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Abstract

The use of Public-Key Infrastructure (PKI) [16], specif-
ically Certificate Transparency (CT) [8] to manage and
distribute user certificates has brought with it significant
scalability challenges due to its usage of Merkle trees [11].
Specifically, the hierarchical nature of Merkle trees resists
attempts at parallelization of multi-node updates [4] in a
transactional manner. As users accumulate more devices
that share public keys, it becomes increasingly necessary
to support updating all of a user’s devices (nodes in a
Merkle tree) to a new public key; this can happen if, for
example, a user’s device becomes compromised.

This paper introduces a system that supports these
types of updates based of Google’s existing Merkle tree
implementation, Trillian [9] and provides a performance
comparison between Trillian and the modified system.
Benchmarks show that the modifications made have sim-
ilar performance numbers when run on read-heavy work-
loads, but provides speed ups compared to a base Trillian
implementation on write-heavy workloads where transac-
tions involve multiple nodes.

1 Introduction

The rise of Public-Key Infrastructure (PKI) [16], a set
of techniques to deal with the management, distribution,
and revocation of digital certificates for public-key en-
cryption, has brought with it a set of unique challenges.
Among these are the common scaling issues of the man-
agement of its many moving parts and its ability to meet
the needs of a growing number of users storing their public
keys in the infrastructure. Yet an equally important chal-
lenge is its ability to update these keys as they change over
time and distribute these keys to an ever-growing number
of users. We consider the ability to update public keys of
particular importance because users need the ability to
react quickly to the changing state of the security of their
devices.

One approach to PKI by Google is Certificate Trans-
parency (CT) [8], which seeks to add transparency to the
certificate creation and distribution process. The way
that CT attempts to solve this problem is by providing a
log of certificates. This log has three properties:

1. It is append-only, which means that certificates can-

not be inserted at arbitrary points in the log and en-
tities (possibly malicious), cannot delete or change
log entries in an adhoc way.

2. It is cryptographically secure. Users of CT can be
sure that their public keys weren’t tampered with.

3. Closely related is CT’s ability to be publicly au-
ditable. A major reason that users can be sure that
their public keys weren’t tampered with is because
anyone can request a proof that their certificate has
been legitimately appended to the log. Since this
audit is cryptographically secure, it is guaranteed
with a very high probability, that no malicious entity
would have the ability to tamper with the log.

The way that CT provides these strong guarantees is
through the use of a Merkle tree for its append-only log.
Since a Merkle tree is a tree composed of a chaining of
cryptographically secure hashes over its nodes, with very
high probability, it will be impossible for a malicious en-
tity to be able to forge log entries.

Thus, a key component in the performance of CT is its
backing Merkle tree implementation. However, since a
Merkle tree is organized as a hierarchical chain of hashes,
it is very difficult to achieve update parallelism on Merkle
trees [4] when compared to other tree-based data struc-
tures. There has already been significant work on how to
perform single-node updates to Merkle trees [9, 11] effi-
ciently. However, with the application of Merkle trees to
PKI, specifically CT, this is quickly becoming an insuffi-
cient solution to a growing problem of scale.

A common use-case for PKI and CT is the manage-
ment of public keys for user devices [7]. As the number
of users grows, so to does the size of the Merkle trees
required to store their public-key information. However,
the problem now is that it is very common for users to
have multiple devices between which they share a single
public key. Thus, when a user’s device becomes compro-
mised, it would be desirable to change the public keys of
all of a user’s nodes to a new public key. This poses a
significant performance problem, since it is very difficult
to perform scalably parallel updates on Merkle trees as
noted earlier. An additional challenge is posed by the fact
that the update from one public key to another public key
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must be performed atomically. The entire tree must be
in a consistent state at any point in time, and a partial
update would mean that until the entire transaction com-
pleted, some devices of a user might still utilize an older,
insecure public key.

This paper introduces a modified Merkle tree based off
of Google’s Trillian [9] Merkle tree implementation, that
has support for transactional, multi-node updates for log-
based Merkle trees. The addition of these changes should
not introduce prohibitive latency overheads and should
retain comparable throughput.

Work on atomic, multi-leaf update operations for
Merkle trees would have far-reaching consequences, since
Merkle trees are utilized in a wide variety of applications,
from cryptocurrencies like Bitcoin [12], Ethereum [17],
etc., to PKIs like CT [8], CONIKS [10], etc., to filesys-
tems like ZFS [13], IPFS, etc. All of these would ben-
efit from efficient, transactional, multi-node updates to
Merkle trees, since enabling this class of operations would
mean opening the door for significant optimizations with
regards to the kinds of transactions that could batched
together, as well as the consistency guarantees these sys-
tems could provide. Additionally, for the purpose of CT,
support for this class of operations would mean faster re-
sponse times to the changing state of the security of user
devices, which is an integral component in any PKI.

The remainder of this paper is structured as follows:
Section 2 discusses some of the more detailed mechanics
with regards to Merkle trees and membership proofs and
provides background information about Google’s Trillian
Merkle tree implementation. Section 3 describes the
changes that were made to Trillian’s implementation to
support transactional, multi-node updates. Section 4 de-
scribes the methodology used to provide a performance
comparison between Trillian and the modified implemen-
tation. Section 5 looks at the work of others in relation
to multi-node Merkle tree updates and Merkle trees in
general. Section 6 describes some future directions that
research based off of this paper could take. Section 7
concludes.

2 Background

2.1 Merkle Trees

A Merkle tree, first introduced by Merkle in [11] is a
data structure designed to produce a probablistic proof
of inclusion. A Merkle tree is constructed by comput-
ing hashes of the stored data and then aggregating those
hashes until there is a single hash value for the root. An
example of a binary Merkle tree is shown in Figure 1.
Proof of membership is possible by returning the path
from the leaf to the root, which given a one way hash
function demonstrates membership with high probability.
Merkle trees are a popular choice of verifiable data struc-
ture because they support efficient insertions. To add a
new element to a Merkle tree requires at most computing
log n hashes, where n is the size of the tree. As a result

Figure 1: An example of a binary Merkle tree computed
over four elements. The green nodes represent the data
and orange nodes are the output of a hash function ap-
plied to the concatenation of their children.

many Public Key Infrastructure solutions, such as Coniks
[10] have Merkle trees in their core design.

2.2 Trillian

For our project we built off of Google’s Merkle tree im-
plementation, Trillian [9]. Trillian provides support for
both a log based Merkle tree and a map based Merkle
tree used to implement key value stores. Since public key
infrastructures often rely on a log that can be audited
[10], we opted to work directly with the log-based im-
plementation. The log-based system, shown in Figure 2,
consists of a client process which facilitates requests, a
server process which handles client requests such as re-
turning a proof of membership or queuing a leaf to be
added to the tree, and a signer process which is responsi-
ble for actually including leaves into the tree and creating
a proof of work. When a user wants to add elements to
the tree, it places a request with the server which then
adds the elements to the storage layer. Then periodically
the signer polls the storage layers for leaves to add, select-
ing up to some batch size number of leaves in the order
they were added to the storage layer, and adds them to
the tree. While there are many different options for the
storage layer we opted to analyze Trillian using MySQL
[1].

Trillian implements a Merkle tree by introducing many
subtrees for any given depth. For the subtrees at depth d,
a particular leaf stored at index i is a member of the tree
denoted by its uppermost d bits. A subtree is considered
perfect if all possible indices in a subtree are present in
the storage layer. If a subtree is perfect then the root
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Figure 2: A diagram of the Trillian architecture originally
produced in [9]. Trillian consists uses two different pro-
cesses: the server (shown as Trillian in the diagram) and
the signer to update the tree. The server handles user re-
quests and the signer actually incorporates the data into
the tree. These two processes do not formally interact
and instead communicate through an underlying storage
layer.

of the subtree can be stored long-term because no path
to computing it will ever change. Trillian optimizes for
this case by storing only the roots of the largest perfect
subtree to which each leaf is a member, as shown in Fig-
ure 3. When a root needs to be computed again, these
stored roots are hashed together to compute the root of
overall tree, minimizing the necessary storage while also
removing any strictly unnecessary hashes.

When adding leaves to the tree, Trillian can either place
leaves in strictly increasing locations or at predetermined
locations. For our project we chose to only consider in-
creasing locations because it should be more computa-
tionally efficient and thus provides a harsher metric to
compare against. Adding leaves in a strictly increasing or-
der minimizes the number of imperfect subtrees. This has
the effect of both reducing the storage necessary for Tril-
lian (and thus cost of interacting with the storage layer)
and reducing the total number of hashes that need to be
computed to recompute the root.

3 System Design
To implement atomic user transactions in Trillian we

opted to make changes to both the server and the signer
to facilitate proper functionality. At the server we intro-
duced a virtual leaf and mapped virtual leaves in the stor-
age layer. We then introduced versions to allow for up-
dating virtual leaves. Collectively these allowed us to con-
struct our transactions. Then we introduced a transac-
tion cache in the signer and modified all the tree updates
to route through this cache. This allowed us to achieve
atomic updates of the tree. We present an overview of
our modifications to Trillian in Figure 4.

Figure 3: A diagram displaying the hashes necessary for a
binary Merkle tree with seven leaves. The nodes in green
are the hashes explicitly stored by Trillian. The nodes in
red are hashes that need to be recomputed anytime the
root is updated. Finally the nodes in purple are hashes
that will never need to be recomputed because they have
a stored parent.

3.1 Virtual Leaves

Since we are building based off of a log-based Merkle
tree, we needed to associate a series of a leaves with a
single virtual identity. To do so we opted to construct
key value pairs, with a key being a public key and the
values as tuples of (user identifier, device identifier). We
believe this is a good model because a user may have
many devices but will likely register many of them with
a common public key. Furthermore users may share de-
vices, creating the need for identifying a particular user.
When a user elects to change their public key, they most
likely have lost the associated private key or their device
has potentially been compromised. For our implemen-
tation we assume all public key changes are a result of
lost keys and omitted considering deleting or transferring
devices. To facilitate key replacement, when an update
to a particular key is requested, a new leaf is added to
the tree for each value mapped to by a public key value.
Then the mapping is deleted and the virtual leaves are
redefined by a mapping from the new public key. As a re-
sult, although there may be many different leaves for the
same (user identifier, device identifier), the only actual
accessible leaves will be those described by valid public
key values.

3.2 Versioning

To ensure that requests from the tree occur properly it
was also necessary to modify the read API to implement
our virtual leaves. Initially we believed it would be pos-
sible to facilitate reads entirely using our virtual leaves.
However, because the signer runs as a separate process,
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Figure 4: Diagram showing our changes to the Trillian ar-
chitecture in orange. We made two storage level changes
to support virtual leaves and transaction mapping and
one change to the signer for transaction caching.

it is possible that the updates to the virtual leaves may
not be incorporated into the tree yet. Consequently when
performing a request for a leaf, our modified server will
fetch all actual leaves that were ever incorporated into the
tree for a virtual leaf. Then the server returns the leaf
with the latest timestamp. One potential implication of
this is that leaf requests now require reads from storage
that are linear in the number of key changes. We be-
lieve this could be later optimized but may require larger
architectural changes.

3.3 Transaction Mapping

In addition to having the server generate individual
transactions we also needed to implement a system to
manage existing transactions. This is because the signer
is running as a separate process and thus cannot directly
accept a transaction. Additionally it should not be neces-
sary for the server to generate the transaction and clients
should be able to link leaves together in a transaction
(although we do not demonstrate this case). To handle
this situation we introduce a transaction map and assign
a transaction identifier to every leaf we add to the storage
layer. This transaction map holds the number of leaves
that need to be added to the tree for each transaction
identifier not yet included in the tree. All processing by
the signer requires an interaction with this mapping to
verify that any transaction it attempts to update is com-
plete. Then the signer is able to implement these trans-
actions atomically by relying on the inclusion of transac-
tions at the storage layer in an atomic manner.

3.4 Transaction Cache

To support updating atomic transactions we imple-
mented an in-memory, software transaction cache. When
attempting to append leaves to the tree, the signers will
still dequeue leaves from the storage layer in order. How-
ever, rather than immediately adding the fetched leaves to
the tree, the leaves are first added to data structures con-
taining other leaves for a given transaction. This will be

paired with a request from the storage layer for the size of
all pending transactions to determine when a transaction
has been completely fetched. If the transaction is full it
will be added to the tree, possibly in batches with at most
a specified ”batch size” number of other complete trans-
actions. If there are more than the specified batch size of
complete transactions, currently cached full transactions
will be added without interacting with the storage layer
on future signing intervals. Otherwise leaves are fetched
based upon the number of leaves missing from the most
recent ”batch size” transactions. Crucially all leaves that
are actually inserted into the tree are still inserted with
increasing indices. We chose to do this to maintain Tril-
lian’s efficient hashing scheme that we discussed in 2.2.

4 Evaluation
To conduct our evaluation we pitted our modifications

to Trillian against the original Trillian implementation.
To do so we first created a transaction generator to pro-
duce either read or write requests. Then since we tested
our implementation on a single t2.xlarge Amazon EC2
instance with 4 virtual CPUs and 16 GB of memory, we
produced a network simulator to model the additional
delay associated with our increased interactions with the
storage layer.

4.1 Transaction Generation

In order to conduct our experiments we first had to
create a transaction workload. To do so we developed
a transaction generator designed to run concurrently in
clients. It produces a set of devices for 1000 different
users by sampling from a Poisson distribution. We be-
lieve a Poisson distribution is an appropriate model for
the number of registered devices because there are a dis-
crete number of devices and there is no relationship be-
tween disjoint users. Furthermore the Poisson distribu-
tion’s large tail is a good model for uncommon users with
either very few or very many devices, which we want to
be considered in our workloads. We choose to assign each
user the same public key for all devices. Although we
support users holding multiple public keys for different
or even the same devices, we considered attempts to split
user devices across public keys as less telling because the
behavior is less concrete.

Once the users are generated, we create an initial base
Merkle tree. To do so, we create a request to generate a
new virtual leaf for each of the specified user and device
pairs. We run this in a single client as a series of sequential
write requests. For all experiments conducted we waited
for the signer to completely integrate the base tree before
handling any further requests.

To generate our transactions on which we based mea-
surements, we specified a number of clients and partition
the number of users into discrete domains on which they
could operate. For example with 5 clients each would have
a series of 200 distinct users for which it could generate
transactions. These were selected as a matter of conve-
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nience, as we intended to run this clients concurrently.
Since our virtual leaves require specifying a leaf to up-
date with the latest public key, two concurrent clients
could have conflicting views of a user’s current public key
in the presence of an update.

To actually generate transactions we opted to have each
client generate 1000 transactions, each of which was either
a read or a write selected by some specified probability
and sampled a virtual leaf uniformly from its partition
of the tree. We also opted to include the option to have
bursty writes. When enabled, the probability of generat-
ing a write on the next transaction is higher if the previous
transaction was a write. We believe this is appropriate
because we foresee a possibility where due to security and
performance concerns, updates to the tree could be con-
ducted by administrators responsible for handling user
requests. If this tree could still be queried by general
users, then the majority of transactions will be reads, but
when administrators update the tree there will be many
consecutive write transactions.

4.2 Network Simulation

Merkle trees used in PKI and CT are generally spread
across multiple machines due to the volume public keys
that they manage. However, we did not have access to
such a large number of public keys. With a transaction
generator, we had the ability to synthesize public keys for
users with a corresponding average device count per user.
We now needed the ability to simulate a Merkle tree being
spread across multiple machines. To achieve this, a net-
work delay generator was also implemented to simulate
the Merkle tree being spread across multiple machines.

Much literature regarding simulating the delays caused
by the network due to its complexity and bursty behavior
exists. Since the focus of this project was not simulating
the network, we instead opted to use a simple Poisson
model for network delays, which is a well-established traf-
fic model [5].

A common usage setting for the Merkle trees used in
PKI is that these trees live datacenters with operators
issuing update requests and general users issuing read
requests for leaf data and consistency proofs. To this
end, we looked into the typical delays experienced by dis-
tributed MySQL read and write transactions within dat-
acenters [3] and made these delays Poisson as well. Since
delays will vary depending on the physical machine topol-
ogy within the datacenter, we chose to base our network
delays off of a highly interconnected machine room topol-
ogy.

Within the Trillian code, we inserted datacenter net-
work delays on incoming write transactions to simulate
operators issuing a public key update and did not delay
any read requests from users. The reason for this choice
is because we wanted to stress both systems, and hav-
ing no delays from users across the WAN is equivalent
to users having a fast network connection to the data-
center, so there could be a higher throughput of read

requests. On read and write to the underlying MySQL
storage layer, read and write transaction datacenter de-
lays were inserted.

We subjected both Trillian and our modified implemen-
tation to this network delay generation in all of the fol-
lowing benchmarks. We did not run any experiments in
parallel since only a single machine was used for trials, so
different experiments running concurrently could have led
to an unfair distribution of CPU usage to one experiment.

4.3 Transaction Size

In our first experiment we decided to assess how well
our modifications to Trillian performed at various aver-
age transaction sizes. We opted to look at two different
transaction sizes, 3 and 9. We believe that 3 is a rea-
sonable baseline transaction size because one study found
that the average number of devices per user in the United
Kingdom is currently 3.5 [2]. While we think 3 devices
per user is a reasonable amount now, we expect the num-
ber of devices per user to increase into the future. This
is partially because rapid development in the Internet of
Things is connecting more devices to the internet and po-
tentially creating more devices that a user must manage.
However we believe that studies like [2] suggest that in
general, users tend to accumulate more devices over time.
Furthermore, when users replace devices, if they do not
dispose of these devices then it is possible they could still
be associated with a user’s public key and therefore must
be managed. Ultimately there is nothing particularly sig-
nificant about an average transaction size of 9 devices
other than it being a larger number to demonstrate how
well our modifications may scale into the future.

To conduct the actual experiment we constructed
transactions for five different use cases: low write fre-
quency, low write frequency and bursty, medium write
frequency, medium write frequency and bursty, and high
write frequency. For the low write frequency we opted
to make the probability of generating a write transaction
5%, for the medium write frequency the probability of
generating a write transaction is 30%, and for the high
write frequency we made the probability of a write trans-
action 80%. There is nothing in particular that led to
the selection of these numbers as opposed to similar ones.
However, we opted to study these three different settings
to verify our implementation produced acceptable per-
formance under a variety of workloads. Additionally for
bursty situations we opted to make the write probability
on a burst 80% simply to be consistent with there being
a high probability of a write.

Additionally, in conducting our experiment we opted
to run 5 concurrent clients all on a single machine. We
elected to consider only 5 clients as opposed to more be-
cause we wanted to prevent competition for processor
time from interfering with our results. Trillian also al-
lows the operator to set the polling rate of the signer. We
opted to set the polling rate to 50ms for all experiments
we ran after some manual configuration showed this en-
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Trillian Type Write Probability Bursty Transaction Size (leaves) Average Time to Fill Tree (s)
Original 0.05 No 3 19
Modified 0.05 No 3 17
Original 0.05 Yes 3 17
Modified 0.05 Yes 3 16
Original 0.30 No 3 15
Modified 0.30 No 3 22
Original 0.30 Yes 3 55
Modified 0.30 Yes 3 22
Original 0.80 Not Applicable 3 55
Modified 0.80 Not Applicable 3 30
Original 0.05 No 9 20
Modified 0.05 No 9 19
Original 0.05 Yes 9 21
Modified 0.05 Yes 9 18
Original 0.30 No 9 33
Modified 0.30 No 9 27
Original 0.30 Yes 9 34
Modified 0.30 Yes 9 26
Original 0.80 Not Applicable 9 60
Modified 0.80 Not Applicable 9 42

Table 1: Table of average times to completely update the Merkle Tree for each experiment.
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Figure 5: Graphs showing the average time it takes to finish populating the Merkle tree for Trillian and our modifi-
cations to Trillian. In nearly every experiment our modifications to Trillian resulted in finishing populating the tree
faster than the original Trillian. This difference was most prominent when the write probability was 0.8 and Trillian
took 42% longer to finish appending to the tree.

abled timely updates without consuming an unrealistic
amount of CPU.

To assess the performance of our modifications we com-
pared our modifications to the original Trillian with re-
spect to both the average time to finish updating the tree
and the average throughput while updating the tree. We
elected to consider the time to completely update the tree
because this end-to-end time considers all delays associ-
ated with a particular workload; not only would this in-
clude throughput and latency, but also other unforeseen
delays that were encountered due to the network for ex-

ample. The results of our experiment can be seen in Table
1 and are graphed in Figure 5 for easier comparison. Our
results showed that at a low write rate the time to update
the tree was nearly identical. However when there were a
larger number of writes, either because the transactions
were because bursty or it was in the high write setting,
our implementation is much faster. For example, with
an average transaction size of 9 leaves and a high write
workload, Trillian takes 42% longer to finish updating the
tree.

Additionally, we felt explicitly including the through-
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put was also insightful because the probabilistic compo-
nents of our transaction generator created trees of varying
sizes across trials. This is helpful because it introduces a
normalization component in our analysis. Our through-
put results are displayed in Table 2 and are graphed in
Figure 6. These results are consistent with what was ob-
served by analyzing the time to update the tree. Our
modifications demonstrate a throughput that increases
as the number of writes increase. Trillian seems to also
show this except for the medium not bursty experiment
with a transaction size of 3. This is consistent with our
expectations because a larger number of writes produces
more signing attempts that will be able to completely fill
the max workload.

Our modifications produce a higher throughput in
nearly every experiment. For a smaller write frequency we
believe this is most likely a reflection of the inaccuracy in
our attempts to create Trillian batches equal to the size of
our transaction updates. While Trillian has its batch size
set to the expected mean, with a small number of writes
deviations from the mean will be more significant. If the
transaction sizes are smaller than the expected batch size
then Trillian will not be able to process additional leaves
because there will not be extra leaves in storage. In con-
trast, if the transaction sizes exceed their expectation, our
modifications will be able to fully process them, while a
particular signing instance of Trillian will only be able to
include up to the expected mean.

However, for large write frequencies we believe our high
throughput values are a reflection of the improvements in
our architecture. If the write rate is high, then leaves
will be added to the tree every time the signer polls the
storage layer. To add leaves to the tree it is also neces-
sary to compute all the hashes to create a new root, and
thus in heavy write situations the time to update the tree
may exceed our polling interval. This scenario is the best
demonstration of the differences in architecture because
throughput is no longer being capped by the decision to
poll. In this instance we believe that the ability to cache
additional leaves in memory provides the advantage of de-
creased interactions with the storage layer and increases
our overall throughput.

4.4 Client Scaling

For our next experiment we opted to explore how our
throughput changed with the number of concurrently run-
ning clients. We believe this is a useful metric because it
both indicates how our modifications perform with heav-
ier workloads and because using a larger number of clients
presents a greater possibility of transactions overlapping
at the storage layer. Transactions are capable of overlap-
ping because leaf fetching occurs based upon the times-
tamp of leaf creation and not the time at which the leaf
enters the storage layer. Since the server is a multi-
threaded application this allows for transactions to have
overlapping times and to be fetched concurrently.

We opted to explore throughput with 5, 10, 20, 40,

and 80 concurrent clients all running on the same ma-
chine. For each trial we generated all transactions using
the medium and bursty settings from 4.3 with an average
transaction size of 3. A graph of the average throughput
experienced by both Trillian and our modified version of
Trillian are shown in Figure 7.

We found that our modifications to Trillian produced a
consistently higher throughput than original Trillian for
every number of concurrent clients. For both implemen-
tations throughput decreases as the number of concurrent
clients grows. We attribute this to an increased demand
on the server to process both read and write transactions.
More concurrent clients produce more read transactions
which causes the server to have to fulfill reads before it
can add leaves to be appended to the tree. While the
slopes of both graphs are very similar, the difference in
throughput does grow with the number of clients. We
believe this is likely a reflection of the benefits of our
transaction cache. Since a greater number of clients will
produce more disjoint transactions, our transaction cache
is more likely to contain nodes from previous transactions
and thus reduces the number of visits to the storage layer.

4.5 Latency

As a final experiment we decided to measure the av-
erage latency to integrate a particular leaf into the tree.
We believe this is an important metric because this may
directly reflect how long a user has an incorrect public
key which can be accessed. Any amount of time in which
a user’s public key is incorrectly listed leaves their asso-
ciates vulnerable to wrongfully trusting a malicious party.
To measure the latency we opted to only consider the la-
tency to be added to the tree once the server adds a leaf
to the storage layer. We opted not to consider any over-
all latency from clients because we believe any interaction
from a client would have its latency directly effected by
the available network speed, which is beyond the control
of our implementation.

We opted to measure the latency as we varied the num-
ber of concurrent clients to be 5, 10, 20, 40, and 80. For
each trial we generated all transactions using the medium
and bursty settings from 4.3 with an average transaction
size of 3. A graph of the average latency per leaf experi-
enced by both Trillian and our modified version of Trillian
are shown in Figure 8.

Our results indicate that our modifications to Trillian
seem to result in nearly double the latency for smaller
numbers of clients, while for a larger number of clients the
disparity decreases to 1.3 times the latency. We attribute
the increased latency for smaller numbers of clients to
the need to perform transactions completely atomically
as well as increased interaction with the storage layer.
Since we computed the average latency for each individual
leaf, it is inevitable that when running a transaction the
leaves that are queued earlier will have to wait longer for
the remaining leaves in the transaction to be processed.
While our transaction caching appears effective for over-
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Trillian Type Write Probability Bursty Transaction Size (leaves) Average Throughput (leaves/s)
Original 0.05 No 3 46.21
Modified 0.05 No 3 93.70
Original 0.05 Yes 3 45.23
Modified 0.05 Yes 3 93.14
Original 0.30 No 3 331.13
Modified 0.30 No 3 323.52
Original 0.30 Yes 3 92.67
Modified 0.30 Yes 3 315.65
Original 0.80 Not Applicable 3 240.69
Modified 0.80 Not Applicable 3 481.75
Original 0.05 No 9 49.88
Modified 0.05 No 9 101.21
Original 0.05 Yes 9 51.88
Modified 0.05 Yes 9 94.89
Original 0.30 No 9 233.36
Modified 0.30 No 9 418.52
Original 0.30 Yes 9 233.36
Modified 0.30 Yes 9 393.77
Original 0.80 Not Applicable 9 446.07
Modified 0.80 Not Applicable 9 731.14

Table 2: Table of average throughput achieved while updating the tree for each experiment.
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Figure 6: Graphs showing the average throughput achieved while populating the Merkle Tree for Trillian and our
modifications to Trillian. In nearly every experiment our modifications to Trillian resulted in greater throughput.
However for both implementations throughput increased as the number of leaves to add to the tree increased.

all throughput, any leaf that was ever added to the cache
is always waiting longer than if it was added to the tree
directly. Additionally, the transaction map introduced
a second interaction with the storage layer, likely pro-
ducing additional delays on individual leaves. For larger
numbers of clients we mostly attribute the lack of dis-
parity between the two versions as a ramification of the
competition for processor time that developed from run-
ning 40 or 80 concurrent clients on the same machine as
the signer.

Ultimately while the latency is increasing for individual
nodes, we believe the latency that must be endured is

acceptable. All of our latency is on the order 7 seconds,
even when we believe the machine to be overloaded. Since
we expect a user to face far greater latency issues when
working over the network or even attempting to swap out
a key with their provider, we do not believe our latency
numbers are a cause for concern.

5 Related Work
Improving the efficiency of multi-node, transactional

updates would have a wide-reaching consequences. As
noted in Section 1, many applications utilize Merkle trees
like cryptocurrencies [12, 17], filesystems [13], and PKIs
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Figure 7: This graph shows how the average through-
put varied as the number of clients increased with a
fixed transaction size. We compared the modified Tril-
lian implementation and the original Trillian implemen-
tation with corresponding fixed batch and transaction
sizes while maintaining a 0.3 probability of encountering
a write transaction with bursty behavior. The modified
Trillian implementation has a higher throughput for a
wide range for the number of clients.
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Figure 8: This graph shows how the average latency var-
ied as the number of clients increased. As with the previ-
ous figure, transaction and batch sizes were fixed for the
modified and original Trillian implementations respec-
tively and 0.3 probability of encountering a write with
bursty behavior was also preserved. The modified Trillian
implementation has a higher, but overall similar latency
to the original implementation.

[8, 10]. With respect to the implementation of efficient
Merkle trees, other implementations like Angela [15] de-
cided to focus on the distributed consistency aspect of the
problem. This is very important, as the data these trees
hold are often too large for a single machine to contain.

Concerto [4] is another project that looks at the appli-
cation of Merkle trees to a highly concurrent key-value
store. Concerto implements an algorithm for the effi-
cient parallelization of membership verification in Merkle
trees, which was important to verify the integrity of their
store. Scalable verification of Merkle trees is also impor-
tant in the context of databases, as [6] shows. It is demon-
strated that Merkle trees impose significant concurrency
constraints and an alternate protocol based on signature
aggregation is proposed as a counter to the hierarchical
implementation.

6 Future Work

6.1 Sparse Merkle Trees

In this project we focused on implementing transac-
tions on ordered log-based Merkle Trees. For future works
we seek to explore efficient transactions on different forms
of Merkle trees. One possible target is the sparse Merkle
tree, described by Dahlberg et. al in [14]. sparse Merkle
trees insert nodes to a particular hash index and thus im-
plementations will not be able to benefit from the reduced
hashing presented by Trillian. As a result we suspect ef-

ficient solutions will require greater overhead in coordi-
nating transactions to minimize the amount of necessary
hashing. However, sparse Merkle trees have the benefit of
a much more compact representation, so with large trees,
the need for the usage of sparseness grows.

6.2 Network Simulation

While the network traffic delay model was based off
of a Poisson model, a Poisson distribution does not ac-
curately reflect all traffic. Other models, like a packet-
train and self-similar model [5] could be more appropriate
for datacenters. Additionally, while delays were inserted
around calls to MySQL read and write transactions, in
a production-setting distributed system, delays would be
interspersed within the transaction itself. Additionally,
MySQL could have cached parts of the transactions we
generated during the course of benchmarks, so the de-
lays caused MySQL might have been lower than what
could be seen in a datacenter. Investigating these delays
could yield a more accurate network model which would
strengthen the veracity of any simulations.

As [3] notes, the models that were used to measure the
delays for datacenter networks and distributed databases
were based solely off of several fixed machine room lay-
ours. A highly interconnected datacenter, while one pos-
sible model, is not the only possible model for a datacen-
ter. For a truly accurate representation of real datacenter,
the network delay used would have to be adapted to the
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rough topology and scale of the datacenter itself.

7 Conclusion
In this paper we introduced modifications to Google’s

Trillian Merkle tree implementation to support atomic
updates to user public key changes. Our modifications fo-
cused on layering virtualized leaves atop the existing log-
based Merkle tree and introduced a Transaction Cache
for more efficient insertion into the tree. Our evaluation
demonstrated for all transaction sizes and number of con-
current clients tested we obtained a throughput compa-
rable or better to what Trillian was previously producing.
Although our implementation did introduce as much as
twice the existing latency for leaves to be included in the
tree, we believe this is still acceptable performance es-
pecially since introducing transactions almost guarantees
increased latency without considerable changes and opti-
mization to the existing architecture. Our hope is that
this project demonstrated not just an effective solution to
including atomic transactions in log based Merkle trees,
but also can guide future work when attempting to in-
clude transactions in even more concurrent and compli-
cated Merkle trees.
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