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Abstract—Machine learning frameworks in conjunction with
hardware advancements has allowed IoT applications to support
more data-intensive tasks. The proximity of resources not only
garners benefits in terms of latency and bandwidth, but also
allows developers to address security concerns of sensitive data
through reducing risks associated with the transport of data
to remote servers (i.e. bandwidth monitoring and malicious
database administrators). This is therefore especially beneficial
for improving home and office surveillance systems, whose cur-
rent configurations place its subjects at risk through streaming
all recordings of them directly to a cloud-based service for
processing. We propose a method for decreasing the amount of
data sent to the cloud in this context, specifically for the task
of intruder detection, in order to preserve the security of video
data, as well as benefit from decreased latency by processing data
on the edge. By utilizing caching techniques on-device, in con-
junction with Convolutional Neural Network (CNN) abstractions
for minimizing stored data per individual, we present a proof-
of-concept built on currently available commercial hardware to
experiment and evaluate our design. Our results show that facial
recognition done on the edge is a viable solution to the security
concerns of current surveillance networks, and also reduces the
latency of facial recognition tasks in an IoT context.

I. INTRODUCTION

There are increased risks in leaking sensitive information
associated with cloud computing, especially in the context of
the Internet of Things (IoT). The increase in the number of
paths over which data is transported (i.e. data channels from
edge sensors to the cloud) and the concentration of millions
of users data into a small number of databases (clouds) has
provided hotspots for malicious attacks, such as bandwidth
monitoring and risky administrative access. The past few
years have seen some disastrous examples of IoT hacking and
vulnerabilities that arise from insecure firmware and insecure
internet connectivity. In 2016, the largest DDoS attack ever
was launched on service provider Dyn via an IoT botnet that
used the Mirai malware to have computers continually search
the internet for vulnerable IoT devices. That same year, the St.
Jude Hospital’s implantable cardiac devices were discovered
to be vulnerable due to the transmitter that sends data from
the device to the cloud being insecure.

One solution to this problem is to shift more computation
onto the data sources at the edge, thus reducing the amount
of data being streamed to the cloud. Until recently, real-time

decision making in IoT systems was bottle-necked by the
cost, latency, and power consumption of the vast majority
of IoT device hardware that did not have enough processing
capabilities to perform significant computation on the edge.
These devices instead streamed all data from the device to
the cloud to carry out computation there. However, recent
developments in the hardware of edge devices that augment
IoT processing capabilities means that edge computing is
experiencing a resurgence of popularity in both academic
and consumer device spaces. Furthermore, the optimization
of machine learning algorithms and the increasing capabilities
of running them on the edge has created a space for inference
on the edge, thus reducing the amount of data needing to be
sent to and stored in the cloud. Putting the computation closer
to the data sources also potentially significantly reduces the
latency of common tasks associated with the edge, like object
detection in self-driving cars or face detection in surveillance
systems, where near-instant decision-making based on real-
time data is extremely critical.

On the consumer side, some especially promising examples
of recent advances in edge hardware and ML on the edge
include the Apple A12 Bionic announced in September of
this year, which is the 64-bit ARM-based system on a chip
(SoC) successor to the Apple A11 Bionic and is featured in
the iPhone XS, XS MAX and XR. The chip includes dedicated
neural network hardware called the “Neural Engine” that can
perform up to 5 trillion 8-bit operations per second. It is used
for Face ID, Animoji and other machine learning tasks on
device that utilize the iPhone’s cameras for computer vision-
related tasks. The neural engine allows Apple to implement
neural network and machine learning in a more energy-
efficient manner than using either the main CPU or the GPU
[26]. Similarly, at the CloudNext ’18 conference this year,
Google announced their Edge TPU hardware chip for the
deployment of ML models to the edge. They also announced
their Cloud IoT Edge service, which extends Google Cloud’s
powerful data-processing and machine learning capabilities
to the edge by allowing users to export models trained in
Google Cloud to the edge [22]. This announcement only
shortly followed Google’s earlier release of their commercial
Voice Kit and Vision Kit for performing natural language



processing and computer vision tasks respectively on the edge
[21]. However, only the Voice Kit was packaged with Google
Cloud support, leaving the Vision Kit as a standalone device
without cloud connectivity. This meant putting all of the ML
model training and inference entirely on the Vision Kit’s
Vision Bonnet that was designed by Google and features the
Intel Movidius MA2450 vision processing unit (VPU) [27].

Earlier this year, Intel also announced support for Windows
ML on their Movidius VPU [28]. Similarly, Microsoft Re-
search is working on resource-efficient machine learning for
IoT devices, including their ProtoNN and Bonsai algorithms
for classification, regression, and other common IoT tasks.
These models are trained in the cloud, then can make predic-
tions on device without the need for cloud connectivity [41].
Another example of consumer efforts to advance the state of
computer vision at the edge are the Net Runner and TensorIO
open-source projects from medical AI company doc.ai. Net
Runner is doc.ai’s environment for prototyping and evaluating
computer vision machine learning models for IoT devices,
and ships with MobileNet image classification models [13].
TensorIO is doc.ai’s Objective-C wrapper for TensorFlow Lite,
designed for development and deployment of ML models on
iOS devices [14].

Finally, this year marked the public release of Amazon
Web Service’s (AWS) DeepLens, a deep-learning enabled
camera for developers [46]. The device features a 4 megapixel
camera with up to 1080p video as well as an Intel Atom
Processor, and ships with device-optimized versions of MXNet
and Intel’s clDNN library, with support for other deep learning
frameworks. With the release of the DeepLens coinciding with
the increasing popularity of consumer IoT home surveillance
systems like those of the Nest [35], Ring [30] and Wink [51]
smart cameras, it will be interesting to see whether these
devices tend towards the direction of the DeepLens in the
future. Especially for Ring, a company owned by Amazon that
has received consumer criticism for having cameras that are
too slow as the device relies entirely on cloud connection via
WiFi. These exclusively-cloud IoT systems also raise concerns
regarding the privacy of stored video and image data in
the cloud. This month (December 2018), Facebook Research
presented a paper detailing their work on ML inference at
the edge [6]. Besides minimizing users’ network bandwidth,
inference at the edge is used by Facebook in certain Instagram
features for real-time machine learning at image capture time.

With these recent hardware and software trends in mind,
in this paper we focus specifically on face detection and face
recognition in edge-based smart camera surveillance systems.
Our main objective is to reduce risks associated with sending
and processing confidential information in a cloud-dependent
IoT surveillance system, whilst ensuring low latency and
reduced bandwidth usage by pushing more computation onto
the edge. A secondary goal is to further expand on ideas
concerning machine learning for IoT on edge networks.

The rest of the paper is structured as follows. In Section 2,
we discuss the current state of surveillance systems, machine
learning at the edge, privacy concerns and caching at the edge.

Section 3 describes the design of our system and Section 4
goes into the details of the implementation. We evaluate the
implemented prototype in Section 5 and look at scalability in
Section 6. Finally, we discuss the direction of our future work
in Section 7.

II. RELATED WORK

A. Current Surveillance Systems

The number of surveillance cameras is projected to increase
by 20% worldwide every year for the next five years [32]. The
British Security Industry Association estimates that in 2015,
there were between 4-5.9 billion cameras in the UK alone
[4]. In 2016, the global video analytics size was valued at
around USD 1.6 billion, and is trending to grow as concerns
of safety and security of the public increase [40]. However,
more cameras does not necessarily mean increased efficiency
as now issues of latency and large amounts of video data come
into play. There are also many flavors of video surveillance
systems on the market in terms of number of cameras and
range of mobility, such as one camera systems, many camera
systems and moving camera systems. In conjunction with
the applications of categorization, such as object tracking,
ID re-identification and behavior analysis, there exist many
combinations of how video surveillance systems are used [48].

One of the oldest and most widely used type of camera
network is the Close-Circuit Television surveillance system
(CCTV). Because of limited storage volume, the majority of
these cameras use either 15 FPS or 7.5 FPS [48]. With the
introduction of IP-based cameras, the resolution and frame rate
became adjustable as compressing algorithms can be used to
reduce storage volume. These cameras also make it possible
to view footage remotely and perform remote analytics on
the video data. We compare mainly with IP cameras in our
evaluation. Although our evaluation also focuses primarily on
images, video surveillance networks also can carry sound and
GPS data [48]. For example, the Radar Video Surveillance
System offered by Honeywell is able to detect intruders in user
defined Alarm Zones using Automatic Identification System
(AIS) and GPS filtering [25].

Often, the installation and hardware of the camera network
is separate from the analytics. This is the case for IP-based
cameras, where the collection of video data occurs locally and
the analytics occurs remotely, allowing businesses to quickly
convert their security systems to utilize the newest applications
available for analyzing video data using video management
software available [18]. For instance, Axis Communications
offers different flavors of video management software de-
pending on the use case of the customer [10]. With the
growing trend of combining both analytics and hardware as
a product, companies are now looking into faster querying of
video data for object detection/tracking, face recognition, and
ID re-identification. Panasonic is set to release FacePRO, its
facial recognition system that can be paired with the available
cameras it offers to present a service for face matching and
search for video data [39]. However, the video data is still



transported to the cloud for processing, which is what we hope
to eliminate with our design.

B. Machine Learning on Cameras at the Edge

In-part thanks to some of the aforementioned hardware
advancements, optimizing machine learning algorithms for the
edge has received recent interest in academia. The main areas
of interest are in performing inference at the edge in real-
time, and in creating ‘smart’ edge networks that learn how
to adapt to certain parameters that are often in flux such as
network bandwidth, as well as efficiently distributing tasks
across multiple devices in a network.

The topic of self-adaptive, distributed smart cameras (DSCs)
that perform computer vision has been long-investigated, par-
ticularly in the scope of video transmission to the cloud or
across local networks [42]. Today, novel camera networks
are expected to perform adaptive algorithms to account for
changes in the scene and objects of varying ‘importance’ to
the task at hand. In their 2015 paper, Zhang and Chowdhery et
al. presented a distributed wireless video surveillance system
called Vigil that leverages edge computing for real-time track-
ing and surveillance in enterprise campuses and retail stores
[53]. A similar architecture to Vigil was explored in earlier re-
search prototypes like IrisNet[38], Bolt[23], and IBM’s S3[47]
which attempted to coordinate cameras at scale. Vigil intelli-
gently partitions frame processing across the edge and cloud
via novel video frame prioritization techniques based on the
level of activity in a frame. Their preliminary results showed
that reducing the amount of data being streamed over the
wireless network (i.e pushing more computation onto the edge)
meant that the surveillance system they studied could support
a wider geographical area of coverage, between five and 200
times greater than what was possible with streaming video to
the cloud alone. The authors report that such a drastic increase
in scalability is made possible due to the fact that, in most real-
world video footage, nothing of interest is actually happening
in a scene. Thus, it makes sense to utilize object detection or
face recognition, depending on the surveillance task at-hand, to
limit the number of unimportant frames being sent to the cloud
and wasting bandwidth in the process. Vigil’s edge compute
nodes (ECNs) locally process each camera’s video feed with
lightweight, stateless vision models like motion and object
detection. The Vigil algorithm also relies on geometry and
known locations of the ECNs to detect redundant viewpoints
without actually exchanging the redundant frames, as well as
performs object re-identification to eliminate redundant views
of the same object across multiple camera frames. However,
Vigil does not store a persistent repository of unique face
encodings (as tied to identities) on the device, and therefore
is not suited for facial recognition or intruder detection tasks.
Rather, they use facial re-identification solely to identify in
real-time whether two faces from two different frames are the
same person or not.

In November of this year (2018), researchers at North
China University of Technology built an extended version
of person re-identification across surveillance camera frames

that utilizes recent advancements in deep convolutional neural
networks (CNNs) for person detection [54]. Researchers at
the University of California, Berkeley’s RISELab are currently
working on ReXCam, a system built to enable at-scale video
inference in the context of cross-camera analytics at the edge
[29]. ReXCam builds a cross-camera correlation model that
encodes the locality observed in historical traffic patterns.
Again, though, the motivation here is to achieve person track-
ing across frames and not necessarily person identification,
which is the focus of our work.

C. Privacy in Cameras at the Edge

With storing faces on edge IoT devices comes concerns
regarding the accessibility of those images by potentially ma-
licious actors, thus threatening the privacy of the individuals in
the footage. The past few years have seen different approaches
to enabling video privacy on IoT devices. Recently, Yu and
Lim et al. published their work on their Pinto system for pro-
ducing privacy-protected, forgery-proof videos using low-end
IoT cameras [52]. Pinto operates by blurring footage in real-
time, thereby obscuring faces and potentially sensitive scene
elements, before the footage is sent to the cloud. Although
readily implementable in IoT devices today, this kind of video
post-processing limits the accuracy of facial recognition that
can be achieved in the cloud once the video is sent over.
Earlier attempts at preserving privacy of video footage include
Chattopadhyay and Boult’s PrivacyCam, which uses AES
public-key encryption to encrypt and selectively blur detected
areas of interest in a video frame [8]. However, since this
is a significantly earlier paper, PrivacyCam’s face detection
algorithms are potentially less accurate than what would be
possible with today’s CNN-based methods.

This year, Wang et al. at Carnegie Mellon University (CMU)
published OpenFace, a new open-source face recognition
system nearing state-of-the-art accuracy [50]. In fact, we
almost used their system in our work but opted for another
Python library. Building on OpenFace, RTFace is a mechanism
designed by Wang et al. that integrates OpenFace with inter-
frame tracking to achieve real-time video denaturing of edge
device video streams. Video privacy is achieved by selectively
blurring faces in real-time, in a manner akin to the Pinto
system, but according to previously specified policies that can
be fine-tuned. Unlike in our work where all video processing
happens on the edge device itself, RTFace operates by stream-
ing first video data to a local cloudlet and performing the
denaturing algorithm there. The term ‘cloudlet’ refers to small
data-centers located near IoT devices. As Wang et al. discuss
in their paper, prior studies have shown that denaturing on
cloudlets (i.e. nearer to the devices themselves) offers greater
privacy assurances than denaturing in the cloud [50][12]. This
bodes well for our work, where we carry out out all video
denaturing on the edge device itself, side-stepping the need to
first transport video to an intermediary cloudlet. Furthermore,
we extract and store face encodings (fixed-length arrays) that
are potentially more secure than images of blurred faces. In
the implementation and evaluations section of this paper, we



go into further detail on how we process video streams on the
edge devices and extract face encodings.

D. Caching at the Edge

Besides concerns around the privacy of footage being stored
on device, another key aspect of face recognition on the edge
is the latency associated with real-time face detection. The
need that exists in current state-of-the-art systems, which is to
offload both requests and image data to a local cloudlet or the
cloud itself, adds extra latency on top of the time it takes to
perform inference on an image. For real-time scenarios such as
face recognition and even other tasks like people detection in
self-driving cars, it is extremely critical that requests be served
with as low user-perceived latency as possible. Since those
inference results are then used to make real-time decisions,
late results are useless and potentially dangerous.

Due to the general unsuitability of the cloud for serving
real-time information back to the edge device, given network
connection dependencies, leveraging resources closer to the
device is key in order to reduce the response latency of
requests. A promising approach that is receiving recent interest
is on-device content-level caching [7] [34] to store data or
inference results that may be useful (e.g. the identity of
a person), much like how a browser might cache often-
visited web pages. Caching data on the edge is not a new
idea [3], however caching inference results for recognition
applications is novel. Drolia et al. have recently presented
one of the first works on modelling edge-servers as caches
for compute-intensive recognition applications [17]. They have
since built Cachier, a system for face recognition that applies
adaptive load-balancing between the cloud and a purpose-built
edge server cache [16]. Cachier utilizes load-balancing by
leveraging the spatiotemporal locality of requests and online
analysis of network conditions. Their initial results show a
3x speedup in responsiveness for face recognition tasks on
the edge, as compared to non-caching systems. Drolia et al.
extend the Cachier idea to build a system called PreCog, for
pre-fetching image recognition classifiers from edge servers
to perform inference on-device [15]. This kind of pre-model
fetching is especially applicable in a camera scenario where
multiple different kinds of objects are of interest besides just
faces. PreCog uses Markov chains to make predictions about
what data to prefetch onto to the device. Markov chains
are also used in Sadeghi et al.’s reinforcement-learning-based
scheme for caching content in base-station units [43], although
clearly the domain is slightly different than IoT cameras.
PreCog’s initial results are promising, with reduced latency
by up to 5 and increased recognition accuracy. However, both
PreCog and Cachier operate on best-effort, meaning that they
do not provide any real-time guarantees. This is addressed by
Hnetynka et al. in their paper on the importance of guaranteed
latency applications in edge-cloud environments [24].

In our work, we deviate from the Cachier and PreCog
concepts by side-stepping the dedicated edge server and in-
stead building an in-software cache onto the edge camera
itself. Unlike in the PreCog scenario, where multiple different

types of objects might be of interest (dog, cat, person, car)
and therefore different specialized classifiers required, we are
for now only concerned with guaranteeing highly accurate
face recognition. Therefore we are able to store the inference
model on device due to the fact that face recognition only
requires one dedicated model to carry out the task. In our
setup, pre-fetching specialized models from either the cloud
or a nearby edge server would be overkill for the task we
are carrying out and would reduce unnecessary overhead. The
vast majority today’s modern smart cameras, including all the
devices mentioned in the introduction of this paper, ship with
enough on-device storage and memory to store a single pre-
trained model on device.

Glimpse is another real-time object recognition system for
camera-equipped mobile devices (i.e not surveillance systems
specifically) that uses an ‘active cache’ of video frames on the
mobile device [9]. However, they cache entire frames as their
focus is on object tracking, which is a significantly different
task than face recognition. Venugopal et al. at IBM recently
put forth a proof-of-concept for an edge caching system that is
similar to ours [49] (performing inference and caching feature-
level identifiers on-device), however their work addresses
object detection more broadly, whereas we focus on caching
in the context of face recognition specifically.

III. DESIGN

A. State-of-the-art workflows for face recognition at the edge

We chose to build our system on the Amazon Web Services
(AWS) DeepLens. The DeepLens hardware comes with 8Gb
of RAM, with 6G free under light load, meaning that we have
plenty of space to build our cache in memory. AWS DeepLens
also comes with a 16GB micro-SD card out-of-the-box; our
device is left with 7GB free, which we intend to utilize as our
on-device back-up database of face encodings. The Intel Atom
E3930 is used for processing, which has 2 cores clocking
at 1.30GHz, as well as the Intel i915 graphics card which
boasts 100 billion GFLOPS. The camera used for capturing
video data is 4-megapixels with MJPEG, and able to record
up to 1080p of resolution. AWS DeepLens also supports Wi-
Fi connectivity for both 2.4 GHz and 5GHz with standard
dual-band networking.

Our decision to use the AWS DeepLens stems from its
integration with AWS, which allows for fast prototyping.
Unlike the Google Vision Kit, the DeepLens has built-in cloud
connectivity with access to the Amazon Rekognition service
[44], which is a state of the art facial recognition application
that operates in the cloud. It boasts high performance in the
cloud in terms of speed and accuracy, so we concluded that it
would serve as a worthy comparison to our on-device system.
It is likely that home surveillance systems like the Ring, also
owned by Amazon, will trend towards smart cameras like
the DeepLens as hardware becomes cheaper to manufacture
and more available to the public. This is why we decided to
evaluate our design using this type of device, as our targeted
use case is for office and private area settings where a fully-
fledged network of smart cameras is feasible.



Fig. 1. Current surveillance systems (left) and our proposed setup (right).

Currently, the AWS workflow for doing ML on edge devices
involves either storing images on device or sending images to
the cloud. Both of these options are expensive, and bad for
privacy concerns. Furthermore, AWS currently only supports
face detection on device (i.e True or False as to whether a face
exists in the frame), and does not support face recognition on
device. Face recognition is a significantly different task, as
it involves identifying whether two faces belong to the same
person, not just whether or not a face exists in the frame.
In order to do face recognition with the pre-existing AWS
services, you must make a request from the edge device to the
AWS cloud to use their Rekognition face recognition service,
which involves sending the image frame containing a face to
the cloud.

B. Other Benefits
The AWS face detection model that runs on the DeepLens

edge device require images to be saved to the device, which
can quickly become expensive as either the images increase
in resolution or the device sees more faces over time. This is
also bad from a privacy and security perspective, as the faces
aren’t encoded so it would be relatively easy to hack into the
device and steal the face frames.

The AWS face detection and face recognition models that
run in the cloud require images of faces to be sent to and
from the device to the cloud, which has clear privacy concerns
(streaming images over WiFi with little to no encryption).
Furthermore, as discussed in the section below, Amazon’s
Rekognition service that operates on images of faces quickly
becomes expensive (i.e. latency increases dramatically) as
more faces are requested from the service in succession. For
example, even the task of having Rekognition identify four
faces in a frame takes considerably longer than several seconds
(up to 10s), which is simply not fast enough for the kinds
of situations in which quick and fast facial recognition via

an edge device would be required. Latency is critical in the
kinds of applications like surveillance and even home security
cameras, where is it critical to identify intruders as fast as
possible.

C. Modifications to perform ML at the Edge

We use the Amazon DeepLens hardware and its AWS cloud
connection to simulate cloud-independence and dependence.
We eliminate the sending of confidential data to the cloud by
instead computing the task of intruder detection at the edge.
Confidential data is defined as real-time information of indi-
viduals that the security system is meant to protect. (i.e. video
streams of residents and workers in homes and office settings,
respectively). Cloud independence is possible by making the
edge smart through running a face recognition machine learn-
ing framework, the face_recognition module powered
by dlib, on the cameras generating the surveillance data.
This data-heavy task is made possible through the following
two techniques:

1) Creating an on-device, software cache in memory to store
the most recently seen people (or most frequently seen,
depending on the cache policy).

2) Storing face encodings in the cache, rather than image
frames of faces.

Technique 1 helps alleviate latency concerns, as now the
edge device does not have to make an expensive call to a face
recognition service in the cloud every single time it detects
a face in the image. Now, if a face is detected, a maximum
of one call to the cloud is needed, if the face is one that the
device does not yet have stored in the cache. Once this face is
stored in the cache, the face recognition can happen entirely on
the device, which is orders of magnitudes faster. For example,
in situations where a security camera or system of cameras is
stationed in the same place and sees many of the same faces



Fig. 2. Edge-cloud face recognition workflow

throughout the day, caching these faces on device significantly
reduces both the latency to detect a face and the bandwidth
used throughout the day that would have otherwise been spent
servicing requests to and from the cloud.

Technique 1 helps alleviate privacy concerns, as now the
overall rate and number of images of faces that are sent to
and from the cloud is reduced significantly.

Technique 2 helps alleviate latency concerns, because
storing just the encodings, as opposed to images, means
that checking whether a face exists in the cache is order of
magnitudes faster than having to re-calculate encodings every
time a face is detected in frame.

Technique 2 helps alleviate privacy concerns, because it is
impossible to reverse-engineer an array of encodings back into
the original face (in the case of someone attacking a device
in an attempt to steal its cache contents).

IV. IMPLEMENTATION

A. Edge-meets-cloud workflow

See Figure 2 for an overview of the workflow. A single AWS
Lambda function runs on the DeepLens device that handles
the capture and display of frames, the image processing of
those frames to extract facial encodings, and the caching
of those encodings. This Lambda function also facilitates
communication with the cloud when needed, via the boto3
library [45], which is the AWS SDK for Python. To make
face recognition as fast as possible, we have the capture and
display of image frames occur in its own thread, separate
from the image processing. For face recognition on the edge
device, we utilize the face_recognition Python module,
which recognizes and manipulates faces, built using dlibs
state-of-the-art face recognition built with deep learning. The
model has an accuracy of 99.38% on the Labeled Faces
in the Wild (LFW) benchmark. The module does support
GPU acceleration, however it requires nvidia’s CUDA library,
which cannot be installed on the DeepLens due to insufficient
hardware. When installing the face_recognition mod-
ule on the DeepLens device, we drew inspiration from the
OneEye Deeplens hackathon project built by medcv [33]. The
face_recognition module utilizes a pre-trained CNN to
extract face-level features from an image of a face, which are

then stored in the form of 128-length arrays of floats. These
feature arrays are called ’encodings’ or ’embeddings’. The
CNN will always output feature arrays that are 128-length,
irrespective of input image size. We store these face encodings
on device, instead of storing entire image frames. If a match
cannot be found for a given face encoding that the device has
just extrapolated from a scene, a request is sent to the cloud
to identity the face.

For face recognition in the cloud, we utilize Amazon’s
cloud-based Rekognition service, which operates on images
of faces. When learning how to make requests to AWS from
the DeepLens, we referenced Github user darwaishx’s tutorial,
which we are grateful for [11]. The Rekognition Collection
that is used to identify familiar faces is linked to an S3
database [47] we created that stores known faces as jpeg files.
So, in order to make a request to Amazon Rekognition, we
have to send the image of the unknown face to the cloud. On
the device, we resize the image frame from its full-size to a
considerably smaller 300x300 pixels, as this is the frame size
that the face_recognition model operates on on-device.
To keep things consistent, this is also the size of the image that
gets sent to the cloud (as opposed to the original frame size
captured by the device). An image of this size, at the lowest
resolution on the DeepLens (480p) results in an image whose
size would be, on average, 30KB. In comparison, the size of
one face encoding array stored on-device is around 1120 bytes,
which is order of magnitudes smaller than the image size. The
pseudocode for our algorithm is below:

B. Creating the cache

Our cache is a software cache that is stored in memory
with the code for the fastest access. The default capacity of
the cache is 10 entries, for 10 unique people. A cache entry
consists of a {key:value} pair that represents a unique person,
where the key is the hashed name of the person (if known)
and the value is a list of face encodings for that person that the
device has seen over its lifetime. We store multiple encodings
per person to account for the various parameters that might
change across images (lighting, angle, position of face) so
as to best capture the potential different presentations of a
single person. The more encodings per person we store, the



Algorithm 1 On-device recognition algorithm pseudocode
1: procedure RUNINFINITE . Recognizes faces
2: cache← Cache(evictionPolicy is LFU or LRU)
3: while True do . While camera capturing
4: locations← getFaceLocations(frame)
5: encodings← getFaceEncodings(faceLocations)
6: for face in encodings do
7: if face in cache then
8: retrieve face
9: else

10: Send face to cloud
11: if face not in cloud then
12: databaseInCloud← add face
13: cache← add face

more likely it is that the cache will score a hit for any given
unknown encoding we are attempting to match. However, the
length of the encoding lists is capped to ensure that we do
not store an encoding for every single frame in which the
same person is detected, as this list would quickly grow too
large and be very slow to iterate over. We experimented with
different values for the optimal encodings list size, and settled
on somewhere between 10-20 encodings per person in a cache
with 10 entries (for 10 distinct people). This way, we are able
to strike a balance between the advantage of having cached
results stored close to the code, and the time it takes to linearly
iterate over all of the face encodings stored in the cache and
call the face recognition.compare faces() function for each
encoding.

We implemented and tested two caching schemes, least-
recently-used (LRU) and least-frequently-used (LFU). We
chose these as they made the most sense given our context
(surveillance at the edge). In certain situations like in homes,
offices and academic settings, it may be the case that many
faces pass by an area but that there is a consistent set of faces
that appear frequently. In this case, LFU caching makes sense.
In other situations like in cafes and shopping malls, there is
no concept of ’favorite faces’ that continually reappear but
rather the same person may linger in the same area for some
time before moving on to another area and never returning
back to the previous area. In these kinds of situations, LRU
caching makes sense because once a camera no longer sees a
face, after a certain amount of time it is unlikely to ever see it
again. Although we implemented the LRU cache ourselves in
order to fine-tune certain parameters, for our LFU cache we
used the lfu cache Python module from Laurent Luce which
supports O(1) deletion and insertion [31].

Searching for a matching face in the cache consists of
comparing the currently unknown face encoding, grabbed from
the current frame, against each list of known encodings per
each cache item. Currently, we do this linearly by iterating
over each item in the cache. However, given the relatively
small cache capacity (10-20 items) and the limit on the
number of encodings saved per face (3-20), this process is
actually very quick. To compare an unknown encoding to a

Fig. 3. The parameters for the cache are described above.

Fig. 4. The above plot compares a pure cloud set-up camera system with two
edge-compute models.

known encoding, we use the ‘face recognition.compare faces‘
function that returns True if the encodings correspond to the
same person, or False if they do not.

C. Security

In addition to storing the encodings of each face instead
of the image, the corresponding names of each individual
is cryptographically hashed using a SHA256 hash in order
to minimize leaking sensitive information under an attack
of a malicious attacker. In order for our caching-encoding
system to operate, the edge device itself does not ‘care’
about whether the names associated with encodings have any
semantic meaning. All that matters is that the key values of
items in the cache are unique, so that our cache can be fully-
associative (moderate search speed, but best hit-rate). Hashing
not only ensures that each key is distinct, but that individual’s
names are protected in the instance of an information leak.

D. Failure Tolerance

The DeepLens comes with a 32GB SD card for additional
storage once mounted. Initially, we were going to use this as a
’secondary cache’ to store even more face encodings. However,
due to the linear fashion in which we’re currently iterating
over the cache to find potential matches, it became clear via
some basic experimentation that using persistent storage as a
secondary cache would be too slow.

Instead, we opted to use the ample persistent storage to store
’backups’ of the face encodings. Since the cache is emptied
and reset every time the device boots up, we lose all the face
encodings we’ve ever seen if the device should have to restart.



The benefit of storing the encodings in persistent storage is that
in the case of device failure, we can quickly recover all those
encodings rather than have to wait for the same person to come
back into frame again. This way, we don’t lose potentially vital
information about who was in a given frame at a given time.
We also don’t have to send a bunch of requests to the cloud
in order to restore the cache back to its previous state.

V. EVALUATION

As Figure 4 shows, the scaling behavior of a pure cloud
model is not only unsustainable for real-life application, but
also heavily dependent on network bandwidth. The experiment
was conducted on UC Berkeleys campus network, but relative
performance between cloud and edge devices should behave
similarly under different network conditions. Figure 3 shows
two different cache set-ups utilized in order to determine the
optimal configuration. Main concerns with having too many
encodings per person involved the delay incurred by the linear
comparisons done for each face. The on-device storage is used
as a backup for the database of faces in case of power or other
failures. Figure 5 highlights that by only storing the encodings,
we are able to store around 6 million unique encodings more
as opposed to storing images of faces at a given resolution of
480p at 300x300 pixels.

A. Increase in Privacy

By reducing the amount of traffic sent to the cloud for
processing, multiple security concerns are addressed. Consider
the case where a constant stream of video data is sent to the
cloud for facial recognition processing. From network traffic,
the current location of individuals appearing in the data can be
easily accessed. Although this might be desirable for CCTV
video surveillance networks, our targeted use case of intruder
detection assumes that the set of people with granted access is
known, and that the whereabouts of these individuals should
not be trivially revealed regardless of intruders in the system.
As we also choose to store the image encodings of individuals
instead of pictures, the identity of each permitted person can
also be obfuscated as faces cannot be reverse-engineered from
encodings.

B. Other Benefits

Our approach also addresses computing concerns, namely
latency and failure tolerance of the system. By storing the list
of encodings for permitted individuals in persistent storage,
intruder detection is able to continue in the event of network
failure or powering off of a device. This is especially important
in rural areas where network connection is limited. Our results
have shown that although it is slower to go to persistent storage
first before the cloud, it is nonetheless useful to keep an on-
device list of encodings to improve failure tolerance.

VI. SCALABILITY AND MULTI-CAMERA NETWORKS

So far we have evaluated our system based on the behavior
of one device.

Fig. 5. Number of faces gained from only storing encodings instead of images
given 7GB of free memory (this number was chosen based on the amount of
memory we had left after loading the model and code onto our device).

In this section we present ideas on how our design might
scale through the addition of more cameras, and potentially
optimal configurations.

A. Parallelizing for Performance

As the task of intruder detection through face recognition
increases in terms of absolute individuals accounted for by
the system, both in the cache and from incoming faces, a net-
work of communicating cameras becomes necessary to keep
performance at current standards. As previously discussed,
current systems have multiple cameras, with each typically
set to stream data to the cloud independent of the activities
of adjacent cameras. Given the linear behavior of how the
facial recognition program is implemented (every new face is
compared to each cached encoding), we propose the utilization
of the multitude of hardware (i.e. cameras or edge servers)
to parallelize our task for reduced time based on number of
cameras.

We envision multiple sub-networks of cameras that share
the workload of computing, dividing and partitioning the
encodings among cameras in the same room. How this data
is partitioned, however, is greatly dependent upon the current
number of cameras in a room and the frame of view that each
camera has. We explore two simple types of potential existing
camera topology and provide our recommended architecture
for optimal performance.

B. Topology and Configurations

The two types of topologies we explore are as follows, per
room:

1) x cameras overseeing the whole room with equal cover-
age

2) one camera overseeing 70 percent of the room, x − 1
adjacent cameras covering hidden angles.

For the first case, we propose the network to follow a
general distributed scheme, where encodings are equally dis-



tributed among the cameras. Given n individuals stored in the
system, each camera will be responsible for testing incoming
frames to be compared to n/x encoding sets (a set being the m
encodings stored per person). Given a positive match for one
of the cameras, the camera with the matching encoding will
send said encoding to all the other cameras to be cached in
memory for the reminder of the day. This reduces the number
of encodings that are known by each camera to purely the
encodings being matched that day. The time component is
flexible and needs to be further investigated for optimization
purposes.

For the latter case, we propose a more centralized system,
where the camera with the best coverage (preferably with
sight of the entrance to the space), utilizes the processing
capabilities of the adjacent cameras, sending requests to the
adjacent cameras as and when those backup cameras are
needed. This leader camera, which sees the majority of traffic
in a room, might distribute its face recognition tasks to those
secondary cameras whilst they are not picking up any frames
of interest i.e. are idle. This leader camera might also be
the sole facilitator of communication between the network
of edge devices and the cloud. Further testing needs to be
done to determine whether this leader camera should store
face encodings of its own, based on the latency of camera to
camera communication time (i.e. whether it is efficient for the
leader to make recognition requests to the other cameras), or
if it is faster for the leader camera to perform face recognition
as well. A reminder that this is only centralized at the single
room scale; the edge system is still distributed in terms of
covering the building at large.

C. Locality

For each target, we can consider how locality of reference
can be exploited in order to predict where individuals are
located. If we assume the same model of a sub-network of
cameras, we examine how spatial locality can influence our
system. Given the appearance of an individual at Camera A,
we can further decrease requests to the cloud if the name-
encoding pair is sent to cameras within close proximity of
Camera A. This preemptive action can decrease requests sent
to the cloud per individual, and thus minimize traffic within
potentially untrusted networks.

D. Architecture Evaluation based on Untrusted vs Trusted
Networks

Per use-case, the architecture and topology of our system
changes depending on whether the network can be trusted or
not. In this paper, we focus primarily on a trusted camera
network, with an untrusted cloud network. However, if both
were non-malicious, we can simplify our design as we would
not have to worry about requests sent to the cloud from a
privacy perspective. For an untrusted cloud network with a
trusted camera network, we envision dedicated nodes whose
sole purpose is for communicating with untrusted networks.
These nodes will be reinforced with additional security precau-
tions as they serve as the entry point into our trusted network.

For instance, these nodes could have hardware-assisted Trusted
Execution Environments (TEE) that would ensure isolation
of the executed environment even if software on the device
is compromised [36]. As an example usage, an application
running with Intel’s Software Guard eXtension allows for
communication between trusted and untrusted components
through ECalls and OCalls.

E. Cost

The Amazon DeepLens currently retails for $249 with
AWS services charged separately depending on usage. For
our experiment, we used Amazon S3 and Amazon Lambda.
For the first 50TB per month, S3 charges $.023 per GB of
storage [2]. AWS Lambda offers an initial free tier up to one
million requests per month, which translates to 400,000GB-
seconds of compute time. After the free request tier expires,
each subsequent one million requests gets charged $0.20 [1].
For this experiment, approximately $20 was used to perform
our evaluations. A typical video security system for a business
can run around $300 per camera, with monthly monitoring
fees of around $30 [19]. For a professional monitoring system,
additional labor costs may also increase the total price. A more
targeted system with facial recognition capabilities such as the
Panasonic FacePRO WV-ASF950 is estimated to cost upwards
of $1000 simply for the software license [39] [5].

F. Maintainability

As the network of camera grows, the maintainability of
our system should remain the same factoring out hardware
installations. In order to update software on each edge device,
AWS Lambda helps facilitate this process by automatically
distributing the code to each connected machine. We envision
a central hub that would evaluate the status of each camera
through a simple heartbeat protocol.

VII. FUTURE WORK

Our work proves that face recognition can be run on a
simple edge device set-up. What remains to be accounted for
are the other factors involving scalability to completely ensure
the feasibility of our system.

A. Intra-Camera Connectivity

A large concern of the current evaluation is how it will
scale as more cameras and individuals are added. We theorize
that one way of ensuring an efficient system is introducing
camera-to-camera communication. This can not only help with
decreasing traffic to the cloud as mentioned in part C of
Section VI, but also in terms of performance.

By introducing camera connectivity, we can also introduce
edge server nodes with a sole purpose of communicating
with the cloud. These nodes would be designed with more
security precautions in mind than camera nodes within a
trusted network as they serve as the entry points for our
system. In order to evaluate such a system, it would be useful
to examine the different scheduling options in order to not
overload one single server node as the system scales. However,



we foresee that communication with the cloud should decrease
overall as other than the initial sync operation for initializing a
new camera, intra-camera connectivity should be used instead
to identify unknown targets upon a miss in any given camera’s
cache.

B. Energy Consumption Evaluations

Our current evaluation of our system does not look at energy
consumption and the costs associated with it. The Amazon
DeepLens consumes 20 Watts and requires 5V and 4Amps to
run. We would like to measure the power consumption under
the workload of facial recognition and evaluate how this scales
in terms of number of cameras, number of individuals in a
given time range, and the monetary cost of these operations.

The Amazon DeepLens currently does not have an external
battery, so if power if cut off, there is no way of continuing
intruder detection. This introduces a major security concern
in our system as intruders can thus cut the power to avoid
detection. We would also like to analyze and compare the
performance of other edge devices that are configurable with
batteries or try to provide external sources of power to prevent
complete loss of functionality to the Amazon DeepLens and
observe how this scales.

C. Accuracy Analysis

The library used for facial recognition boasts an accuracy
of 99.38% on the Labeled Faces in the Wild benchmark [20].
However, depending on the different environments in which
our system might implemented, there might be a need to tune
the sensitivity of the neural net. We would like to evaluate
the accuracy of the library on different sets of faces compiled
based on varying degrees of similar or distinct characteristics
of facial features. For instance, in populations where facial fea-
tures are more homogeneous, the tolerance parameter should
be adjusted according. Based on these different populations,
we aim to show that the number of false positives should
decrease after adjusting for irregularities in our known data
set. More specifically, as the list of people assigned access
to an area is generally always known in an office or campus
scenario, the recognition program can always be tuned for
optimal performance during installation.

D. Other Specialized Hardware

Although the DeepLens does ship with a GPU, it does not
support the NVIDIA CUDA toolkit [37], and so we could
not enable GPU acceleration on our model. Furthermore,
the DeepLens does not come with any specialized vision
processing units (VPUs) either, so we were limited to the CPU
only in terms of processing power. We attempted to implement
our system on the Google Vision Kit’s Intel Movidius VPU,
however it turns out that the C++ dlib library that powers
the face_recognition Python module is not compatible
with the Movidius hardware. In the future, we would like to
explore other options in terms of porting our system to VPUs
with specialized ML model support.

VIII. CONCLUSION

We introduce the current state of surveillance systems, as
well as look into trends of machine learning, hardware, and
privacy and caching all in the context of edge computing.
We also present our implementation and evaluation of facial
recognition at the edge using caching and reduced data storage
through encodings generated by the dlib library. By reducing
dependence on the cloud, we address the main concerns
of security and privacy by reducing sensitive data sent to
untrusted networks. We are also able to decrease latency
through our design of caching and improve storage efficiency
by saving encodings instead of images. Finally, we present
a theoretical analysis into this system at scale in terms of
performance, intra-camera connectivity, and cost.
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