuracy of AR object tracking, we could
also leverage outside-in tracking along with the inside-out
tracking of the headset. For example, Optitrack sensors could
be placed in the surrounding environment to perform localiza-
tion of the visor.



VIII. ACKNOWLEDGEMENT

This is an on-going collaborative research project among
many groups at CMU and UC Berkeley. Prof. Anthony Rowe
(CMU) initiates the ambitious idea of building an open-source
VR/AR headset using high frame-rate projectors. The author
would like to especially thank Vinamra Benara (work done
at CMU, now PhD student at UC Berkeley) for his early
contribution for cubemap application which helps shape the
course of the project. The author would like to particularly
thank John Miller (CMU) for numerous advice drawing from
his brilliant technical expertise, especially on lens correction
and IMU filtering. Special thanks to Joshua Corona (CMU)
and Nathan Seraphin (CMU) for prototyping as well as assem-
bling the mechanical components of the headset. The author
thanks Jonathan Nee (CMU) and Marie Nguyen (CMU) for
their helps related to the FMC setup for HDMI display. Thanks
to all the advisors: Prof. John Wawrzynek (UC Berkeley),
Prof. James Hoe (CMU), and Prof. Anthony Rowe (CMU) for
their advice and feedback. The author thanks the instructors
of EE290T and CS262A, Prof. Avideh Zakhor and Prof. John
Kubiatowicz, for their feedback and permission to the author
to pursue this as course projects (since this seems to be an
odd choice to both course topics).

This work was supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research
Program (SRC) sponsored by DARPA.

REFERENCES

[1] https://www.marketwatch.com/press-release/augmented-reality-and-
virtual-reality-market-737-cagr-2018-2025-overview-share-scope-
revenue-trade-analysis-trends-2019-11-20.

[2] https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-
and-vr-99f82c480926.

[3] https://www.roadtovr.com/exclusive-how-nvidia-research-is-
reinventing-the-display-pipeline-for-the-future-of-vr-part-1/.

[4] https://developer.leapmotion.com/northstar.
[5] https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-

microsoft-hololens-20-silicon.
[6] P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and

H. Fuchs, “From motion to photons in 80 microseconds: Towards
minimal latency for virtual and augmented reality,” IEEE Transactions
on Visualization and Computer Graphics, vol. 22, no. 4, pp. 1367–1376,
April 2016.

[7] P. Lincoln, A. Blate, M. Singh, A. State, M. C. Whitton, T. Whitted,
and H. Fuchs, “Scene-adaptive high dynamic range display for low
latency augmented reality,” in Proceedings of the 21st ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ser. I3D ’17.
New York, NY, USA: ACM, 2017, pp. 15:1–15:7. [Online]. Available:
http://doi.acm.org/10.1145/3023368.3023379

[8] J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer,
J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire,
and D. Luebke, “Foveated ar: Dynamically-foveated augmented reality
display,” ACM Trans. Graph., vol. 38, no. 4, pp. 99:1–99:15, Jul. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3306346.3322987

[9] J. M. P. van Waveren, “The asynchronous time warp for virtual
reality on consumer hardware,” in Proceedings of the 22Nd ACM
Conference on Virtual Reality Software and Technology, ser. VRST ’16.
New York, NY, USA: ACM, 2016, pp. 37–46. [Online]. Available:
http://doi.acm.org/10.1145/2993369.2993375

[10] D. Evangelakos and M. Mara, “Extended timewarp latency
compensation for virtual reality,” in Proceedings of the 20th
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ser. I3D ’16. New York, NY, USA: ACM, 2016, pp. 193–194.
[Online]. Available: http://doi.acm.org/10.1145/2856400.2876015

[11] https://www.intelrealsense.com/how-to-getting-imu-data-from-d435i-
and-t265/.

[12] https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.
[13] https://www.avnet.com/shop/us/products/avnet-engineering-services/

aes-fmc-hdmi-cam-g-3074457345635221625/.
[14] http://www.ti.com/tool/DLPDLCR2010EVM.
[15] https://www.ssidisplays.com/rear-projection-film.
[16] https://www.xilinx.com/support/documentation/user guides/ug1085-

zynq-ultrascale-trm.pdf.
[17] https://cs184.eecs.berkeley.edu/sp19/lecture/2/rasterization.
[18] http://blog.leapmotion.com/bending-reality-north-stars-calibration-

system/.
[19] https://www.khronos.org/openxr/.

https://www.marketwatch.com/press-release/augmented-reality-and-virtual-reality-market-737-cagr-2018-2025-overview-share-scope-revenue-trade-analysis-trends-2019-11-20
https://www.marketwatch.com/press-release/augmented-reality-and-virtual-reality-market-737-cagr-2018-2025-overview-share-scope-revenue-trade-analysis-trends-2019-11-20
https://www.marketwatch.com/press-release/augmented-reality-and-virtual-reality-market-737-cagr-2018-2025-overview-share-scope-revenue-trade-analysis-trends-2019-11-20
https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-and-vr-99f82c480926
https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-and-vr-99f82c480926
https://www.roadtovr.com/exclusive-how-nvidia-research-is-reinventing-the-display-pipeline-for-the-future-of-vr-part-1/
https://www.roadtovr.com/exclusive-how-nvidia-research-is-reinventing-the-display-pipeline-for-the-future-of-vr-part-1/
https://developer.leapmotion.com/northstar
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-microsoft-hololens-20-silicon
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-microsoft-hololens-20-silicon
http://doi.acm.org/10.1145/3023368.3023379
http://doi.acm.org/10.1145/3306346.3322987
http://doi.acm.org/10.1145/2993369.2993375
http://doi.acm.org/10.1145/2856400.2876015
https://www.intelrealsense.com/how-to-getting-imu-data-from-d435i-and-t265/
https://www.intelrealsense.com/how-to-getting-imu-data-from-d435i-and-t265/
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.avnet.com/shop/us/products/avnet-engineering-services/aes-fmc-hdmi-cam-g-3074457345635221625/
https://www.avnet.com/shop/us/products/avnet-engineering-services/aes-fmc-hdmi-cam-g-3074457345635221625/
http://www.ti.com/tool/DLPDLCR2010EVM
https://www.ssidisplays.com/rear-projection-film
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://cs184.eecs.berkeley.edu/sp19/lecture/2/rasterization
http://blog.leapmotion.com/bending-reality-north-stars-calibration-system/
http://blog.leapmotion.com/bending-reality-north-stars-calibration-system/
https://www.khronos.org/openxr/

	Introduction
	Related work
	Background
	IMU
	FPGA
	DLP
	Post-Render Warping

	Implementation
	Headset Architecture
	Headset System
	Pixel Streaming Engine
	3D Vector Graphics
	Lens correction and Stereo

	Evaluation
	Demo Applications
	Cubemap Rendering
	Static AR object overlay

	Memory performance analysis
	FPGA Resource consumption
	Pixel Streaming Engine Performance
	System Performance

	Conclusions
	Future work
	Acknowledgement
	References

