
Angela: A Sparse, Distributed, and Highly Concurrent
Merkle Tree

Janakirama Kalidhindi, Alex Kazorian, Aneesh Khera, Cibi Pari

Abstract— Merkle trees allow for efficient and authen-
ticated verification of data contents through hierarchical
cryptographic hashes. Because the contents of parent
nodes in the trees are the hashes of the children nodes,
concurrency in merkle trees is a hard problem. The
current standard for merkle tree updates is a naive
locking of the entire tree as shown in Google’s merkle tree
implementation, Trillian. We present Angela, a concur-
rent and distributed sparse merkle tree implementation.
Angela is distributed using Ray onto Amazon EC2
clusters and uses Amazon Aurora to store and retrieve
state. Angela is motivated by Google Key Transparency
and inspired by it’s underlying merkle tree, Trillian.
Like Trillian, Angela assumes that a large number of
its 2256 leaves are empty and publishes a new root after
some amount of time. We compare the performance of
our concurrent algorithm against the approach used by
Google Trillian in a local setting for which we see nearly
a 2x speed up. We also show that Angela’s distribution
is scalable through our benchmarks.

I. INTRODUCTION

Merkle trees are simple in their design. For some
arbitrary node in the tree, we can derive its value by
applying a hash function on the values of all of its
children nodes [8]. One can think of a merkle tree as
a set. By applying the definition of a node’s value,
inserting data into a merkle tree can be thought of
as a commitment to the data. This commitment to a
piece of data allows for verification of the integrity of
data received over a network, giving them increased
importance in recent years.

One such example is the Key Transparency project
by Google, a public key infrastructure, that uses Google
Trillian, a sparse merkle tree implementation with
transparent storage. Key Transparency uses a merkle
tree to pair a user identifier key in a leaf with a public
key value [4]. When an update to a public key comes in,
the entire tree is locked and updated serially, introduc-
ing massive bottlenecks which are exacerbated when
the intended scale of Key Transparency is introduced
due to the high surface area of contention. Google
Key Transparency requires the scale of a billion leaves

with high query throughput. Any concurrency overhead
should not destroy the system’s performance when the
scale of the merkle tree is very large.

Outside of Key Transparency, this problem is gen-
eralizable to other applications that have the need
for efficient, authenticated data structures, such as the
Global Data Plane file system.

As a result of these needs, we have developed a novel
algorithm for updating a batch of updates to a merkle
tree concurrently. Run locally on a MacBook Pro with
a 2.2GHz Intel Core i7, 16GB of RAM, and an Intel
Iris Pro1536 MB, we achieved a 2x speedup over the
naive algorithm mentioned earlier. We expanded this
algorithm into a distributed merkle tree implementation,
Angela, that is able to scale to handle demanding
workloads while maintaining its performance. Angela
is comprised of an orchestrator node that handles load
balancing. This is written in Python and leverages Ray
to handle distribution [9]. The orchestrator distributes
the work to multiple worker nodes written in Golang
for concurrent merkle tree updates.

The rest of the paper is structured as follows. Section
2 lays out our metrics of success and what we consider
to be a strong and promising results. In Section 3,
we discuss the scope of what Angela can do. In
Section 4, we provide a fundamental assumption for our
merkle tree implementation and a detailed description
of the specifics on how the underlying merkle tree is
implemented. Section 5 describes both the naive algo-
rithm and why concurrency is not immediately obvious,
following which we describe the concurrent insertion
algorithm. Section 6 presents the system architecture
for our complete distributed system under Ray. Section
7 describes some of the challenges we faced and
reasons behind the language decisions that were made
along the way. Section 8 shows benchmarking results
of the system and discusses the evaluation of Angela
overall. Section 9 presents related work, and Section 10
and 11 present future optimizations and work that we
plan to act on before wrapping up with a conclusion
and acknowledgements.

1

II. METRICS OF SUCCESS

Our first goal was to develop a concurrent algorithm
in the non-distributed case that cleanly beats the naive
algorithm while maintaining the integrity of the merkle
tree. The speedup we expect to see here should respect
the number of cores available on the testing hardware
with some latencies due to the percolation paths not
being completely parallelizable. The second goal was
to adjust the algorithm for effective distribution on Ray
and launch the entire system on a cluster of Amazon
EC2 instances while maintaining performance. Our fi-
nal goal was to measure performance on this distributed
system with respect to the number of compute nodes
in a cluster. Ideally, we would see the throughput of
writes scale with the number of nodes in the cluster.

III. PROJECT OVERVIEW

In this section, we define the project scope of Angela
through the client API. The specifics on how Angela
handles these requests is detailed further in the Archi-
tecture section.

1) insert leaf(index, data): A client is able to insert
a new node into the merkle tree as well as update an
existing node. index refers to the key used to insert into
the merkle tree and data refers to the value that the key
refers to.

2) get signed root(): A client is able to request the
published root of the merkle tree. This is used in order
to verify any read request from Angela.

3) generate proof(index): A client is able to read a
value from the merkle tree. This works for both items
that have been inserted in the tree and for those that do
not exist in the tree. In either case, we return a Proof
object that the client can verify to confirm that a items
actually does or doesn’t exist. We use membership
proofs for items that exist in the tree and and non-
membership proofs for items that do not exist [10].
index refers to the key that would have been used to
insert into the merkle tree.

4) verify proof(proof, data, root): A client is able
to verify that a proof generated by the server main-
taining the merkle tree is valid. This verification hap-
pens locally on the client side and is not sent to
the server. proo f is the value that is returned from
generate proo f . data is the value that we are verifying
to be correct. root is the digest that is retrieved form
get signed root().

Similar to CONIKS and Trillian, we fix the values
of empty nodes to something related to their depth [7]
[5]. This means we can lazily calculate hashes of empty

nodes during inserts or when generating proofs. The
merkle tree will also be organized as a binary search
tree, where most nodes are actually empty. A prefix
is assigned to each node in the merkle tree with a 0
appended on a left child and a 1 appended on a right
child, resulting in the leaf locations to be determined
via their sorted key values [7]. Writes are batched
together and processed in epochs. In our system, we
wait for some number of update requests to be queued
before processing them; however, it is also possible to
use time elapsed as an indicator for publishing applying
updates and publishing a new root.

IV. DESIGN

A. Verifiable Random Function Assumption

CONIKS uses a verifiable random function to map
user IDs to leaves within the tree [7]. We assume that
IDs given to the service have already gone through
a verifiable random function. This is a reasonable
assumption since this can be added in trivially to all
inputs, but to reduce the complexity of our implemen-
tation, we chose to not to. This gives us the interesting
property that any query or workload will appear to be
random and, therefore, properly load balanced.

B. Size

The merkle tree contains 2256 leaves. Again, we
assume that a large number of nodes in the tree are
empty. Moreover, to ensure that IDs are mapped to
leaves properly, we assume that the aforementioned
verifiable random function has an image of size 2256.

C. Hash Functions

We use SHA256 as our hash function for Angela, but
this is easily replaceable with any other cryptographic
hash function.

D. Encoding

Our merkle tree design is similar to CONIKS in that
we use a very basic prefix encoding. All nodes on level
i have prefixes of length i. To determine the prefix of
some node, one can just traverse the tree. Going down
the left branch means we append a 0 to our prefix.
Going down the right branch means we append a 1 to
our prefix.

E. Sparse Merkle Trees

Literature on such sparse representations already
exists under the name of Sparse merkle trees. Sparsity
allows for lazy construction of and queries on our data.
Thus, the tree itself will be more space efficient and

2

will theoretically result in easier coordination among
the distributed clusters [3]. Figure 1 provides a visual
representation of how a sparse tree would look using
our encoding scheme and what state is actually stored.
[7].

F. Sparse Representation

In order to represent the sparse tree, we assign a
constant hash value to each empty node at level i.
This constant value is determined by applying a hash
function on the concatenation of the 2 empty children
[3], [7]. The base case for an empty node at depth 256
is simply the hash of the empty string.

Figure 1

V. ALGORITHMS

For simplicity, we only discuss algorithms that will
be applied to the non-distributed case. This allows
us to abstract away the complexities of dealing with
a distributed system and focuses on how concurrent
updates are run on the merkle tree. Instead, we dis-
cuss challenges we faced while translating this to the
distributed case as well as distributed implementation
details in the section labeled “System Architecture.”

A. Why Locking is Hard

Before we start describing the novel concurrent algo-
rithm that is implemented for Angela, we describe the
naive algorithm and why concurrency in this paradigm
is difficult. Each parent node is dependent on each of

its children when updated. Now, consider a scenario
in which we are concurrently inserting or updating the
value of two leaf nodes. These two nodes have a point
of conflict and contention in some ancestor along their
path to the root. It is at this ancestor we have a race
condition. Therefore, the smallest example for which
we have an obvious race condition is one with 2 leaves
and a root. If we attempt to insert a value into or update
the value of these two leaves concurrently, then we
have reproduced the only race condition present in the
merkle tree update procedure.

Applying a locking scheme on this minimal example
is not simple. Below, we present an example where 2
transactions, A and B, fall into a situation of deadlock.
Nodes labeled with A imply that that A currently has a
lock on that node, likewise for B. Here, we see that A
currently has a lock on the root node and is waiting for
the its right child to be unlocked in order to update the
root. The right child, with a B lock, is waiting for both
its parent and sibling child lock to be released so that
it can begin to percolate the changes upwards. Thus we
have a situation of deadlock, because both transactions
are in a state where they are waiting for a lock that the
other transaction contains.

A

A B

Figure 2

Another potential solution requires grabbing the sib-
ling node before making an update. This approach, as
shown below, may lead to deadlock as shown in the
diagram below where Transaction A and Transaction
B both require the other sibling in order to begin
the update. Thus both transactions will not be able to
continue.

∅

A B
Figure 3

3

B. Naive Algorithm

Given this paradigm of locking, avoiding deadlock
is difficult and continuously locking and resolving
possible deadlock is costly. Because of this, the naive
algorithm is a fairly simple serial solution that seems
to be the current standard. Google Trillian, which is
Google’s implementation of a merkle tree that is used
in the Google Key Transparency project, follows this
naive algorithm [5] [1].

procedure naive updateTree(Transaction T)
Tree.lockAcquire()
Process Update T
Tree.lockRelease()

end procedure
The high surface area of locking presented in both

the naive algorithm as well as the possible concurrency
through locking schemes presented above cause these
solutions to be sub-optimal. Abandoning this paradigm,
we present our concurrent algorithm.

C. Finer Grain Conflict Locking

1) Conflicts: In the case that there are two leaves
that need to be updated in the merkle tree, we define
a conflict node to be the deepest common ancestor
of two leaves. In other words, a common ancestor is
the node that shares the longest common prefix among
two leaf nodes. In the following figure, we present a
diagram containing three nodes in the process of being
updated and the points at which they conflict and there
is contention.

Figure 4

Because these are the points in which the update
paths conflict, these are the nodes that require locking
to ensure that a race condition does not occur. In fact,
we can see that given a list of N leaf nodes, there
are N−1 conflict nodes between. The proof for this
is simple. Given two update nodes, we know that their
paths must conflict at some point. In fact, since each
node only has two children, at most two nodes can

conflict at any given point. Even if there are more
children being updated at a deeper level, those would
have reached a conflict before. Thus, adding a new
update node, adds a new conflict point. From here, the
rest of the proof can be derived.

2) Finding Conflicts: Finding these conflict points
is also simple because of the encoding used on our
merkle tree. Given the ID of two update leaves, we
can find their conflict node by finding the longest
common prefix of the two IDs. For example, given node
IDs, ”000” and ”011”, the longest common prefix is
”0”. Looking at Figure 1 describing an encoded sparse
merkle tree, we can see that the node encoded with ”0”
is the conflict point.

3) Sorting to Find Conflicts: However, comparing
two nodes in a batch of updates does not guarantee
that the conflict point will be unique and presents the
possibility of conflict points being undiscovered. For
example, given update node IDs ”000”, ”101”, and
”001”. Finding conflicts on ”000” and ”101” gives us
the root. Finding conflicts on ”101” and ”001” also
gives us the root. In reality, the conflict points should
be the root and ”00”. This issue comes about because
randomly checking for conflicts does not take locality
of updates into account, and thus does not provide
conflicts in those areas. We can fix this locality issue
by running our conflict search on pairwise nodes when
they are sorted based on our encoding. Looking back to
our previous example, sorting ”000”, ”101”, and ”001”
gives us ”000”, ”001”, and ”101”. Running the conflict
search on pairwise nodes then gives us ”00” and the
root.

For a better understanding as to why sorting works
and provides us with all N−1 unique conflict nodes
for N updates, we can look at the following reasoning.
A conflict point is the nearest point that two update
paths conflict. In order to find the conflict points that
are lower in the tree, we need to minimize the distance
between update nodes so that their conflict point is
lower. Given the encoding on the leaves, we can sort
the leaves and thus the neighbor on each side is the
closest leaf on that side. Thus, searching for conflicts
on these pairwise nodes results in finding the unique
conflict point that is closest to those nodes.

4) Conflict Set: Given N updates, we will have
N−1 conflict points. In fact, these N−1 points are the
only places where synchronization is needed as the rest
of the update path is not touched by other updates and
safe to access. We have essentially reduced the surface
area of locking contention from the tree to linear in the

4

number of updates. We can place locks around these
nodes and maintain a set of these conflicts.

D. Percolating Changes Concurrently

1) Algorithm Overview: Given that we know the
conflicts, the pseudo code for the batched update al-
gorithm is as follows:

procedure batch updateTree(Transactions T)
Tree.con f licts = f ind con f licts(sort(T))
for t in list(T) do

Tree.update(t)
end for

end procedure

Each individual update is described as follows:

procedure updateTree(Transaction T)
while parent exists() do

if parent in Tree.con f licts then
Tree.con f licts(parent).acquire lock()
defer Tree.con f licts(parent).release lock()
if parent has not been visited then

Mark Node as visited
End Thread

else
Process Update

end if
else

Process Update
end if

end while
end procedure

After finding the conflicts, we start running individ-
ual updates concurrently. In each of these concurrent
updates, we follow a straightforward procedure to avoid
inconsistent views of data at points of contention.
Before updating a parent, we check if the parent is
a conflict node. If it not a conflict node, we know that
there will be no race conditions in accessing a sibling
as there are no other updates on that path. If the parent
is a conflict point, we grab the lock on this node. In
previous sections, we explained how a locking scheme
involving a parent and it children can lead to deadlock
situations. Simply locking the parent circumvents this
issue of deadlock as any node can only hold or wait
for one lock at a time. After acquiring the lock on the
parent node, we check to see if the parent node has
been visited yet. If it has not been visited yet, we know
that the sibling is not ready and another update is still

happening. We do not want to wait for the sibling to
finish as this is busy waiting and the resources can be
used for another update. We mark the node as visited,
release the lock, and the update procedure exits. When
the sibling update finally comes, it will acquire the lock
and see that the parent has been visited. Because the
parent has been visited, we know it is safe to read the
sibling and continue with our update path.

The pattern of returning earlier also means that any
edge on the tree is only ever traversed by one update.
Anytime two updates come to a point where they
overlap, one of them returns and allows the other to
continue. This also means that general contention on
locks is also relatively small. There are other imple-
mentation details that speed up this process, but have
been omitted for brevity.

VI. SYSTEM ARCHITECTURE

We utilized Ray as a distributed framework in order
to manage the nodes of the distributed merkle tree.
The computation for each of these nodes is performed
on a cluster of Amazon EC2 instances. Ray’s head
node is utilized as an orchestrator, accepting incoming
transactions and load balancing them to the different
worker nodes of the tree. Amazon Aurora, a MySql
compatible relational database, is being used as the
storage layer.

A. Virtual Addressing and Tree Structure

The representation of the merkle tree is divided up
into separate nodes, with each node containing a sub-
tree of the full tree. In order to allow for independent
distribution each subtree, we utilize a virtual addressing
scheme, where a virtual address can be mapped to a
physical address by prepending a prefix specific to that
worker node. Each worker node holds a prefix that is
generated from the worker’s unique ID.

In Figure 5, we the physical addressing scheme and
how it maps to the virtual addressing of each separate
node. Each node contains only its view of the subtree,
thus allowing for complete independence between the
worker nodes.

In order to manage these subtrees, we utilize Amazon
EC2 instances, spawning 1 instance per subtree. The
tree is divided into a root node and subsequent worker
nodes. The depth of the subtree in the root node is
determined by log(num workers), and is thus is a much
smaller than the rest of the worker node subtrees. We
keep the root node subtree small in order to maintain a
smaller number of total subtrees. Also, with a smaller

5

root subtree, there are fewer conflicts in the root node,
whereas the as a percolation progresses higher in the
tree, we would typically see more conflicts. Thus, by
keeping the root node subtree small, we minimize the
amount of conflict updates that need to happen serially.

Figure 5

B. Ray

Ray is a flexible, high-performance distributed exe-
cution framework [9]. Ray is an ongoing project being
developed in the UC Berkeley Rise Lab, built to support
computation-intensive distributed, scalable systems in
Python. Ray implements a unified interface, supported
by a single dynamic execution engine, that allows
for task-parallel and actor-based computations. Angela
utilizes Ray as a workload management and distribution
tool, specifically to control parallel computation.

Ray provides lineage-based fault tolerance for tasks
and actors, and replication-based fault tolerance for the
metadata store, which ensures the fault tolerance of the
actor based portion in Angela [9]. If a node fails, Ray
will restart the node in order to assure the computation
completes. Ray handles the deployment of the cluster,
spawning each node and managing its health.

We utilize actors for our merkle tree in order en-
capsulate the mutable state of for each subtree. Angela
utilizes m5.large EC2 instances in the cluster with spot
instance types.

C. Stateless Worker Nodes

Worker nodes do not store any state between epochs.
This is because the chance of hitting the same leaves
from one epoch to another within a single subtree is

very low, as we do not anticipate users to request mul-
tiple updates to the same leaf over successive epochs.
Additionally, given the large size of the trees and
randomization on the keys, the probability of hitting
the same path is very low. Thus, it does not make sense
to maintain a stateful cache within each worker node.
Instead, only the copaths for each of the updating nodes
are needed to perform an update - and this happens
on each worker node without any necessity to maintain
state. Because worker nodes are stateless, they can also
easily be repurposed to be responsible for a different
subtree, or to perform a different operation. This is
particularly useful in the case in which we have more
subtrees than available EC2 instances.

D. Storage Layer

Angela utilizes Amazon Aurora as the storage layer
for the system. Amazon Aurora is a relational database
built for high throughput data processing [12]. Aurora
also supports parallel queries as it stripes data across
hundreds of storage nodes distributed separate AWS
availability zones [12]. For Aurora, we use a single
replica, r4.xlarge, containing 4 virtual CPUs and 30.5
GiB RAM. Angela users have the option to change the
database usage as they wish as long as they are able to
supply a new Go driver. Currently, the implementation
interacts with Aurora through a MySQL interface.

E. Database Schema

As a prototype database schema, we elected to
store all node data from the merkle tree in one ta-
ble called nodes. This table stores the nodeId (prefix
that determines the node’s location in the tree), the
nodeDigest (actual hash value of the node), and the
epochNumber (which version of the tree this node
belongs to). Since we use bit strings as our repre-
sentation for nodeId and nodeDigest, both are stored
as VARBINARY(256) columns. We place a primary
key on (nodeId, epochNumber) which subsequently
causes MySQL to create an index on (nodeId) and
(nodeId, epochNumber). Read queries for a set of
nodeIds return the rows of the table belonging to the
maximum epoch for those ids. With the index on both
nodeId and epochNumber, it is expected to boost query
performance. Write queries always write to the max
epoch in the database +1 so the nodes table basically
just holds each epoch’s changelist. Versioning with
epochs allows us to direct reads to the latest version
of the data that exists in the database while writes are
being accumulated for the next epoch. Another benefit

6

of versioning is that we have fallback values in case
and update goes wrong during a particular epoch.

F. C Extensions

In order to connect Ray, which only supports a
Python API, with our Go implementation of Angela
we make use of Python’s ctypes library and compilation
of our Go code into a C shared object file that could
be loaded in Python. We establish a thin API layer to
reduce the number of types and operations we need
to support on either end of the interface. The most
complicated operation involved in our interface is that
of a read request, which requires the server to return
a proof including the copath of the key requested
to the client. This led to an interesting requirement
implementation-wise where we needed to pass an array
of strings allocated through the cgo library to the ctypes
library with separate API functionality for freeing the
memory allocated through this method. Although this
has limited us to data types supported by ctypes,
sending transactions across this boundary has limited
latencies in getting client input to the Go implementa-
tion.

G. Read Phase

Figure 6

In Figure 6, we see the read phase of Angela. Clients
initiate a read request to the Orchestrator node labeled
Server. The Server then load balances and dispatches
the read request to a designated Ray Worker running on
an EC2 instance. Each Ray worker is responsible for a
specific section of the merkle tree. In order to complete
the read request, we need to provide the digest values
of all the nodes in the co-path, so the client can verify

the integrity of the data requested. The Ray Worker
uses the ID that is requested to generate a list of the
needed co-path nodes and makes a call to the database.
The co-path is then returned to the server and finally
returned to the client for client-side verification.

H. Write Phase

Figure 7 shows the flow of a write transaction. If
there is a update request during the read phase, it is
not processed immediately. Instead, it is placed into a
write buffer in sorted order. Once the write buffer on
the orchestrator reaches a designated epoch size a batch
update is finally made to the merkle tree.

The orchestrator first sends updates to the worker
node, determined by the worker nodes respective sub-
trees. The worker nodes query the database for copaths
and follow the algorithm described above. They write
their updates back to the database and push the root
back to the server. The server then takes the new root
nodes from the workers and sends them as a new batch
update to the root node.

Figure 7

I. Recovery

One nice property of a merkle tree update is that
redoing without undoing failed transactions is sufficient
to recovery. The reason redoing an update to a node
maintains a correct merkle tree is that this procedure
sets the value of every ancestor of the node being
updated to H(l||r) where H is a cryptographically
secure hash function and l,r are the left and right
children respectively. Updates are idempotent and can
be reapplied until the transaction it is associated with
has finished.

As mentioned in a previous section, the fault tol-
erance properties of Ray also means that if anything
within the worker node fails, Ray automatically creates
a new worker to redo that batch of transactions. This
does mean that the redo is as large as a subtree update.
Finer grain redo transactions can be implemented by
keeping track of which updates have gone through.

7

VII. CHALLENGES

A. Python GIL

Our first approach was building Angela’s backend
in entirely Python. Python has several libraries that
allow for easy bitwise operations and data structure
manipulation. Additionally, Ray is a Python framework
and thus interfaces well for this use case. However,
when creating multithreaded applications, Python when
run in a CPython environment is severely limited.
This is due to the Global Interpreter Lock, a mutex
inherently part of CPython. The GIL prevents multiple
threads from executing Python bytecodes at once. This
proved to be a serious issue in terms of performance
and ultimately required us to look for other methods of
multithreading.

B. Cython

In order to fix this multithreading issue, we began
working with Cython in order to gain control of the
GIL. Although Cython has far less documentation, Ray
also supports interfacing through Cython. However,
Cython proved very difficult to multithread as it only
has OpenMP-like parallelism, which is not what we
were looking for.

C. Golang

We decided to settle with a language that doesn’t
necessarily interface with Ray, but supports the high
level of concurrency we needed for Angela. Golang, a
programming language designed by Google, is fairly
similar to C but with several additions to improve code
simplicity and safety. Furthermore, Golang provides
several concurrency primitives that make concurrency
simple without the use of external libraries.

D. C Extensions

Figuring out the proper way to convert and maintain
pointers across the Python - Go interface was tricky
along with properly malloc-ing memory and freeing
pointers in cgo proved to be quite challenging initially.

E. Ray

Ray is a new open source software, currently only
on release 0.6.0. The documentation is still developing
and we encountered many issues that were difficult
to receive support on. Issues we faced included AWS
permission configuration, nodes dying sporadically, and
lack of full CPU utilization.

F. AWS Credits

Being students, we had limited access to resources
and were able to gain access to $300 of AWS credits.
While enough for some benchmarking, without the
large clusters we were spawning through Ray, we
definitely could have performed many tests at a much
higher throughput given the ability to purchase better
EC2 and Aurora instances.

VIII. EVALUATION

In order to evaluate Angela, we consider raw
throughput of our algorithm when compared to the
naive algorithm as well as comparing latency measure-
ments for the complete system, Angela. For each case,
different sized workloads will be applied to Angela as
well as varying distribution to assure the scalability of
the system.

A. Algorithm Benchmarks

We ran our algorithm benchmarks on a MacBook
Pro with a 2.2GHz Intel Core i7, 16GB of RAM,
and an Intel Iris Pro1536 MB. On the MacBook
Pro, we measured the algorithmic performance of our
BatchInsert implementation against the naive insertion
implementation in Golang. This implementation is not
distributed and does not hit a separate storage layer or
database. This means sorting, which was removed in
the distributed case, is still done. The purpose of this
benchmark was to see if the concurrency implemented
would be able to outperform the naive. In our test,
we found that BatchInsert achieves approximately 2x
speedup over the naive implementation.

Figure 8

Currently, our benchmarks are limited to our own
laptops, but given more cores, we expect to see
BatchInsert to do even better. We expect the perfor-
mance of the algorithm to be limited primarily by
the number of available CPUs that can be run, when
provided with an appropriate workload.

8

B. System Benchmarks

When benchmarking inserts with the database, we
noticed that the values chosen for batchReadSize (how
much of the copath we pull into the cache at a time),
batchPercolateSize (determines how many goroutines
we choose to run) and batchWriteSize (how many
transactions are placed in the buffer before being
written to the database) have a large impact on write
performance. Although our MySQL interface limited us
in the size of queries and the number of connections,
we recognized that the hyper tuning these parameters is
important for performance of the algorithm and ideally,
these parameters would be determined dynamically
based on the number of transactions that come in and
the compute power of the worker node. The baseline
values we have chosen for running our benchmarks are
batchReadSize=50, batchPercolateSize=10, and batch-
Writesize=50. Since database calls are constant be-
tween the serial and the concurrent algorithm, and we
have shown that the concurrent algorithm outperforms
the naive, we can conclude that when implemented in
a full system, the concurrent version will be faster.
So, we can focus instead on how Angela scales when
distributed on varying workload sizes.

In the complete implementation of Angela that we
benchmarked, we used m5.large EC2 instances, con-
taining 2 virtual CPUs and 16 GiB RAM. For Aurora,
we use a single replica, r4.xlarge, containing 4 virtual
CPUs and 30.5 GiB RAM.

Figure 9

As we increase the workload, we are able to see
that in general, the latencies double as we double the
workload. We can also see that increasing the number
of worker nodes reduces the latencies.

In the perfect scaling situation, we would see that
if we doubled the worker nodes, we would be able
to handle double the workload with minimal impact
to the run time. If that was the case, we would be
able to connect those points and see a horizontal line.

Initially, when we drew this line, we saw that the
system was not able to scale perfectly. Issues here
might be attributed to imperfect distribution over the
nodes and other network latencies across the database.
Instead, when we quadruple the worker nodes, and
double the workload, we are much closer to seeing
the horizontal scaling line, which would be optimal
performance. This is shown below.

Figure 10

IX. RELATED WORK

Our work is one possible solution for the problem of
distributed, authenticated key-value stores. There has
been other work in this area of research; however,
few focus on distributed merkle trees. One such effort
though is that of Tamassia and Triandopoulos whereby
they develop a scheme for distributing a merkle over
a peer-to-peer network [11]. While novel, this work
does not fall in line with merkle tree designed to
solve the same class of problems as CONIKS. In this
problem setting, we want merkle trees to be append-
only data structures that guarantee protection against
key revocation as well as the expected property of au-
thentication that comes with a merkle tree. The merkle
tree design presented by Tamassia and Triandopoulos
is too flexible. Because they allow for removal of keys,
their design does not immediately protect against a
malicious server attempting to revoke a user’s access
whereas ours does. We don’t implement the entire
CONIKS protocol. Instead, we implement the smallest
subset of functionality that would allow another party
to implement CONIKS at scale.

Now, another solution to the problem our work aims
to solve is Google’s implementation of a merkle tree,
Trillian. This work serves a similar purpose as our
merkle tree. Trillian implements a merkle tree with
a restricted API to allow Google to implement their
own version of CONIKS at scale known simply as
KeyTransparency [1]. Apart from obvious differences
with our work, like the lack of Ray and concurrency,

9

Trillian differs from our work in how they organize
there data storage layer. While our data storage layer is
meant to be flexible and ”plug-and-play”, Trillian’s data
storage layer was designed specifically for its usage.
In short, Google does not store an entire tree in their
database. Instead, they break up their tree into subtrees.
Note, each of these subtrees is of some depth that is
a power of two. Moreover, the nodes in each of these
subtrees are not explicitly stored in the database. The
novelty in this data storage layer is that the only nodes
that are explicitly stored in the underlying database
are the leaves of the subtree. Therefore, subtrees are
recalculated after loading the leaves of a subtree into
main memory from the database. The idea behind this
is simple: the cost of recomputing nodes in a subtree
is less than the cost of I/O [5].

X. FUTURE OPTIMIZATIONS

There are some optimizations related to the storage
layer that we find necessary in the future to boost
performance. The first idea we have is to encode 256-bit
hash digests in hexadecimal, which should reduce the
digest size to 16 bytes, giving a 16x reduction in size
from the current storage format as 256 bytes. Another
performance hit we take currently is in the preloading
of the cache from the database before performing our
percolation algorithm. This cache is cleared everytime
a batch is sent to the worker node but ideally, the
cache’s elements, or at least some of the higher level
elements in the cache would be maintained for the
next run so that we can pull in fewer nodes from
the database. Since all the worker subtrees are com-
pletely isolated, we can be sure that the latest write
is what should be pulled into the cache. Some more
advanced database optimizations could be made on our
queries such that we could perform reads and writes
for larger numbers of nodes. Specifically, MySQL has
a limit on the number of placeholders that may be
placed in a prepared statement and also has a limit
on the size of packets sent to the database so being
free of those limitations would make hypertuning for
optimal batch read and batch write sizes easier. The
database should also be sharded and partitioned for
more efficient querying. Ideally, since when writing,
we always have a new epoch number, it would be ideal
to have read-optimized database instances for data that
is behind the current epoch and a small efficient write
storage for the current epoch that gets pushed to the
read instance efficiently. Becuase epochs grow without
bound, it would be helpful to clean up old epochs if

storage is an issue.

XI. FUTURE WORK

Currently, the primary queries we support are single-
leaf writes that arrive in batches and single-leaf reads.
We plan to extend our functionality to support range
queries and multi-leaf updates and reads [6]. Both range
and multi-leaf reads will be straightforward extensions
of the single-read function since one worker node is
always in charge of completing the entire read request.
Multi-leaf updates are currently supported atomically
within an epoch. That is, Angela currently guarantees
that either all of the transactions, or none of the trans-
actions, are persisted within an epoch. We plan to add
finer grained logging of transactions in our orchestrator
node and as a result, have finer grained atomicity
guarantees on multi-leaf write transactions. The Go
implementation of our batch inserts would indicate to
the Ray actor which specific batches and those batches
could be redone. Additionally, having multiple orches-
trator nodes to load balance incoming transactions to
worker nodes will remove this bottleneck. Our final
planned addition to the server layer is to support smaller
batching within an epoch to get streaming-like behavior
on our transactions [2]. Such behavior could also be
used to dynamically determine an optimal number of
worker nodes to spawn to perform the writes.

XII. CONCLUSION

We have presented Angela, a sparse distributed
merkle tree that is optimized for highly concurrent
reads and writes. Angela is implemented with a concur-
rency algorithm that achieves a 2 times speedup from
the naive algorithm. Angela’s infrastructure is easily
portable, and allows easy exchange of the database and
worker nodes to match the user’s needs. In addition,
Angela is highly scalable and distributes easily while
maintaining its multithreading advantages.

XIII. ACKNOWLEDGEMENTS

We would like to thank Professor John Kubiatowicz
for general advising on the project, Richard Liaw from
RISELab for his invaluable help with Ray, and Profes-
sor Raluca Ada Popa for discussing our approaches to
the project with us.

REFERENCES

[1] Yahoo! Inc. Antonio Marcedone Google Inc.
KeyTransparency. URL: https://github.
com/google/keytransparency/.

10

[2] Arvind Arasu et al. “Concerto: A High Con-
currency Key-Value Store with Integrity”. In:
Proceedings of the 2017 ACM International
Conference on Management of Data. SIG-
MOD ’17. Chicago, Illinois, USA: ACM, 2017,
pp. 251–266. ISBN: 978-1-4503-4197-4. DOI:
10.1145/3035918.3064030. URL: http:
//doi.acm.org/10.1145/3035918.
3064030.

[3] Rasmus Dahlberg, Tobias Pulls, and Roel
Peeters. Efficient Sparse Merkle Trees: Caching
Strategies and Secure (Non-)Membership Proofs.
Cryptology ePrint Archive, Report 2016/683.
https://eprint.iacr.org/2016/683.
2016.

[4] Saba Eskandarian et al. “Certificate Trans-
parency with Privacy”. In: CoRR abs/1703.02209
(2017). arXiv: 1703.02209. URL: http://
arxiv.org/abs/1703.02209.

[5] Antonio Marcedone et al. Trillian. https://
eprint.iacr.org/2014/1004.

[6] Charles Martel et al. “A General Model for
Authenticated Data Structures”. In: Algorithmica
39.1 (Jan. 2004), pp. 21–41. ISSN: 0178-4617.
DOI: 10 . 1007 / s00453 - 003 - 1076 - 8.
URL: http://dx.doi.org/10.1007/
s00453-003-1076-8.

[7] Marcela S. Melara et al. CONIKS: Bringing
Key Transparency to End Users. Cryptology
ePrint Archive, Report 2014/1004. https://
eprint.iacr.org/2014/1004. 2014.

[8] Ralph C. Merkle. “A Digital Signature Based
on a Conventional Encryption Function”. In:
Advances in Cryptology — CRYPTO ’87. Ed. by
Carl Pomerance. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1988, pp. 369–378. ISBN:
978-3-540-48184-3.

[9] Philipp Moritz et al. “Ray: A Distributed Frame-
work for Emerging AI Applications”. In: CoRR
abs/1712.05889 (2017). arXiv: 1712.05889.
URL: http://arxiv.org/abs/1712.
05889.

[10] Maithili Narasimha and Gene Tsudik. “Authen-
tication of Outsourced Databases Using Signa-
ture Aggregation and Chaining”. In: Proceed-
ings of the 11th International Conference on
Database Systems for Advanced Applications.
DASFAA’06. Singapore: Springer-Verlag, 2006,
pp. 420–436. ISBN: 3-540-33337-1, 978-3-540-
33337-1. DOI: 10 . 1007 / 11733836 _ 30.

URL: http://dx.doi.org/10.1007/
11733836_30.

[11] Roberto Tamassia and Nikos Triandopoulos. “Ef-
ficient Content Authentication in Peer-to-Peer
Networks”. In: Proceedings of the 5th Interna-
tional Conference on Applied Cryptography and
Network Security. ACNS ’07. Zhuhai, China:
Springer-Verlag, 2007, pp. 354–372. ISBN: 978-
3-540-72737-8. DOI: 10.1007/978-3-540-
72738-5_23. URL: http://dx.doi.org/
10.1007/978-3-540-72738-5_23.

[12] Alexandre Verbitski et al. “Amazon Aurora: De-
sign Considerations for High Throughput Cloud-
Native Relational Databases”. In: Proceedings
of the 2017 ACM International Conference on
Management of Data. SIGMOD ’17. Chicago,
Illinois, USA: ACM, 2017, pp. 1041–1052.
ISBN: 978-1-4503-4197-4. DOI: 10 . 1145 /
3035918.3056101. URL: http://doi.
acm.org/10.1145/3035918.3056101.

11

