
Artificial Intelligence in Distributed Edge Networks: Optimizing
for Security and Latency in Surveillance Systems

Ameena Golding
Katie Li
Rosanna Neuhausler

Abstract
Machine learning frameworks in conjunction with hardware advancements has
allowed IoT applications to support more data-intensive tasks. The proximity of
resources not only garners benefits in terms of latency and bandwidth, but also
allows developers to address security concerns of sensitive data. We propose a
method of decreasing the amount of data sent to the cloud in the context of
surveillance systems in order to preserve the security of video data, as well as
benefit from decreased latency by processing data on the edge. By utilizing caching
techniques, in conjunction with CNN abstractions for minimizing stored data per
individual, we present a proof-of-concept built on currently available commercial
hardware to experiment and evaluate our design. Our results show that facial
recognition done on the edge is a viable solution to the security concerns of current
surveillance networks.
 

8. References

https://www.nortekcontrol.com/pdf/literature/
InterProCameras_Lit.pdf
https://aws.amazon.com/deeplens/

2. Objective

Our main objective is to reduce risks associated with sending and processing
confidential information in a cloud-dependent surveillance system.

A secondary goal is to expand on ideas on how artificial intelligence fits into edge
operating systems.

7. Acknowledgements

We’d like to thank Joey Gonzalez and Marcel Neuhausler for introducing us to the issues of privacy in regards security camera streaming and to the concepts around AI at the
edge. We’d also like to thank John Kubiatowicz for teaching us advanced topics in computer systems this semester.

1. Motivation
1. Increased risks in leaking sensitive information associated with Cloud computing.

The increase in the number of paths over which data is transported (i.e. movement
from edge sensors to the cloud) and the concentration of millions of users’ data
into a small number of databases (i.e. clouds themselves) has provided hotspots for
malicious attacks (bandwidth monitoring and risky administrative access).

2. Developments in the hardware of edge devices and machine learning methods.

The optimization of machine learning algorithms and the increasing capabilities of
running them on the edge has created a space for edge computing capabilities.

1. Encoding images

3 dimensional data object
size = f(resolution)

128 numbers
size resolution

2. Caching encodings

+ -

3. Materials and Methods
We eliminate the sending of confidential data to the
cloud through computing the task of intruder detection
at the edge.

Confidential data is defined as real-time information of
individuals that the security system is meant to protect.
(i.e. video streams of residents and workers in homes
and office settings, respectively).

Cloud independence is possible by making the edge
“smart” through running a face recognition machine
learning framework, dlib and the face_recognition
library, on the cameras generating the surveillance data.
This data-heavy task is made possible through reducing
storage and memory concerns using the following two
techniques:

We use the Amazon DeepLens hardware and its AWS
cloud connection to simulate cloud-independence and
dependence. We measure and record resulting
latencies and scaling capabilities based on the set-ups
shown in Figure 1.1 and Figure 1.2.

Naive Set-Up:

At Scale:

x xn* m*

x nx n

Figure 1.2: Cloud independent set-up using encodings and caching

4. Results

5. Discussion
5.1 Results
As Figure 1.4 shows, the scaling behavior of a pure cloud model is not only unsustainable for real-life
application, but also heavily dependent on network bandwidth. The experiment was conducted on UC
Berkeley’s campus network, but relative performance between cloud and edge devices should behave
similarly under different network conditions. Figure 1.3 shows two different cache set-ups utilized in
order to determine the optimal configuration. Main concerns with having too many encodings per
person involved the delay incurred by the linear comparisons done for each face. The on-device
storage is used as a backup for the database of faces in case of power or other failures. Figure 1.5
highlights that by only storing the encodings, we are able to store around 6 million unique encodings
more as opposed to storing images of faces at a given resolution of 480p at 300x300 pixels.

5.2 Increased Security and Privacy
By reducing the amount of traffic sent to the cloud for processing, multiple security concerns are
addressed. Consider the case where a constant stream of video data is sent to the cloud for facial
recognition processing. From network traffic, the current location of individuals appearing in the data
can be easily accessed. Although this might be desirable for CCTV video surveillance networks, our
targeted use case of intruder detection assumes that the set of people with granted access is known,
and that the whereabouts of these individuals should not be trivially revealed regardless of intruders in
system. As we also choose to store the image encodings of individuals instead of pictures, the identity
of each permitted person can also be obfuscated as faces cannot be regenerated from encodings.

5.3 Other Benefits
Our approach also addresses computing concerns, namely latency and failure tolerance, of the system.
By storing the list of encodings for permitted individuals in persistent storage, intruder detection is
able to continue in the event of network failure or powering off of a device. Our results have shown
that although it is slower to go to persistent storage first before the cloud, it is useful to keep an on-
device list of encodings to improve failure tolerance.

Face Recognition Latency per Total number of Faces

La
te

nc
y

(s
)

Total number of Faces

Number of Faces Stored Given 7GB of Memory

Total number of Faces (x10,000)

Saved as Images

D
at

a
Fo

rm

Current Systems:

x n

At Scale:

Figure 1.1: General set-up of surveillance systems

n number of people

m number of encodings
per person

* cached
 main channel of
**. communication
 backup channel
 memory
 storage

AWS DeepLens
• 4-megapixel camera

with MJPEG
• 8 GB RAM
• 16 GB of storage

capacity
• Optional 32 GB SD card

for additional memory
• Intel Atom Processor (2

cores at 1.30GHz)

IP Camera
• 1.3-megapixel

camera
• 32GB max local

storage
• Supports TCP/IP,

UDP, HTTP

6. Conclusion
By reducing dependence on the cloud, we address the main concern of security and privacy through
reducing sensitive data sent in the network. We are also able to decrease latency through our design
of caching and improve storage efficiency by saving encodings instead of images.

Figure 1.3: Cache configurations on the edge device

Figure 1.4: Scaling behavior of face recognition on edge and cloud Figure 1.5: Number of faces that can be stored using
images or encodings

Saved as Encodings

10 20 30 40 50 600

