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Abstract 
Machine learning frameworks in conjunction with hardware advancements has 
allowed IoT applications to support more data-intensive tasks. The proximity of 
resources not only garners benefits in terms of latency and bandwidth, but also 
allows developers to address security concerns of sensitive data. We propose a 
method of decreasing the amount of data sent to the cloud in the context of 
surveillance systems in order to preserve the security of video data, as well as 
benefit from decreased latency by processing data on the edge. By utilizing caching 
techniques, in conjunction with CNN abstractions for minimizing stored data per 
individual, we present a proof-of-concept built on currently available commercial 
hardware to experiment and evaluate our design. Our results show that facial 
recognition done on the edge is a viable solution to the security concerns of current 
surveillance networks.  
 

8. References 

https://www.nortekcontrol.com/pdf/literature/
InterProCameras_Lit.pdf 
https://aws.amazon.com/deeplens/ 

2. Objective  

Our main objective is to reduce risks associated with sending and processing 
confidential information in a cloud-dependent surveillance system.  

A secondary goal is to expand on ideas on how artificial intelligence fits into edge 
operating systems.
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1. Motivation 
1. Increased risks in leaking sensitive information associated with Cloud computing. 

The increase in the number of paths over which data is transported (i.e. movement 
from edge sensors to the cloud) and the concentration of millions of users’ data 
into a small number of databases (i.e. clouds themselves) has provided hotspots for 
malicious attacks (bandwidth monitoring and risky administrative access). 

2. Developments in the hardware of edge devices and machine learning methods. 

The optimization of machine learning algorithms and the increasing capabilities of 
running them on the edge has created a space for edge computing capabilities.

1. Encoding images

3 dimensional data object 
size = f(resolution)

128 numbers 
size     resolution 

2. Caching encodings

+ -

3. Materials and Methods 
We eliminate the sending of confidential data to the 
cloud through computing the task of intruder detection 
at the edge.  

Confidential data is defined as real-time information of 
individuals that the security system is meant to protect. 
(i.e. video streams of residents and workers in homes 
and office settings, respectively). 

Cloud independence is possible by making the edge 
“smart” through running a face recognition machine 
learning framework, dlib and the face_recognition 
library, on the cameras generating the surveillance data. 
This data-heavy task is made possible through reducing 
storage and memory concerns using the following two 
techniques:

We use the Amazon DeepLens hardware and its AWS 
cloud connection to simulate cloud-independence and 
dependence. We measure and record resulting 
latencies and scaling capabilities based on the set-ups 
shown in Figure 1.1 and Figure 1.2.
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Figure 1.2: Cloud independent set-up using encodings and caching

4. Results  

5. Discussion
5.1 Results 
As Figure 1.4 shows, the scaling behavior of a pure cloud model is not only unsustainable for real-life 
application, but also heavily dependent on network bandwidth. The experiment was conducted on UC 
Berkeley’s campus network, but relative performance between cloud and edge devices should behave 
similarly under different network conditions. Figure 1.3 shows two different cache set-ups utilized in 
order to determine the optimal configuration. Main concerns with having too many encodings per 
person involved the delay incurred by the linear comparisons done for each face. The on-device 
storage is used as a backup for the database of faces in case of power or other failures. Figure 1.5 
highlights that by only storing the encodings, we are able to store around 6 million unique encodings 
more as opposed to storing images of faces at a given resolution of 480p at 300x300 pixels. 

5.2 Increased Security and Privacy 
By reducing the amount of traffic sent to the cloud for processing, multiple security concerns are 
addressed. Consider the case where a constant stream of video data is sent to the cloud for facial 
recognition processing. From network traffic, the current location of individuals appearing in the data 
can be easily accessed. Although this might be desirable for CCTV video surveillance networks, our 
targeted use case of intruder detection assumes that the set of people with granted access is known, 
and that the whereabouts of these individuals should not be trivially revealed regardless of intruders in 
system. As we also choose to store the image encodings of individuals instead of pictures, the identity 
of each permitted person can also be obfuscated as faces cannot be regenerated from encodings.  

5.3 Other Benefits 
Our approach also addresses computing concerns, namely latency and failure tolerance, of the system. 
By storing the list of encodings for permitted individuals in persistent storage, intruder detection is 
able to continue in the event of network failure or powering off of a device. Our results have shown 
that although it is slower to go to persistent storage first before the cloud, it is useful to keep an on-
device list of encodings to improve failure tolerance. 
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Figure 1.1: General set-up of surveillance systems
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AWS DeepLens 
• 4-megapixel camera 

with MJPEG  
• 8 GB RAM 
• 16 GB of storage 

capacity 
• Optional 32 GB SD card 

for additional memory 
• Intel Atom Processor (2 

cores at 1.30GHz)

IP Camera 
• 1.3-megapixel 

camera 
• 32GB max local 

storage 
• Supports TCP/IP, 

UDP, HTTP

6. Conclusion
By reducing dependence on the cloud, we address the main concern of security and privacy through 
reducing sensitive data sent in the network. We are also able to decrease latency through our design 
of caching and improve storage efficiency by saving encodings instead of images. 

Figure 1.3: Cache configurations on the edge device

Figure 1.4: Scaling behavior of face recognition on edge and cloud Figure 1.5: Number of faces that can be stored using 
images or encodings
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